
Compositional state space generation withpartial order reductions for AsynchronousCommunicating Systems
Jean-Pierre Krimm and Laurent MounierVERIMAG? { Centre Equation { 2, avenue de Vignate { F-38610 Gi�eresJean-Pierre.Krimm@imag,fr, Laurent.Mounier@imag.fr

Abstract. Compositional generation is an incremental technique forgenerating a reduced labelled transition system representing the be-haviour of a set of communicating processes. In particular, since inter-mediate reductions can be performed after each generation step, thesize of the Lts can be kept small and state-explosion can be avoided inmany cases. This paper deals with compositional generation in presenceof asynchronous communications via shared bu�ers. More precisely, weshow how partial-order reduction techniques can be used in this contextto de�ne equivalence relations: that preserve useful properties, are con-gruence w.r.t asynchronous composition, and rely on a (syntactic) notionof preorder on execution sequences characterizing their \executability"in any bu�er environment. Two such equivalences are proposed, togetherwith dedicated asynchronous composition operators able to directly pro-duce reduced Lts.
1 IntroductionThis work takes place in the context of formal veri�cation of distributed pro-grams, those purpose is to evaluate a set of expected requirements on a formalprogram description. To automate this activity, one of the promising techniqueis the well-known model-checking approach, which consists of performing theveri�cation on an explicit model of the system behaviour (e.g., a labelled tran-sition system, or Lts). However, the main drawback of model-checking is themodel explosion occurring when dealing with complex systems. This still limitsits large scale utilisation in the industry.Several interesting solutions have already been investigated to overcome thisproblem, for instance by avoiding an explicit storage of the whole model (\on-the-y" techniques), or by processing it using e�cient representations (\symbolic"techniques), or by generating a model simpler than the initial one (\abstraction"techniques). A particular instance of this latter solution consists of performingthe veri�cation not on the Lts S obtained from the original program description,but rather on its S=R quotient where R is an equivalence relation preserving the? VERIMAG is a joint laboratory of CNRS, UJF and INPG

properties under veri�cation. The main di�culty is then to get this quotientwithout generating �rst the initial Lts.When the program under consideration is described by a composition ex-pression between communicating Lts, and provided that R is a congruencewith respect to the operators of this expression, the quotient S=R can easilybe generated with a so-called compositional approach: it consists of (repeatedly)generating the Lts S0 associated with a given sub-expression, and replacing thissub-expression in the initial one by the quotient S0=R. This approach has beenwidely studied [GS90,CK93,Val96,KM97], and has already been applied in somesuccesfull case studies. However, most of this works was done in the contextof synchronous communicating systems (described for instance using processalgebras like Lotos [ISO87] or Csp [Hoa85]).In this paper we propose a way to e�ciently extend this compositional gen-eration strategy to asynchronous systems communicating by message exchangethrough shared bu�ers. In fact, this communication scheme is very suitable fordescribing distributed systems or communication protocols, and it is the underly-ing model of popular speci�cation formalisms such as the international standardSdl [IT92], or the Promela language [Hol91].One of the main di�culties encountered during a compositional generation isto correctly handle the e�ect of the environment (i.e., the rest of the system) inorder to restrict the generation of a given subset of components (otherwise themodel obtained for this subset may be larger than the one corresponding to thewhole system). This problem was addressed in [GS90,CK93,KM97] by express-ing the constraints provided from the environment in terms of process interfaces,allowing to \cut o�" some parts of a component behaviour. Unfortunately, thissolution is not applicable in case of asynchronous communications, since the ef-fects of the external bu�ers cannot precisely be statically approximated. Thus,many useless interleavings are computed when generating a subsystem indepen-dently of its bu�er environment.To avoid these interleavings, the solution we propose relies on the (well-known) partial order approach which consists of identifying independent exe-cution sequences that can be safely sequentialized (instead of being fully inter-leaved). Such techniques have already rather intensively been studied, and theire�ciency has been established in practice, in particular for asynchronous com-municating systems [Val90,GW91,Pel96,KLM+98]. However, to our knowledge,their application in this framework is original by its combination of two aspects:{ First, partial order reductions are usually performed on the whole system,considering the explicit behaviour of each of its components. A contrario,the approach we describe here can be applied on a partial sub-system, andit allows generation of a reduced Lts (with less interleavings) that can bere-used during further compositions.{ Second, the reductions we consider are not only based on a symmetrical in-dependence relation of actions (leading to an equivalence relation betweenindependent execution sequences), but also on an asymmetrical notion ofprecedence relation of actions, leading to a preorder between execution se-

