
Compositional State Space Generation

from Lotos Programs ⋆

Jean-Pierre Krimm and Laurent Mounier

Verimag

Zirst-Miniparc
F-38330 Montbonnot Saint-Martin, France

Abstract. This paper describes a compositional approach to generate the labeled
transition system representing the behavior of a Lotos program by repeatedly
alternating composition and reduction operations on subsets of its processes. To
restrict the size of the intermediate Ltss generated, we generalize to the Lotos

parallel composition operator the results proposed in [GS90], which consist in rep-
resenting the environment of a process by an interface, i.e., a set of “authorized”
execution sequences. This generalization allows to handle both user-given inter-
faces and automatically computed ones. This compositional generation method has
been implemented within the Cadp toolbox and experimented on several realistic
case-studies.

Introduction

Formal verification is a part of software engineering that consists in eval-
uating a set of specifications on a formal description of a program. When
this program is “finite state”, which happens in particular when consid-
ering only essential features of parallel and reactive systems, one of the
practical approaches is to generate a model of this program, for instance
a Labeled Transition System (Lts), describing its exhaustive behavior.
Then, verification can be performed on this finite model, using appropri-
ate decision procedures. This approach, usually named model-checking, can
be fully automated and therefore gave rise to numerous verification tools
([Arn89,CPS89,RS90,Hol91,FGK+96], etc.).

In spite of its apparent simplicity, one of the major drawback of model-
checking is that the size of the model generated may exponentially grow
up when considering large programs, and thus rapidly exceed the machine
capabilities. Several solutions have been investigated to overcome this state
explosion problem, for instance avoiding either an explicit storage of the whole
model (“on-the-fly” techniques), or even its exhaustive generation (“reduced
model generation” techniques).

A particular instance of this later solution consists in performing the
verification not on the Lts S obtained from the initial program description,
but rather on its quotient S/R where R is an equivalence relation preserving

⋆ An extended version can be found in [KM97].

the properties under verification. Then, the main difficulty remains to obtain
this quotient without generating first the initial Lts.

However, if the program under consideration can be described by a com-
position expression between communicating Ltss, and provided that R is a
congruence with respect to the operators of this expression, the quotient S/R
can be easily generated following a so-called compositional approach [Val96]:
it consists in (repeatedly) generating the Lts S′ associated to a given sub-
expression, and replacing this sub-expression in the initial one by the quotient
S′/R. Unfortunately, this technique is not so appealing in practice. In partic-
ular, the Lts S′ may often contain lots of unnecessary execution sequences,
forbidden by the synchronizations expected by the rest of the composition ex-
pression (its environment). In the worst cases, the size of S′ may even exceed
the one of S, leading to a failure of this approach.

A solution to this problem has been proposed in [GS90,GLS96] and
[CK93,CK95] for composition expressions based on the Csp [Hoa78] par-
allel operator. Intuitively, it consists in expressing the environment of a sub-
expression by an interface, i.e., an Lts representing a set of “authorized”
execution sequences that can be performed by this sub-expression. Thus, us-
ing a projection operator, only a “restricted” Lts S′ is generated, in which
useless execution sequences have been cut off according to its corresponding
interface.

The main objective of this work is to evaluate this compositional genera-
tion method on realistic case-studies, in order to compare its efficiency with
respect to some other existing solutions for the state explosion problem. To
this purpose, we have generalized the results of [GS90] and [CK93] to the
Lotos language [ISO88], an international Iso standard for the description
of communication protocols. In particular a new projection operator – named
semi-composition – has been defined, able to deal either with user-given in-
terfaces (as in [GS90]), or with automatically computed ones (as in [CK93]).
Then, compositional generation have been integrated within the Cadp tool-
box [FGK+96] and experimented on some of the large case-studies already
carried out with this toolbox.

This paper is organized as follows. In section 1, we recall some basic
definitions concerning Ltss and behavioral equivalences. In section 2, we
present the general framework we used for compositional generation of Lotos

programs, and section 3 and 4 show how to perform this generation using
either automatically computed or user-given interfaces. Finally, section 5
briefly presents our implementation and gives the results obtained on two
different case-studies.

1 Preliminary definitions

The behavior of a (sequential) process can be modelized by a labeled transi-
tion system, namely, a set of states (the possible values of its program counter

and local variables), and a labeled transition relation between states (each
transition describing the execution of a given instruction).

More formally, let Q be a set of states, A a set of label (or instruction
names), τ a particular label representing a hidden or unobservable instruction
(τ 6∈ A), and let Aτ = A ∪ {τ}. For a set X , X∗ will represent the set of finite
sequences on X .

Definition 1. A Labeled Transition System (Lts, for short) is a quadruplet
S = (Q, A, T, q0) where Q is a finite set of states (Q ⊆ Q), A is a finite set
of actions (A ⊆ Aτ), T is a transition relation (T ⊆ Q × A × Q) and q0 is a
distinguished element of Q called the initial state. 2

For an Lts S = (Q, A, T, q0), and for a given state p in Q, we adopt the
following notations:

– The predicate (p, a, q) ∈ T is noted p
a

−→T q (or even p
a

−→ q).
This notation is extended to label sequences: let λ ⊆ A∗, we write

p
λ

−→T q iff ∃u1 · · ·un ∈ λ ∧ ∃q1, · · · , qn−1 ∈ Q ∧ p
u1−→T q1 · · · qn−1

un−→T

q. Note that for each Lts considered in this paper, Q always matches with
the set of states reachable by T from q0: Q = {p | ∃σ ∈ A∗ . q0

σ
−→T p}.