quences. According to this preorder, smallest sequences are always \moreexecutable" than larger ones in any bu�er environment.This notion of non commutative independence relation between actions was�rst introduced by [Lip75] to study the correctness of concurrents processessynchronized by means of semaphores. It was also used in [AJKP98] within asymbolic veri�cation framework.The paper is organized as follows:First, we give in section 2 the program syntax we consider (a set of asynchronouscommunicating processes), and we briey explain how the Lts denoting a pro-gram semantics can be compositionally generated in this framework. Then, weintroduce in section 3 a (syntactic) notion of preorder between execution se-quences, and we show how it characterizes the executability of an execution se-quence in any bu�er environment. Using this preorder, we consider in section 4a �rst equivalence relation �� , deadlock preserving, and which is a congruencew.r.t asynchronous composition. We then propose a new asynchronous compo-sition operator, allowing to directly compute a reduced Lts w.r.t �� and thusavoiding many useless interleavings. Finally, in section 5 we extend these resultsto a stronger equivalence relation �o , able to preserve the language w.r.t a setof observable actions.
2 Asynchronous communicating systemsIn this section we give the abstract syntax and semantics used to representasynchronous communicating systems by means of a parallel composition oflabelled transition systems. Then we indicate how the global state space of suchsystems can be obtained in a compositional way.2.1 Program syntax and semanticsA Labelled Transition System (Lts, for short) is a tuple S = (Q;A; T; q0) whereQ is a �nite set of (reachable) states, A a �nite set of actions (or labels),T � Q�A�Q a transition relation, and q0 2 Q the initial state of S. As usual,we shall note p a�!T q instead of (p; a; q) 2 T .Let M be a set of message names, and Buf a set of unbounded bu�ers overM. A bu�er B 2 Buf is an abstract type with the following signature, and thoseconcrete implementation depends on the exact nature of the bu�er (e.g., bags,stacks, �fo queues, : : :):{ ? is an empty bu�er;{ �rst: M�B ! bool.�rst(m;B) is true i� message m can be consumed in bu�er B.{ remove: M�B ! B.When �rst(m;B) holds remove(m;B) returns the new bu�er obtained fromB by eliminating message m, otherwise B is returned unchanged.{ append: M�B ! B.append(m;B) adds the message m to bu�er B.

Finally, a program is a couple P = (Sn;Bp) where Sn = fS1; S2; : : : Sng is a�nite set of elementary processes represented by Lts Si = (Qi; Ai; Ti; q0i), andBp = fB1; B2; : : : Bpg is a �nite set of bu�ers over M. Moreover, for each Sj inSn, action sets Aj � A = A+ [A� [f�g where:A+ = f+(i;m) j i 2 [1; p] ^ m 2Mg ; A� = f�(i;m) j i 2 [1; p] ^ m 2MgInformally, for an Lts Sj , action +a = +(i;m) denotes the output of messagem to the bu�er Bi, action �a = �(i;m) denotes the input of message m frombu�er Bi and � denotes any internal (non communication) action.De�nition 1 (Program semantics). The semantics of a program P = (Sn;Bp)is de�ned as the Lts sem(P) = (Q;A; T; q0) where:{ Q � Q1 �Q2 � � � � �Qn �B1 �B2 � � � � �Bp{ q0 = (q01 ; q02 ; : : : ; q0n ;?; : : :?){ Q and T are the smallest sets obtained when applying the following rules:q0 2 Q [R0]p = (p1; : : : ; pj ; : : : pn; B1; : : : ; Bi; : : : Bp) 2 Q; pj �(i;m)�! Tj qj ; �rst(m;Bi)q = (p1; : : : ; qj ; : : : pn; B1; : : : ; remove(m;Bi); : : : Bp) 2 Q; p �(i;m)�! T q [R1]
p = (p1; : : : ; pj ; : : : pn; B1; : : : ; Bi; : : : Bp) 2 Q; pj +(i;m)�! Tj qjq = (p1; : : : ; qj ; : : : pn; B1; : : : ;append(m;Bi); : : : Bp) 2 Q; p +(i;m)�! T q [R2]
p = (p1; : : : ; pj ; : : : pn; B1; : : : ; Bi; : : : Bp) 2 Q; pj ��!Tj qjq = (p1; : : : ; qj ; : : : pn; B1; : : : ; Bi; : : : Bp) 2 Q; p ��!T q [R3]

2.2 Compositional state space generationThe generation of sem(P) using de�nition 1, needs to consider simultaneouslythe whole sets of bu�ers and elementary processes. However, this resulting Ltscan also be built in a more compositional way by taking into account eachprogram component (i.e., bu�er or elementary process) incrementally. To thispurpose we �rst introduce two auxiliary operators, the asynchronous productbetween Lts and the execution of an Lts within a given bu�er environment.The asynchronous product (jj) between two Lts Si = (Qi; Ai; Ti; q0i) is de-�ned in the usual manner: S1 jj S2 is the Lts S = (Q;A; T; q0) whereQ = Q1 �Q2,T = f((p1; p2); a; (q1; q2)) j (p1 a�!T1 q1 ^ p2 = q2) _ (p2 a�!T2 q2 ^ p1 = q1)g,A = A1 [A2, q0 = (q01; q02).De�nition 2 (Execution of an Lts within a bu�er environment). Foran Lts S = (Q;A; T; q0) and a bu�er environment Bp, we note S[Bp] the Lts(Qs; A; Ts; qs0) obtained by executing S within Bp, and de�ned as follows:{ Qs � Q�B1 �B2 � � � � �Bp

{ qs0 = (q0;?; : : : ;?){ Qs and Ts are the smallest sets obtained when applying the following rules:qs0 2 Qs [R0]ps = (p;B1; : : : ; Bi; : : : Bp) 2 Qs; p �(i;m)�! T q; �rst(m;Bi)qs = (q;B1; : : : ; remove(m;Bi); : : : Bp) 2 Qs; ps �(i;m)�! Ts qs [R1]
ps = (p;B1; : : : ; Bi; : : : Bp) 2 Qs; p +(i;m)�! T qqs = (q;B1; : : : ;append(m;Bi); : : : Bp) 2 Qs; ps +(i;m)�! Ts qs [R2]
ps = (p;B1; : : : ; Bi; : : : Bp) 2 Qs; p ��!T qqs = (q;B1; : : : ; Bi; : : : Bp) 2 Qs; ps ��!Ts qs [R3]

It is easy to show that the global Lts sem(P) can be obtained by considering�rst the asynchronous product of its elementary processes, then executing it w.r.tits bu�er environment:Proposition 1. For a program P = (Sn;Bp), sem(P) = (S1 jj S2 jj : : : jj Sn)[Bp].Furthermore, this approach can be made even more exible by partially dis-tributing bu�ers Bp w.r.t a subset of elementary processes. More formally:Proposition 2. Let S1 and S2 be two Lts and Bp a bu�er environment.Consider a split of Bp into three sets Bp1, Bp2 and Bp3 such that: bu�ers ofBp1 are not accessed by S2, bu�ers of Bp2 are not accessed by S1, and bu�ersof Bp3 are accessed by both S1 and S2. (such a split always exists since Bp1 andBp2 can be empty).Then, the following holds: (S1 jj S2)[Bp] = (S1[Bp1] jj S2[Bp2])[Bp3]Finally, depending on the program properties under consideration, intermedi-ate Lts reductions can now be introduced between successive generation steps.Furthermore, since internal communications within a sub-system can be ab-stracted away before its composition with the other program components, power-ful reduction operations are possible when only the external program behaviouris relevant. In particular most of the usual bisimulation based weak equiva-lence relations (such as observational equivalence [Mil89], branching bisimula-tion [vGW89] or safety equivalence [BFG+91]) happen to be congruences w.r.t.operators jj and [:::] and can be used in this framework.However, due to asynchronous nature of communications, this (straightfor-ward) compositional approach may still su�er from state explosion problems. Infact, when generating a subsystem, each append or remove operations con-cerning external bu�ers is considered as fully asynchronous. This leads to manypossible interleavings, and, therefore, the size of the resulting intermediate Ltsmay become very large.We propose in this paper a solution to decrease the number of these uselessinterleavings by taking advantage of some (well-known) considerations about theconcurrent execution of independent actions.

3 Equivalence and preorder on execution sequencesFirst, we give some notations related to the execution sequences of an Lts.Then we introduce some equivalence and preorder relations between executionsequences.De�nition 3 (Execution sequences of an Lts).Let S = (Q;A; T; q0) be an Lts, and p a given set of Q:{ Act(p) is the set of actions the state p can perform, and Pre(p) the set ofactions that may reach it:Act(p) = fa 2 A j 9q : p a�!T qg ; Pre(p) = fa 2 A j 9q : q a�!T pgAct�(p) = Act(p) \ A� ; Act+(p) = Act(p) \ A+{ An (execution) sequence � from p is an element � = a1:a2: � � � an of A� suchthat: � = p a1�!T p1 a2�!T � � � an�!T pn We shall also use the notationp ��!T pn+1, or simply p ��!T .3.1 Equivalence between execution sequencesThe equivalence relation between execution sequences we consider is based on anindependency relation I on actions. Roughly speaking, two actions a1 and a2 willbe considered as independent ((a1; a2) 2 I) if, whenever they are both enabledin a given state p, their execution order has no inuence on the subsequentexecution sequences p will be able to perform.De�nition 4 (Independance of actions).A relation I � A�A is an independency relation for an Lts S = (Q;A; T; q0)if, for all p 2 Q, and for all (a1; a2) 2 I then:
a1; a2 � Act(p)) 8>><>>:

8q1; q2 2 Q : p a1�!T q1 ^ p a2�!T q2) (a2 2 Act(q1) ^ a1 2 Act(q2))8̂q 2 Q : p a1:a2�!T q , p a2:a1�!T qWe give below some examples of independency relations de�ned on communi-cation actions performed by distinct processes, depending on the kind of bu�ersthat are considered.Example 1. When bu�ers are de�ned as bags, the order of two append opera-tions does not matter. Therefore, two append (resp. remove) operations arealways independent each others. Moreover, an append and a remove operationwill be independent if they occur in two di�erent bags. Therefore, Ibag is de�nedas follows: Ibag = A+�A+[A��A�[f(�(i1;m1);�(i2;m2)) j i1 6= i2gWhenbu�ers are de�ned as �fo queues, the order of two append or remove opera-tions does not matter only if they occur in di�erent queues. The correspondingindependency relation is then:Ififo = f(�(i1;m1);�(i2;m2)) j i1 6= i2g [f(�(i1;m1);�(i2;m2)) j i1 6= i2g

Note that internal transitions (�) performed by distinct processes are alwaysindependent. 2.Independency relations allow to de�ne equivalence relations on executionsequences: two sequences u and v will be considered as equivalent i� u canbe obtained from v by repeatedly permuting two of its adjacent independentactions.De�nition 5 (Equivalence between execution sequences).Let I be an independency relation. For two sequences u; v 2 A�, write u � 1Iv ifthere exist sequences w1; w2 and actions a; b such that (a; b) 2 I, u = w1abw2and v = w1baw2. Let � I be the reexive and transitive closure of the relation� 1I . We say that u is I-equivalent with v if u � Iv.Intuitively, if two equivalent sequences �1 and �2 are enabled on a state p,then, any bu�er environment allowing the execution of �1 also allows the execu-tion of �2 (and conversely). Furthermore, bu�er contents are updated similarlyduring execution of �1 or �2. More formally:Proposition 3. Let S = (Q;A; T; q0) be an Lts, I an independence relation, pa state of Q, and �1 and �2 two execution sequences of S such that 9 q1; q2 2 Q,p �1�!T q1, p �2�!T q2 and �1 � I�2.For a given bu�er environment Bp, let S0 = S[Bp] where S0 = (Q0; A; T 0; q00).Then, for any state (p; b1; b2; : : : ; bp) of Q0, the following holds:(p; b1; b2; : : : ; bp) �1�!T 0 (q1; b01; b02; : : : ; b0p) , (p; b1; b2; : : : ; bp) �2�!T 0 (q2; b01; b02; : : : ; b0p)3.2 Preorder between execution sequencesAs stated above, the equivalence relation between execution sequences exactlypreserves the executability within any bu�er environment. We introduce here aweaker relation, able to characterize the fact that a given sequence �1 is moreexecutable than another sequence �2 (that is, whenever �2 is executable, then �1is). This preorder relation between execution sequence relies itself on a precedencyrelation P between actions:De�nition 6 (Precedence of actions).A relation P � A�A is a precedency relation for an Lts S = (Q;A; T; q0) if,for all p 2 Q, and for all (a1; a2) 2 P then:
a1; a2 � Act(p)) 8<:8q2 2 Q : p a2�!T q2) a1 2 Act(q2)8̂q 2 Q : p a2:a1�!T q) p a1:a2�!T qExample 2. When communications bu�ers are de�ned as unbounded bags, anappend action performed by a process cannot prevent any append or removeaction performed by another process. The precedency relation on communicationactions between distinct processes is then: Pbag = Ibag [A+ �A� 2.

This preorder on A is then extended to A�: a sequence �1 is smaller than asequence �2 i� �1 can be obtained from �2 by repeatedly permuting any pair ofits adjacent action belonging to the precedency relation.De�nition 7 (Preorder between execution sequences).For two sequences u; v 2 A�, write u . 1P v if there exist sequences w1; w2 andactions a; b such that (a; b) 2 P , u = w1abw2 and v = w1baw2. Let . P be thereexive and transitive closure of . 1P . We say that u is smaller than v (or moreexecutable) if u . P v.Proposition 3 can now be rephrased as follows:Proposition 4. Let S = (Q;A; T; q0) be an Lts, P a precedence relation, p astate of Q, and �1 and �2 two execution sequences of S such that 9 q1; q2 2 Q,p �1�!T q1 and p �2�!T q2 and �1 . P�2. For a given bu�er environment Bp, letS0 = S[Bp] where S0 = (Q0; A; T 0; q00). Then, for any state (p; b1; b2; : : : ; bp) of Q0,the following holds:(p; b1; b2; : : : ; bp) �2�!T 0 (q1; b01; b02; : : : ; b0p)) (p; b1; b2; : : : ; bp) �1�!T 0 (q2; b01; b02; : : : ; b0p)In the following sections we show how this preorder on execution sequencesallows to de�ne equivalence relations between Lts that are able to preserve var-ious kinds of reachability properties. Moreover, since this preorder characterizesthe executability of execution sequences, it turns out that these equivalence re-lations are congruence w.r.t. the [::] operator and therefore can be used duringa compositional state space generation.Note 1. We will consider in the sequel that bu�ers are unbounded bags. Thus,we shall note . instead of . Pbag . The extension of this work to �fo queueswill be briey discussed in the conclusion.
4 Deadlock preservationWe consider here a �rst property based on a simple reachability analysis, thedeadlock freedom of a given program P . More precisely, this property can beveri�ed by compositionally generating a reduced Lts S0, equivalent to sem(P)w.r.t. its deadlock states. To this purpose, we introduce an equivalence relation�� preserving the reachability of any (\equivalent") potential deadlock states.Then, we show that �� is a congruence w.r.t. operators jj and [:::]. Finally,we propose a new asynchronous composition operator for the direct generationof a reduced Lts w.r.t to �� .4.1 A deadlock preserving equivalence between LtsIn our framework the only \blocking" actions performed by a program compo-nent are the remove operations. Consequently, potential deadlock states are thestate not able to perform any append (or internal) operation. This set of statescan be even reduced by considering that a subsequence of adjacent potential