– Act(p) is the set of labels that can be performed from p:

Act(p) = {a ∈ A | ∃q ∈ Q . p
a

−→T q}.

A rough characterization of a process behavior consists in considering
the set of its observable execution sequences. For this purpose we define the
language of an Lts as the set of finite observable label sequences that can be
obtained from its initial state.

Definition 2. Let S = (Q, A, T, q0) be an Lts. For a given p ∈ Q, the (ob-
servable) language associated to p on S is defined as follows:

L(p) = {σ | σ = a0a1 · · · an−1 ∧ p
τ∗a0−→ p1

τ∗a1−→ p2 · · ·
τ∗an−1

−→ pn}

The (observable) language of S is then defined as the language associated
to its initial state: L(S) = L(qo). 2

Finally, we also introduce a particular operator, allowing to abstract away
a given set of labels on an Lts by renaming them into the special τ label.

Definition 3. Let S = (Q, A, T, q0) be an Lts and G a set of label (G ⊆ A).
The abstraction S[G] of S with respect to G is the Lts (Q, A′, T ′, q0) where

A′ =

{

A if A ⊆ G
(A ∩ G) ∪ {τ} otherwise

T ′ = {(p, a, q) | (p, a, q) ∈ T ∧ a ∈ G} ∪ {(p, τ, q) | (p, a, q) ∈ T ∧ a /∈ G}.

2

Several equivalence relations have been proposed in the literature for com-
paring two Ltss. They mainly differ by the underlying behavior notion they
are based on (e.g. a set of execution sequences versus an execution tree),
together with the abstraction criterion used to handle the internal τ action.

We consider here a well-known family of behavioral equivalences, the
bisimulation relations. First, we recall the general definition of these rela-
tions. Then we indicate how most of the classical bisimulations used in the
verification framework are derived from this definition.

In the rest of the section we consider two Ltss Si = (Qi, Ai, Ti, q0i)i=(1,2)

and Λ a family of disjoint languages on A∗
τ (Λ ⊆ 2A

∗

τ).

Definition 4. For each relation R ∈ Q1 × Q2, we define:

BΛ(R) = {(p1, p2) | ∀λ ∈ Λ,

(∀q1 . (p1
λ

−→T1
q1 ⇒ ∃q2 . (p2

λ
−→T2

q2 ∧ (q1, q2) ∈ R))) ∧

(∀q2 . (p2
λ

−→T2
q2 ⇒ ∃q1 . (p1

λ
−→T1

q1 ∧ (q1, q2) ∈ R)))}

The bisimulation equivalence ∼Λ for the language Λ is defined as the greatest
fixed-point of BΛ. 2

Following definition 4, Ltss S1 and S2 are said Λ-bisimilar (also noted
S1 ∼Λ S2) if and only if their initial states are related by ∼Λ. This general
definition allows to define most of usual bisimulation relations. The choice of
a family Λ corresponds to the choice of an abstraction criterion on the labels:
strong bisimulation ∼ ([Par81]) is obtained when Λ = {{a} | a ∈ A}, obser-
vation equivalence ≈o ([Mil80]) is obtained when Λ = τ∗ ∪ {τ∗aτ∗ | a ∈ A},
delay bisimulation ≈d ([NMV90]) is obtained when Λ = τ∗ ∪ {τ∗a | a ∈ A},
etc1.

For each behavioral relation R, the quotient of a given Lts S with respect
to R can be intuitively defined as the smallest Lts (in number of states) R-
equivalent to S. Such a quotient will be noted S/R in the sequel. Moreover,
for the bisimulation relations, the quotient of an Lts can be uniquely de-
fined and computed rather efficiently for medium-sized Ltss (see for instance
[PT87,KS90,Fer90,GV90]).

Finally, all these relations can be compared each other with respect to
the inclusion, and thus ordered in the binary relation lattice. In particular,
it is generally admitted that strong bisimulation is the finest relation for
behavior comparison and it is therefore considered here as the “identity”
relation between Ltss.

2 Compositional state space generation

We now turn back to the problem of generating the global Lts representing
the behavior of a system of communicating processes. First, we present the

1 branching bisimulation [vGW89], however, cannot be derived from this general
definition.

language used throughout this paper to express such systems, and then we
describe a compositional approach to perform the state space generation.

2.1 Composition expressions

The language we chose to describe systems of communicating processes is
build from two Lotos operators, namely the parallel composition operator
(||G)2 and the hiding operator (hide G in . . .), both parametrized by a
label set G. Moreover, sequential elementary processes are represented by
identifiers S.

The abstract syntax of composition expressions Exp is then the following:

Exp ::= Exp ||G Exp | hide G in Exp | S

Composition expressions can be viewed as an intermediate form for the
compilation of a Lotos program into an Lts. More precisely, our objective
is to express a Lotos program as parallel compositions of many possible
elementary processes. Although very simple, it will be shown in section 5
that the syntax proposed here fulfills this objective, and allows to deal with
non trivial programs. Moreover, this syntax could easily be extended with
other Lotos operators (e.g. the so-called enable and disable operators, >>
and [>) without significantly modifying the results presented in the following
sections.

It now remains to define more precisely the parallel and hiding operators
used in composition expressions.

Informally, S1 ||G S2 is the Lts obtained by parallel composition of Ltss
S1 and S2 with rendez-vous synchronization on the labels belonging to G.
Transitions whose label does not belong to G are performed independently
by the two Ltss according to the interleaving semantics.