deadlock states of a same execution sequence can be collapsed into a single one(the �rst state of this subsequence). Furthermore, two potential deadlock stateswill be considered as equivalent i� a same bu�er environment is able to \unlock"them (i.e., they can perform the same sets of consecutive remove operations).More formally, these potential deadlock states are de�ned as the stable statesof an Lts:De�nition 8 (Stable state).Let S = (Q;A; T; q0) be an Lts. For each state q of Q:stable(q) � (q = q0) _ (Act(q) � A� ^ Pre(q) \ A+ 6= ;) _ (Act(q) = ;)We note stable(S) the set of stable states of S. The equivalence �� between stablestates q1 and q2 is then the following:
q1 �� q2 � 8<:8�1 2 A�� : q1 �1�!T) 9�2 : q2 �2�!T ^ �2 � �18̂�2 2 A�� : q2 �2�!T) 9�1 : q1 �1�!T ^ �1 � �2The purpose of equivalence �� is to preserve reachability of ��-equivalentstable states in any bu�er environment. Thus, a su�cient de�nition would be toconsider two Lts S1 and S2 as equivalent if, for any stable state of S1 reachableby an execution sequence �1, it corresponds an equivalent stable state of S2,reachable by an execution sequence �2, such that �2 . �1 (and reciprocallyfor any stable state of S2). However, we will use here a stronger de�nition,which better corresponds to the behaviour of the composition operator we willintroduce later (see section 4.2).De�nition 9 (Equivalence between Lts).Let Si = (Qi; Ai; Ti; q0i)i=1;2 be two Lts. �� � Q1 �Q2 is the largest symmet-rical relation verifying:p1 �� p2 , 8q1 2 stable(S1) : p1 �1�!T1 q1) 9q2 2 stable(S2) :p2 �2�!T2 q2 ^ q1 �� q2 ^ �2 . �1 ^ q1 �� q2We extend �� to Lts saying that S1 �� S2 i� q01 �� q02 .Relation �� preserves deadlocks in any bu�er environment:Proposition 5. Let Si = (Qi; Ai; Ti; q0i)i=1;2 be two Lts and Bp a bu�er envi-ronment. For a given Lts S let sink(S) denote the set of state of S without anysuccessors by its transition relation. Then:S1 �� S2) (sink(S1[Bp]) = ; , sink(S2[Bp]) = ;)Example 3.

�b+a+a�b
�xP1 �x

�b+a+z +y
�xstable state

P2
��

To each execution sequence of P1 leading to a stable state there exists a smallerexecution sequence of P2, leading to an equivalent stable state (and reciprocally).In particular, sequence �x:� x:(+y:+ z)� of P1 which not lead to any stablestate is not preserved by �� (since it will never lead to a deadlock even afterfurther compositions). 2.Finally, proposition 6 states that relation �� is a congruence w.r.t opera-tors jj (asynchronous composition) and [:::] (execution within a given bu�erenvironment). The proof of this proposition will rely on the following lemma:Lemma 1. For two execution sequences �1 and �2 of A�, we note �1 jj �2 theset of sequences obtained by \asynchronous composition" of �1 and �2. �1 jj �2contains any sequence of A� resulting of an interleaving of �1 and �2. Then, thefollowing holds:8� 2 A� : �1 . �2) 8�02 2 (�2 jj �) : 9 �01 2 (�1 jj �) such that �01 . �02Proposition 6 (Congruence of ��). Let S1, S2 and S be three Lts, and Bpa bu�er environment. If S1 �� S2 then the following holds:S1[Bp] �� S2[Bp] (1)S1 jj S �� S2 jj S (2)
4.2 A deadlock preserving composition operatorThe deadlock preserving composition operator S1
� S2 is based on the standardoperator jj of asynchronous composition between processes. Intuitively, theresulting Lts could be de�ned by \cutting o�" any non minimal sequences ofS1 jj S2 leading to a stable state (according to the pre-order . , de�nition 7).In practice, this Lts will be obtained by considering as atomic some partic-ular subsequences of S1 and S2, thus avoiding their full interleaving. Moreover,this generation can be performed \on-the-y" without generating S1 jj S2. Moreprecisely, atomic subsequences that we consider are delimited not only by stablestates, but also using a particular set of states. These distinguished states arecalled \interleaving" in the sequel and are de�ned as follows:De�nition 10 (Interleaving states).Let P = (Q;A; T; q0) an Lts. We note int(P) the set of interleaving states of P :int(P) = stable(P) [fq 2 Q j Act�(p) 6= ; ^ Act+(p) 6= ; ^ Pre(p) \A+ 6= ;gFormally, atomic subsequences are de�ned as follows:atom(�) � � = p1 �a1�! p01 �a�i�! p001 +b�i�! q1where p1 is an interleaving state, q1 a stable state, and each p00i such thatAct�(p00i) 6= ; is an interleaving state.The deadlock preserving composition operator between processes can now bede�ned as follows:

De�nition 11 (Deadlock preserving composition operator between Lts).Let P = P1
� P2 with P = (Q;A; T; q0) and Pi = (Qi; Ai; Ti; q0i)i=1;2 s.t.:{ q0 = (q01 ; q02);{ A � A1 [A2;{ Q is the smallest set reachable from q0 using T .{ The set of transitions T is computed using the four following rules. For eachof them we note H the statement:H = p1 �1�!T1 q1 ^ p2 �2�!T2 q2 ^ p1 2 int(P1) ^ p2 2 int(P2)^ atom(�1) ^ atom(�2) ^ stable(q1) ^ stable(q2)H; �1 =2 A�� ; �2 =2 A��(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2); (p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R1]
H; �1 2 A�� ; �2 =2 A��(p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R2]
H; �1 =2 A�� ; �2 2 A��(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2) [R3]
H; �1 2 A�� ; �2 2 A��(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2) or (p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R4]

Example 4. Let P1 and P2 be the two Lts represented below. Lts P is theproduct P1
� P2. Dotted arrows indicate non minimal subsequences of P1 jj P2that have been \cut o�".

interleaving statestable state

P1�a+b�c
P2
�y�x +b+d

�a
�y�y +b

�x�x�x
�y �c+e

�y�a+b �a�x �c�c+e
+e

�x�y +d
+d

�y�x

P
+d+e

2.

Note 2.For applying this method, all actions of �1 must be independent with actions of�2, which is the case when bu�ers are bags.It remains to prove that this new operator of composition between processespreserves �� w.r.t. the standard asynchronous composition. This is expressedin the following proposition:Proposition 7. Let P1 and P2 be two Lts. Then we have P1 jj P2 �� P1
� P2.
5 Observable language preservationWe consider now another kind of reachability property, the (�nite) observablelanguage generated by a given program P . Here again, our objective is to compo-sitionally generate a reduced Lts S0, able to produce the same set of observableexecution sequences as sem(P). Therefore, we introduce a relation �o pre-serving the language equivalence over a distinguished set O � A of observableactions. Then, we show that �o is a congruence w.r.t. operators jj and [:::],and we propose another asynchronous composition operator preserving �o .
5.1 A language preserving equivalenceFor a given Lts S, we denote by LO(S) the set of (�nite) execution sequencesS can perform up to a set of observable actions O. Thus, observable states ofS are the states able to perform any observable actions, and two (observable)states will be considered as equivalent i� they can perform the same observableactions.De�nition 12 (Observable language, observable states).Let S = (Q;A; T; q0) be an Lts. The observable language over O of S is thefollowing set:LO(S) = f�o 2 O� j �o = o1:o2: � � � :on ^9� = x�0:o1:x�1:o2: � � � :x�n�1:on:x�n : q0 ��!T ^ xi 62 OgFor each state q of Q: obs(q) � Act(q) \O 6= ;. We note obs(S) the set of stablestates of S and �o the equivalence relation between two states q1 and q2 de�nedas follows: q1 �o q2 � (Act(q1) \O = Act(q2) \O)Clearly, to preserve the observable language of an Lts it is su�cient to pre-serve the reachability of each of its observable states (in any bu�er environment)by execution sequences identical w.r.t. observable actions. Consequently, by re-placing \stable" by \observable" (and �� by �o) in de�nition 9, one could easilyobtain a suitable equivalence relation.Unfortunately this straightforward de�nition of �o is not satisfying, at leastfor two reasons:

1. Since it completely ignores the e�ect of execution sequences not containingany observable state, the resulting equivalence is not a congruence w.r.t.the jj operator 1. Therefore, such execution sequences also have to beexplicitly taken into account, this can be done in practice by preservingnot only observable states but also the \interleaving" states introduced insection 4.2.2. A \composed" state (p1; p2; : : : pn) becomes observable as soon as one of itscomponent pi is able to perform an observable action. Thus, asynchronouscomposition produces many \stuttering equivalent" observable states, notidenti�ed by this de�nition (since they are reachable by execution sequencesnot comparable w.r.t. .). Relation . should be weakened into a new rela-tion . # in order to not distinguish these \stuttering equivalent" observablestates.Relation . # relies on the following observation: since an append operationperformed by a given component can never be prevented by its environment (andresp. a remove operation may always be prevented), execution sequence +a:!can be considered as \more executable" than ! (resp. sequence !:a� is \lessexecutable" than !). This suggests to extend the precedency relation P to therelation P# such that: P# = P [fA+ � f�gg [ff�g � A�gRelation . # is then the extension of P# to execution sequences (applyingde�nition 7, where . # = . P#). It is easy to see that proposition 4 still holdsfor . #, that is, according to this new preorder, smallest execution sequencesare always more executable than largest ones in any bu�er environment.The de�nition of the language preserving equivalence �o is now the follow-ing:De�nition 13 (Equivalence between Lts).Let Si = (Qi; Ai; Ti; q0i)i=1;2 be two Lts. �o � Q1 �Q2 is the largest symmet-rical relation verifying:p1 �o p2 , 8q1 2 (obs(S1) [int(S1)) : p1 �1�!T1 q1) 9q2 2 (obs(S2) [int(S2)) :p2 �2�!T2 q2 ^ q1 �� q2 ^ �2 . #�1 ^ q1 �o q2 ^8!1 2 A� : q1 !1�!T1) 9!2 2 A� : q2 !2�!T2 ^ !2 . #!1We say that S1 �o S2 i� q01 �o q02 .Relation �o preserves observable language over OProposition 8. Let S1 and S2 be two Lts and Bp a bu�er environment.S1 �o S2) LO(S1[Bp]) = LO(S2[Bp])Finally, we show that relation �o is a congruence w.r.t operators jj (asyn-chronous composition) and [:::] (execution within a given bu�er environment).Here again, the proof of this proposition will rely on lemma 1, which also appliesto preorder . #.1 this problem did not occur with �� because execution sequences without stablestate cannot lead to a deadlock even after composition with other components.

Proposition 9. Let S1, S2 and S = (Q;A; T; q0) be three Lts, and Bp a bu�erenvironment. If S1 �o S2 then the following holds:S1 jj S �o S2 jj S (3)S1[Bp] �o S2[Bp] (4)5.2 A language preserving composition operatorWe briey explain here how the composition operator
� de�ned in section 4.2can be modi�ed into a
o operator preserving �o -equivalence. The underlyingidea is now to consider as atomic parts of execution sequences delimited either by\interleaving" states or observable states. However, the set of interleaving statesconsidered in de�nition 10 have to be augmented in order to deal with \terminal"subsequences which do no contain any interleaving state (such sequences arenecessarily ended by a loop of A+-actions). A practical way is to add to theinterleaving set of states any element of this A+-loop (these states are computedduring the construction of S1
o S2).Such sequences are then of the form: atom(�) � � = p1 �a�i�! p01 +b�i�! q1Moreover, as in section 4.2, a complete interleaving between a pair of atomicsequences �1 and �2 is required only when both �1 and �2 contain a combinationof append and remove actions (otherwise it is enough to consider only thesmallest element of the ordered set f�1:�2; �2:�1g).Formally, operator
o is obtained by modifying de�nition of
� (de�ni-tion 11) as follows:De�nition 14 (Language preserving composition operator).Let P = P1
o P2 with P = (Q;A; T; q0) and Pi = (Qi; Ai; Ti; q0i)i=1;2 s.t.:{ q0 = (q01 ; q02);{ A � A1 [A2;{ Q is the smallest set reachable from q0 using T .{ The set of transitions T is computed using the following four rules. For eachof them, we note H the following statement:H = p1 �1�!T1 q1 ^ p2 �2�!T2 q2 ^ p1 2 int(P1) [obs(P1) ^ p2 2 int(P2) [obs(P2)^ atom(�1) ^ atom(�2) ^ (int(q1) _ obs(q1)) ^ (int(q2) _ obs(q2))H; �1 =2 A�� ; �2 =2 A���1 =2 A+� ; �2 =2 A+�(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2); (p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R1]H; �1 2 A�� ; �2 =2 A��(p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R2]H; �1 =2 A�� ; �2 2 A��(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2) [R3]H; (�1 2 A�� ^ �2 2 A��) _ (�1 2 A+� ^ �2 2 A+�)(p1; p2) �1�!T (q1; p2) �2�!T (q1; q2) or (p1; p2) �2�!T (p1; q2) �1�!T (q1; q2) [R4]