Definition 5. Let Si = (Qi, Ai, Ti, q0i
)i=(1,2) be two Ltss, and G a la-

bel set (G ⊆ A). Then, S1 ||G S2 is the Lts (Q, A1 ∪ A2, T, (q01
, q02

)) where
Q ⊆ Q1 × Q2 and T are the smallest sets verifying:

(q01
, q02

) ∈ Q [C0]

(q1, q2) ∈ Q, q1
a

−→T1
q′1, q2

a
−→T2

q′2, a ∈ G

(q′1, q′2) ∈ Q, (q1, q2)
a

−→T (q′1, q′2)
[C1]

(q1, q2) ∈ Q, q1
a

−→T1
q′1, a /∈ G

(q′1, q2) ∈ Q, (q1, q2)
a

−→T (q′1, q2)
[C2]

(q1, q2) ∈ Q, q2
a

−→T2
q′2, a /∈ G

(q1, q′2) ∈ Q, (q1, q2)
a

−→T (q1, q′2)
[C3]

2 representing both the ||, ||| and |[...]| operators of Lotos.

2

Note that this parallel composition operator is commutative but not asso-
ciative in the general case (i.e., when the synchronization sets are not fixed).

For a given Lts S, hide G in S is the Lts obtained from S by renaming
each label belonging to G into the internal τ label.

Definition 6. Let S = (Q, A, T, q0) be an Lts, and G a label set (G ⊆ A).
hide G in S is the Lts S[A \ G]. 2

The hiding operator can be partially distributed over parallel composition
as follows:

hide H in (S1 ||G S2) ∼ hide (H ∩ G) in

((hide (H \ G) in S1) ||G (hide (H \ G) in S2))

Using definition 5 and 6 we are now able to give the semantics of a com-
position expression E in terms of Ltss. To this purpose we (inductively)
define the function sem associating to each composition expression the Lts

representing its behavior:

sem (E1 ||G E2) = sem (E1) ||G sem (E2)

sem (hide G in E) = hide G in sem (E)

sem (S) = S.

Finally, all the bisimulation relations mentioned in the previous section
are congruences with respect to parallel composition and hiding operators.
More precisely, it easy to check that if a language set Λ is such that each λ
in Λ is included in (τ∗ ∪ {τ∗aτ∗ | a ∈ A}), then, for all Ltss S1, S2 and S:

S1 ∼Λ S2 ⇒ (S1 ||G S) ∼Λ (S2 ||G S)

S1 ∼Λ S2 ⇒ (hide G in S1) ∼Λ (hide G in S2)

2.2 A compositional approach for state space generation

As already mentioned in the introduction, an automatic method to formally
verify a system described by a composition expression E consists in gen-
erating the Lts sem (E), or, more efficiently, the quotient of this Lts with
respect to a suitable equivalence relation R (where R is supposed to preserve
the properties under verification).

Furthermore, instead of generating first the overall Lts sem (E) and then
reducing it modulo relation R, using an incremental approach seems much
more attractive. Such an approach can be sketched as follows: starting from
the elementary processes Si of E, sem (E) is obtained following a bottom-up
strategy by replacing each sub-expression of E by the quotient modulo R of
its associated Lts. This approach can be formalized as a recursive function

CompGen (for Compositional Generation), inductively defined in the follow-
ing manner:

CompGen (E1 ||G E2) = (CompGen (E1) ||G CompGen (E2))/R

CompGen (hide G in E) = (hide G in CompGen (E))/R

CompGen (S) = (sem (S))/R.

Provided that R is a congruence with respect to parallel composition and
hiding operators, and provided that the quotient of an Lts modulo this rela-
tion is unique, it is clear that for any composition expression E, CompGen (E)
is equal to (sem (E))/R.

Unfortunately, this straightforward approach is not always sufficient in
practice since unnecessary large intermediate Ltss may be generated. In-
deed, sub-expressions are considered outside of their context (the remaining
part of the initial composition expression), and therefore many constraints
on their effective behavior are not taken into account during their genera-
tion. Consequently, the Ltss associated to such sub-expressions by function
CompGen may contain lots of useless execution sequences forbidden by the
context, that will disappear only in forthcoming parallel compositions 3.

A solution to this problem has been already formulated by [GS90] and
[CK93] for a Csp-like parallel composition operator. Their approach can be
summarized as follows:

– the context constraints of a sub-expression is a set of (allowed) execution
sequences, and it can be represented by an Lts called the interface;

– Ltss generated from sub-expressions of E are “restricted” Ltss, in which
forbidden execution sequences have been cut off according to their asso-
ciated interface.

In order to formalize this solution in our framework, we first need to de-
fine more precisely the notion of environment of a sub-expression E′ in a
composition expression E. Intuitively, this is the set of parallel composition
operations applied to E′ in E (hiding operators are not included in the envi-
ronment since only parallel compositions may restrict the behavior of a given
sub-expression):

Definition 7. Let E be a composition expression. The set of sub-expressions

of E is given by the function SubExp : Exp → 2Exp, defined in the usual
way:

SubExp (E1 ||G E2) = {E1 ||G E2} ∪ SubExp (E1) ∪ SubExp (E2)

SubExp (hide G in E) = {hide G in E} ∪ SubExp (E)

SubExp (S) = {S}

3 Note that this is particularly the case for programs written following the so-called
constraint oriented specification style [VSSB91].

For any sub-expression E′ of E, the environment of E′ in E is given by

the function Env : Exp × Exp → 2Exp×2A

, where

Env (E′, E) = {(Ei, Gi) | ∃E′
i, E

′′
i ∈ SubExp (E) .

((E′′
i = E′

i ||Gi
Ei) ∨ (E′′

i = Ei ||Gi
E′

i)) ∧ (E′ ∈ SubExp (E′
i))}

2

Using this definition we are able to take into account the context con-
straints within a compositional generation. More precisely, the basic idea is
to replace each sub-expression E′ of E by the Lts Ψ(E′, Env (E′, E)), where
the transformation Ψ satisfies the following requirements:

R1: it restricts the behavior of E′ according to its environment, i.e.,

| Ψ(E′, Env (E′, E)) | ≤ | sem (E′) |

R2: it preserves the behavior of the initial expression when a sub-expression
E′ is replaced by its corresponding Ψ -transformation, i.e.,

sem (E[Ψ(E′, Env (E′, E))/E′]) ∼ sem (E)

R3: it can be computed on-the-fly, i.e., Ψ(E′, Env (E′, E)) can be obtained
without generating sem (E′) first.

Finally, it remains to propose a suitable transformation Ψ , satisfying the
desired requirements. In [CK93], this transformation is built from the paral-
lel composition operator itself. However, this solution requires to determinize
first the interface Lts, which may exponentially increase its size. Moreover,
even with a deterministic interface, requirement R1 is not ensured. Regard-
ing [GS90], transformation Ψ is built from a new operator, called the projec-
tion, able to restrict a composition expression even from a non deterministic
interface. We adopt here this later approach, defining a similar operator in
the framework of Lotos parallel composition.

3 Compositional generation under context constraints

In this section, we give first the definition of a new operator between Ltss
named the semi-composition. Then, we show that it ensures all the require-
ments given in the previous section, and how to introduce it in a composition
expression.

Definition 8. Let Si = (Qi, Ai, Ti, q0i
)i=(1,2) be two Ltss, and G a label set

(G ⊆ A).
Let S′ = (Q′, A′, T ′, q′0) be the Lts S1 ||G S2. We denote by S1

–||G S2

the Lts (Q, A1, T, q0) resulting from the semi-composition of S1 by S2 and

defined as follows:

Q = {(p1, X) | p1 ∈ Q1 ∧ X = {p2 | (p1, p2) ∈ Q′}}

T = {((p1, X1), a, (p2, X2)) |

(p1, q1)
a

−→T ′ (p2, q2) ∧ q1 ∈ X1 ∧ q2 ∈ X2 ∧ p1
a

−→T1
p2}

q0 = {(q01
, X0) | X0 = {p2 | (q01

, p2) ∈ Q′}}

For any (p1, X) ∈ Q, set X is unique, which ensures the correction of this
definition. 2

According to this definition, the Lts resulting from the semi-composition
of S1 by S2 is clearly a sub-Lts of S1. Consequently, the semi-composition
never increases the number of states and transitions of its first operand, which
ensures the requirement R1.

This semi-composition operator can be introduced in a composition ex-
pression in order to reduce the size of intermediate Ltss, as expressed by
proposition 9 :

Proposition 9. Let S1 and S2 be two Ltss and G a label set (G ⊆ A). Then,
the following relation holds:

S1 ||G S2 ∼ (S1
–||G S2) ||G S2

2

The second operand (S2) of the semi-composition will represent the con-
text constraints applied on the first operand and is named the interface.
However, it is not necessary to use this whole Lts in order to restrict a
sub-expression. Indeed, it can be performed by considering only the set of
execution sequences of the interface defined on the synchronization set G
(in particular the branching structure of the interface is irrelevant). Proposi-
tion 10 formalizes this property:

Proposition 10. Let S1 and S2 be two Ltss and G a label set (G ⊆ A). For
any Lts S′

2 such that L(S′
2[G]) = L(S2[G]) we have:

(S1
–||G S2) ∼ (S1

–||G S′
2).

2

Contrarily to the one considered in [GS90] and [CK93], the parallel com-
position operator we use is not associative. Consequently, the propagation
of the semi-composition operator through the parallel composition needs a
property of (partial) distribution:

Proposition 11. Let S1, S2 and S be three Ltss and G a label set (G ⊆ A).
Then,

(S1 ||E S2) ||G S ∼ ((S1
–||G1

S) ||E (S2
–||G2

S)) ||G S

where label sets G1 and G2 are defined as follows:

G1 = G ∩ (E ∪ (Act(S1) \ Act(S2)))

G2 = G ∩ (E ∪ (Act(S2) \ Act(S1)))

2

Finally, we also use the following property in order to propagate context
constraints through the hiding operator:

Proposition 12. Let S1 and S2 be two Ltss and G1 and G2 two label sets.
Then,

(hide G1 in S1) ||G2
S2 ∼ (hide G1 in (S1

–||G2\G1
S2)) ||G2

S2

2

It now remains to show more formally how this semi-composition operator
can be used to implement the Ψ transformation.

In the general case, let E be a composition expression, E′ a sub-expression
of E, and (Ei, Gi) an element of Env (E′, E). According to definition 7 there
exists a sub-expression E′′

i of E such that E′′
i ||Gi

Ei (or Ei ||Gi
E′′

i) be-
longs to SubExp (E) and E′ ∈ SubExp (E′′

i). Then, E′ can be restricted up
to (Ei, Gi) and we define:

Ψ(E′, {(Ei, Gi)}) = E′ –||G′i E′
i

where L(sem (E′
i)[G

′
i]) = L(sem (Ei)[G

′
i]) and G′

i is a subset of Gi, depending
on the syntactic path between E′′

i to E′. More precisely, G′
i = ΦE′(E′′

i , Gi)
where function ΦE′ is inductively defined according to propositions 11 and
12 :

ΦE′(E′, X) = X

ΦE′(E1 ||G E2, X) =

ΦE′(E1, X ∩ (G ∪ Act(E1) \ Act(E2)))
if E′ ∈ SubExp (E1)

ΦE′(E2, X ∩ (G ∪ Act(E2) \ Act(E1)))
if E′ ∈ SubExp (E2)

ΦE′(hide G in E, X) = ΦE′(E, X \ G)

We have shown that the semi-composition operator can be used to build a
Ψ -transformation verifying requirements R1 and R2 of the previous section,
and that this transformation allows to restrict automatically a sub-expression
according to a part of its environment. However, several problems live on. For
instance:

– the interface (i.e. sem(E′
i)[G

′
i]) has to be small enough to be generated;

– the semi-composition have to be restrictive (i.e. G′
i not empty);

– It is not always possible to restrict a sub-expression using its whole en-
vironment in a single (semi-composition) operation.

Consequently these results may be unsufficient in some practical cases.
In the next section, we propose an alternative solution in which the user can
express by himself the context constraints, and then (partially) avoid these
problems.

4 Compositional generation with user given interfaces

The idea of using user-supplied interfaces to represent the context constraints
associated to a sub-expression is not original: it is the basis of the work
described in [GS90], and it has also been applied in [CK95]. However, our
objective in this section is to show how this solution can be adapted to Lotos

composition expressions, and to propose a general framework in which both
user given and computed interfaces can be used.

The main problem arising when user given informations are used in a ver-
ification framework is to ensure that, even if such informations are erroneous,
they cannot lead to an incorrect result. A practical way to solve this prob-
lem is therefore to try verifying these informations as well, and to conclude
only when the answer is positive. To this purpose, we follow the approach
proposed in [GS90]4. Intuitively, this approach can be summarized as follows:

– if a sub-expression E′ is restricted with respect to a user given interface,
the synchronizations “refused” by this interface are recorded;

– when E′ is composed with its “real” environment (the rest of the compo-
sition expression) it is easy to verify if these synchronizations really had
to be refused.

To formalize this approach we need to extend the notion of Lts used so
far by adding a binary predicate ↑. Its intuitive meaning is to associate to
each state a label set for which a synchronization has been refused during
the generation of this Lts, and such that this refusal has not been justified
(yet).

Definition 13. An Extended Labeled Transition System (Elts for short)
is a 5-tuple (Q, A, T, q0, ↑) where (Q, A, T, q0) is an Lts and ↑ is a predicate
over Q × A.

In the following we note p ↑ a iff (p, a) ∈↑, and p ↑ ǫ iff 6 ∃a ∈ Aτ . p ↑ a.
Moreover, an Elts S is said valid, and we note valid (S), iff it has not been

obtained from unjustified refused synchronizations: (∀p ∈ Q . p ↑ ǫ). Conse-
quently, “standard” Ltss can be simply viewed as valid Eltss. 2

In the rest of the section we consider a label set G ⊆ A and two Eltss
Si = (Qi, Ai, Ti, q0i

, ↑i)i=(1,2).

4 and also in [CK95] using a different formalism.

From definition 13, we extend the parallel composition and hiding op-
erators for Eltss. In particular, since the parallel composition operator is
used only to compose a sub-expression with a part of its “real” environment,
then, for any action a belonging to the synchronization set G, (q1, q2) ↑ a
holds iff q1 ↑ a holds (an unjustified a-synchronization holds on state q1) and
a ∈ Act(q2) (a is not refused by q2), or vice-versa.

The exact definition of these operators is then the following:

Definition 14. S1 ||G S2 is the Elts (Q, A, T, q0, ↑) where Q, A, T and q0

are obtained from definition 5, and ↑ is the smallest set verifying:

q1 ↑1 a, a /∈ G

(q1, q2) ↑ a

q2 ↑2 a, a /∈ G

(q1, q2) ↑ a

q1 ↑1 a, q2
a

−→T2
q′2, a ∈ G

(q1, q2) ↑ a

q1
a

−→T1
q′1, q2 ↑2 a, a ∈ G

(q1, q2) ↑ a

q1 ↑1 a, q2 ↑2 a, a ∈ G

(q1, q2) ↑ a

hide G in S1 is the Elts (Q, A, T, q0, ↑) where Q, A, T and q0 are ob-
tained from definition 6, and

↑= {(p1, a) | p1 ↑1 a ∧ a 6∈ G} ∪ {(p1, τ) | p1 ↑1 a ∧ a ∈ G}

2

Similarly, the semi-composition operator also has to be extended to Eltss.
Let us recall that this operator allows to restrict a sub-expression E′, whose
semantics is now expressed by an Elts, with respect to a set of execution
sequences – the interface – represented by a “standard” Lts and a synchro-
nization set. Depending on the nature of this interface (i.e., user-supplied
or automatically computed on the initial composition expression), we distin-
guish between two semi-composition operators:

– an “user one” (noted –||?), which updates predicate ↑ on sem (E′)
by adding the labels corresponding to synchronizations refused by the
interface;

– an “exact one” (still noted –||), which updates predicate ↑ on sem (E′)
by removing the labels corresponding to synchronizations refused by the
interface (this can be viewed as an anticipation, provided that E′ will be
composed with the part of the environment corresponding to this exact
interface).

More formally, these operators are defined as follows:

Definition 15. S1
–||G S2 is the Elts (Q, A, T, q0, ↑) where Q, A, T and q0

are defined according to definition 8 and ↑ is obtained from ↑1 as follows:

↑= {((p1, X), a) | ((p1, X) ∈ Q ∧ p1 ↑1 a) ∧ (a ∈ G ⇒ (∃p ∈ X . a ∈ Act(p)))}

Similarly, S1
–||?G S2 is the Elts (Q, A, T, q0, ↑) where Q, A, T and q0 are

defined according to definition 8 and ↑ is obtained as follows:

↑= {((p1, X), a) | (p1 ↑1 a) ∨ (a ∈ G ∧ a ∈ Act(p1) ∧ (∀p2 ∈ X . a 6∈ Act(p2)))}

2

The validity of a compositional generation under user-given interfaces is
established by proposition 16, which states that whenever an Elts obtained
from such an interface is valid, then this interface can be considered as correct.

Proposition 16. Let S1 and S2 be two Eltss, I an Lts, G and X two label
sets and S = (S1

–||?X I) ||G S2.

valid (S) ⇒ (S ∼ S1 ||G S2)

2

More generally, according to proposition 16, if E is a composition expres-
sion and E′ a sub-expression of E, then E′ can be replaced in E by Elts

(E′ –||?X I) whenever the resulting Elts is valid :

valid (sem (E[(E′ –||?X I)/E′])) ⇒ (sem (E[(E′ –||?X I)/E′]) ∼ sem (E))

In such case, Ψ(E′, Env (E′, E)) is therefore simply expressed by E′ –||?X I.
Finally, to obtain a practical approach for compositional generation, it

also remains to extend the behavioral relations ∼Λ to Eltss. Intuitively,
these extensions ∼↑

Λ must verify three properties: to preserve the original

relation ∼Λ (∼↑
Λ⊆∼Λ), to be a congruence with respect to (extended) opera-

tors of a composition expression, and to preserve the valid predicate between
equivalent Eltss.

It can be checked that the following extension of a Λ-bisimulation relation
satisfies these criteria for the language sets Λ mentioned in section 1:

Definition 17. For each relation R ∈ Q1 × Q2, we define:

B↑
Λ(R) = {(p1, p2) | ∀λ ∈ Λ,

(∀a ∈ Aτ . (p1 ⇑ a) ⇔ (p2 ⇑ a)) ∧

(∀q1 . (p1
λ

−→T1
q1 ⇒ ∃q2 . (p2

λ
−→T2

q2 ∧ (q1, q2) ∈ R))) ∧

(∀q2 . (p2
λ

−→T2
q2 ⇒ ∃q1 . (p1

λ
−→T1

q1 ∧ (q1, q2) ∈ R)))}

where p ⇑ a ≡ (∃q . p
τ∗

−→ q ∧ q ↑ a). The extension ∼↑
Λ of bisimulation

equivalence ∼Λ is defined as the greatest fixed-point of B↑
Λ. 2

5 Application

This compositional generation method has been implemented within the
Cadp toolbox and experimented on several Lotos programs. We briefly
describe this implementation, and we give some experimental results.

5.1 The Cadp toolbox

Cadp (Cæsar/Aldébaran Development Package) is a toolbox for protocol
engineering [FGK+96]. Its main functionality is to allow formal verification
of both behavioral and logical specifications, following the model-based ap-
proach. This toolbox includes several components, and in particular:

– the Lotos compiler Cæsar, able to translate a Lotos program into an
explicit Lts;

– the equivalence checker Aldébaran, able to compare or minimize Ltss
up to various bisimulation relations.

– the Open-Cæsar environment, able to compile either a Lotos program
or a composition expression into an implicit Lts (i.e., a set of C functions
allowing an on-the-fly exploration of this Lts).

Two new components have been integrated in Cadp to allow composi-
tional generation from Lotos programs:

– the Projector tool, implementing the semi-composition algorithms
that can be found in [KM97], and developed within the Open-Cæsar

environment;
– a compositional generation tool, which takes as input an equivalence re-

lation and composition expression extended with semi-composition oper-
ators (see example ine section 5.2), and which generates an Unix shell-
script containing the corresponding calls to Cæsar, Aldébaran and
Projector.

5.2 Experimental results

We give the experimental results obtained when applying the compositional
generation method on two realistic Lotos examples: an atomic multicast
protocol [SE90], requiring user-given interfaces, and a leader election algo-
rithm [GM96], that could be handled automatically.

The rel/Rel protocol [SE90] aims to support atomic communications
between a transmitter and several receivers, in spite of an arbitrary number
of failures from the stations involved in the communications. We focus here
on a version of this protocol which preserves the order of the messages sent
by the transmitter (its Lotos specification is given in [BM91]).

This protocol is built on a transport layer which provides a reliable mes-
sage transmission between any pair of stations. In case of crash, stations are

supposed to adopt a fail-silent behavior : they stop any message emission, and
they silently discard any received message.

The rel/Rel protocol is based on a two phases commit algorithm: the
transmitter sends two successive copies of the message to all receivers; each
message being uniquely identified, and an additional label indicates whether
it is a first or a second copy. On receipt of a first copy, a station S waits for
the second one. If it does not arrive before the expiration of a delay, then
S assumes that the transmitter crashed and that some of the receivers may
have not received any copy of the message. Then, S relays the transmitter and
multicasts the two copies of the message, using itself the rel/Rel protocol.
However, to reduce the network traffic, a station stops to relay as soon as
a second copy of the message is received from the transmitter or from any
other receiver.

If we consider a transmitter Trans, and three receiving stations Rec1,
Rec2 and Rec3 the composition expression derived from the Lotos program
describing this protocol is the following:

E = ((Rec2 ||{R23,R32} Rec3) ||{R12,R13,R21,R31} Rec1) ||{RT1,RT2,RT3} Trans

Note that the hiding operators have been omitted, since they are automat-
ically distributed over parallel compositions by the compositional generation
tool (see section 2.1).

A brutal application of the compositional generation method on this ex-
pression leads to several comments. First, the Ltss representing receivers Reci

are too large to be generated, and only Lts sem (Trans) can be obtained.
Moreover, this later happens to be insufficient to restrict the receivers, i.e.,
Lts (sem (Reci)

–||RTi sem (Trans)) is still too large. Therefore, user given
interfaces Ii are necessary to express the constraints provided by the whole
environment of each station Reci (the transmitter and the other receivers).
Finally, each parallel composition occurring in E is also systematically re-
stricted with respect to the constraints provided by the transmitter. The
resulting composition expression is then the following:

E′ = (((((Rec2 –||?{RT2,R12,R32} I2) ||{R23,R32} (Rec3 –||?{RT3,R13,R23} I3))
–||{RT2,RT3} Trans) ||{R12,R21,R13,R31} (Rec1 –||?{RT1,R21,R31} I1))
–||{RT1,RT2,RT3} Trans) ||{RT1,RT2,RT3} Trans

Intuitively, interfaces Ii can be obtained by examining the constraints
imposed by their environment on message sequences received by each station
Reci. In particular, due to the message order preservation, one can assume
that every messages are always received by the station in the order they have
been sent. Then, using a global knowledge of the protocol, it becomes possible

to write a Lotos program describing a superset of such sequences for each
station Reci, and thus to obtain suitable Ltss Ii

5.

When applying our compositional generation tool on expression E′ the
following intermediate Ltss are generated (each of them corresponding to a
generation step):

S1i = sem(Reci)
–||?Gi

Ii

S2 = (S12 ||{R23,R32} S13)
–||{RT2,RT3} sem (Trans)

S3 = (S11 ||{R12,R21,R13,R31} S2) –||{RT1,RT2,RT3} sem (Trans)

sem (E′) = S3 ||{RT1,RT2,RT3} sem (Trans)

The following table lists the size of these Ltss (in number of states and
transitions), before and after reduction modulo strong bisimulation (remem-
ber that each Lts is systematically reduced after its generation), when three
different messages are sent by the transmitter:

before reduction after reduction

states transitions states transitions
S1i 16694 108407 1121 15114
S2 95041 1284922 44195 551902
S3 854302 6144825 200795 1418989

sem (E′) 898638 5893476 193991 1550623

According to these figures, none of the intermediate Ltss overcomes one
million of states, and the resulting Lts sem (E′)/ ∼ is less than 200 000 states,
which is quite manageable for verification purposes. Moreover, the whole
generation process completed in a few hours on a Sun SS 20 workstation.
The application on this same example of a symbolic generation method (based
on a Bdd encoding of the composition expression), leads to an Lts sem (E)
containing about 200 million of states (represented itself by a Bdd), obtained
in one week of computations using the same workstation.

More generally, we summarize in the following table the results obtained
for the two main applications we considered. We adopt here the terminology
proposed in [GS90]: the “apparent size” of the application is the number of
states of the Lts S obtained using a symbolic generation method, its “real
size” is the number of states of S/R6 and its “algorithmic size” is the number
of states of the largest Lts generated using our compositional approach.

5 Let us notice that these interfaces rely on a correct functioning of the protocol
under verification, which may seem paradoxical. In fact, the valid predicate allows
to justify a posteriori the correction of this hypothesis.

6 where R is the “extended” strong bisimulation relation ∼
↑ for the rel/Rel pro-

tocol and the branching bisimulation for the Leader Election algorithm.

application “apparent size” “algorithmic size” “real size”
rel/Rel 2 stations 249 357 9 717 4 085
rel/Rel 3 stations 178 519 776 898 638 193 991

Leader Election 4 stations 502 788 448 1 232 5
Leader Election 5 stations ? 45 760 6

It is quite clear on this two examples that compositional generation al-
lows to largely avoid the “apparent complexity” of the program, and even to
remain sometimes close to its “real complexity” as in the rel/Rel example.

Conclusion

We have proposed in this paper a generalization of the results presented
in [GS90] and [CK93] for applying a compositional generation method to
Lotos programs. Although many other works have been already carried out
on compositional verification and compositional generation (an interesting
classification can be found in [GLS96]), only a few of them – to our knowledge
– have been applied to large examples in order to make a fair comparison with
other “advanced” verification techniques.

The integration within the Cadp toolbox of the compositional generation
method described in this paper, and its evaluation on non-trivial case stud-
ies, have shown its interest in a verification framework. In particular, this
approach allowed to significantly improve the capabilities of the toolbox for
the two examples presented in this paper, providing better results than other
verification methods implemented in Cadp (such as on-the-fly verification
and symbolic minimal model generation [FKM93]). Nevertheless, this is not
true for all the examples we considered and this work still needs to be carried
on.

First of all, it appears in practice that, even with a good knowledge of the
program, it is not always possible for the user to provide suitable interfaces.
Therefore, their automatic computation should be improved. A possible way
could be to consider composition expression between Ltss extended with
state variables, and thus making possible the use of some abstract inter-
pretation techniques (since interfaces may not be necessarily represented by
Ltss).

Besides, the Ψ transformation we consider preserves strong bisimulation
(requirement R2 in section 2). In fact, this requirement is too strong if the
relation R under consideration is a coarsest relation (which is often the case in
practice). Therefore, parametrizing this transformation with an equivalence
relation could lead to further restrictions during the semi-composition, and
thus reducing even more the size of intermediate Ltss.

Furthermore, the choice of a suitable strategy to decide which sub-
expressions have to be dealt with during the compositional generation is
also an important problem from the user point of view. Even if automatically

providing an optimal strategy is certainly not manageable, some heuristics
could be proposed to assist him.

Finally, compositional generation could also be extended to Ltss commu-
nicating with other mechanisms than rendez-vous, for instance such as fifo
channels.

Acknowledgements: the authors are grateful to Susanne Graf for her
numerous comments about a previous version of this work, and to the anony-
mous referees for their helpful suggestions.

References

[Arn89] André Arnold. MEC: A System for Constructing and Analysing Transi-
tion Systems. In Joseph Sifakis, editor, Proceedings of the 1st Workshop
on Automatic Verification Methods for Finite State Systems (Grenoble,
France), volume 407 of Lecture Notes in Computer Science, pages 117–
132. Springer Verlag, June 1989.

[BM91] Simon Bainbridge and Laurent Mounier. Specification and Verification
of a Reliable Multicast Protocol. Technical Report HPL-91-163, Hewlett-
Packard Laboratories, Bristol, U.K., October 1991.

[CK93] S.C. Cheung and J. Kramer. Enhancing Compositional Reachability
Analysis with Context Constraints. In Proceedings of the 1st ACM Inter-
national Symposium on the Foundations of Software Engineering, pages
115–125, Los Angeles, California, December 1993.

[CK95] S.C. Cheung and J. Kramer. Compositional Reachability Analysis of
Finite-State Distributed Systems with User-Specified Constraints. In
Proceedings of SIGSOFT’95, 1995.

[CPS89] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench.
In J. Sifakis, editor, Proceedings of the 1st Workshop on Automatic Ver-
ification Methods for Finite State Systems (Grenoble, France), volume
407 of Lecture Notes in Computer Science, pages 24–37. Springer Ver-
lag, June 1989.

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm
for Bisimulation Equivalence. Science of Computer Programming, 13(2–
3):219–236, May 1990.

[FGK+96] J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A Protocol Validation and Verification Toolbox.
In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the
8th Conference on Computer-Aided Verification (New Brunswick, New
Jersey, USA), August 1996.

[FKM93] J.C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic Equivalence
Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop
on Computer-Aided Verification (Heraklion, Greece), volume 697 of Lec-
ture Notes in Computer Science. Springer Verlag, June 1993.

[GLS96] S. Graf, G. Lüttgen, and B. Steffen. Compositional Minimisation of
Finite State Systems using Interface Specifications. Formal Aspects of
Computation, 3, 1996. appeared as Passauer Informatik Bericht MIP-
9505.

[GM96] Hubert Garavel and Laurent Mounier. Specification and Verification of
various Distributed Leader Election Algorithms for Unidirectional Ring
Networks. Science of Computer Programming, 1996. Special issue on
Industrially Relevant Applications of Formal Analysis Techniques. Full
version available as INRIA Research Report 2986.

[GS90] Susanne Graf and Bernhard Steffen. Compositional Minimization of
Finite State Processes. In Workshop on Computer-Aided Verification,
Rutgers, USA, June 1990. DIMACS, R.P. Kurshan and E.M. Clarke.

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for
Branching Bisimulation and Stuttering Equivalence. In M. S. Patterson,
editor, Proceedings of the 17th ICALP (Warwick), volume 443 of Lecture
Notes in Computer Science, pages 626–638. Springer Verlag, 1990.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications
of the ACM, 21(8):666–677, August 1978.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Software Series. Prentice Hall, 1991.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour. International Standard
8807, International Organization for Standardization — Information
Processing Systems — Open Systems Interconnection, Genève, Septem-
ber 1988.

[KS90] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes
and Three Problems of Equivalence. Information and Computation,
86(1), May 1990.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer Verlag, 1980.

[NMV90] Rocco De Nicola, Ugo Montanari, and Frits Vaandrager. Back and Forth
Bisimulations. CS R9021, Centrum voor Wiskunde en Informatica, Am-
sterdam, May 1990.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Peter
Deussen, editor, Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer Verlag, March 1981.

[PT87] Robert Paige and Robert E. Tarjan. Three Partition Refinement Algo-
rithms. SIAM Journal of Computing, 16(6):973–989, December 1987.

[RS90] Valérie Roy and Robert de Simone. Auto/Autograph. In R. P. Kur-
shan and E. M. Clarke, editors, Proceedings of the 2nd Workshop on
Computer-Aided Verification (Rutgers, New Jersey, USA), volume 3 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 477–491. AMS-ACM, June 1990.

[SE90] Santosh K. Shrivastava and Paul. D. Ezhilchelvan. rel/REL: A Family of
Reliable Multicast Protocol for High-Speed Networks. Technical Report,
University of Newcastle, Dept. of Computer Science, U.K, 1990.

[Val96] Antti Valmari. Compositionality in State Space Verification. In Applica-
tion and Theory of Petri Nets, volume 1091 of Lecture Notes in Computer
Science, pages 29–56. Springer Verlag, June 1996.

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstrac-
tion in Bisimulation Semantics (extended abstract). CS R8911, Centrum
voor Wiskunde en Informatica, Amsterdam, 1989. Also in proc. IFIP
11th World Computer Congress, San Francisco, 1989.

[VSSB91] C. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. On the use
of specification styles in the design of distributed systems. Theoretical
Computer Science, 89(1):179–206, October 1991.