Using similar arguments than in section 4.2 it is possible to show that thisoperator preserves �o w.r.t. the standard asynchronous composition:Proposition 10. Let P1 and P2 be two Lts. Then we have P1 jj P2 �o P1
o P26 Conclusion and future worksWe have proposed a state space generation method for asynchronous commu-nicating processes which combines the bene�ts of both compositionality (gen-eration and reduction steps are performed incrementally), and partial-order re-duction techniques (only some representative elements of the set of executionsequences are considered).More precisely, our approach was based on a syntactic notion of precedenceof communication actions, leading to a preorder between execution sequencesable to characterize their \executability" in any external bu�er environments(smallest sequences are the most executable). Using this preorder, we proposedtwo equivalence relations between Lts, based on a similar notion of reachabilityof a distinguished set of states through most executable execution sequences.These two equivalence relations respectively preserve deadlock states and thesystem language up to a given set of observable actions. Moreover, they arecongruences w.r.t. asynchronous composition. Finally, we have also de�ned twoasynchronous composition operators, able to directly generate reduced Lts w.r.t.each of these relations. These operators di�er on the standard one by consideringas atomic particular subsequences of each process, thus saving many uselessinterleavings.A �rst prototype implementation has been experimented within the If en-vironment developed at Verimag for the veri�cation of asynchronous commu-nicating systems [BFG+99]. The results obtained on a \benchmark" example(a leader election algorithm) largely con�rm the interest of this compositionalapproach (about 5 000 generated states instead of 20 000 using a simultaneouscomposition, when verifying observable language preservation). It now remainsto extend this experience to others case-studies, in particular to see how ourapproach compares with more \classical" partial-order reduction techniques (forinstance the one implemented in Spin [Hol91]).One of the practical motivation behind this work is to apply compositionalgeneration techniques to the veri�cation of industrial size Sdl speci�cations. Tothis purpose, the results proposed here will have to be (fully) extended to thecase of asynchronous communications via �fo queues (instead of their abstrac-tion in terms of bags). In this case, the \purely syntactic" de�nition of precedencerelation between actions we considered here may be to strict, and it would beinteresting to see how it can be enlarged using more sophisticated static analysistechniques (for instance depending on the communication topology between pro-cesses). To this purpose, a suitable framework could be provided by the notionof conditional independence proposed in [KP92].Acknowledgements: Parts of this work were largely improved during fruit-ful discussions with M. Bozga, S. Graf and J. Sifakis. Thanks are also due to theanonymous referees for their helpful comments and suggestions.

References[AJKP98] P. Abdulla, B. Jonsson, M. Kindhal, and D. Peled. A General Approachto Partial Order Reductions in Symbolic Veri�cation. In Proceedings ofCAV'98, Vancouver, Canada, volume 1427 of LNCS, June 1998.[BFG+91] Ahmed Bouajjani, Jean-Claude Fernandez, Susanne Graf, CarlosRodr��guez, and Joseph Sifakis. Safety for Branching Time Semantics. InProceedings of 18th ICALP. Springer Verlag, July 1991.[BFG+99] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier.IF: An Intermediate Representation and Validation Environment for TimedAsynchronous Systems. In Proceedings of FM'99, Toulouse, France,LNCS 1708, 1999.[CK93] S.C. Cheung and J. Kramer. Enhancing Compositional Reachability Anal-ysis with Context Constraints. In Proceedings of the 1st ACM InternationalSymposium on the Foundations of Software Engineering, pages 115{125, LosAngeles, California, December 1993.[GS90] S. Graf and B. Ste�en. Compositional Minimization of Finite State Pro-cesses. In Workshop on Computer-Aided Veri�cation, Rutgers, USA, June1990. DIMACS, R.P. Kurshan and E.M. Clarke.[GW91] P. Godefroid and P. Wolper. Using Partial Orders for the E�cient Veri�ca-tion of Deadlock Freedom and Safety Properties. In K. G. Larsen, editor,Proceedings of CAV'91 (Aalborg, Denmark), July 1991.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols. Soft-ware Series. Prentice Hall, 1991.[ISO87] ISO/IEC. LOTOS | A Formal Description Technique Based on the Tem-poral Ordering of Observational Behaviour. Information Processing Systems| OSI , Gen�eve, July 1987.[IT92] ITU-T. Speci�cation and Description Language (SDL). ITU-T Recommen-dation Z.100, International Telecommunication Union, Gen�eve, 1992.[KLM+98] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenig�un. Static PartialOrder Reduction. In Proceedings of TACAS'98, Lisbon, Portugal, volume1384 of LNCS, 1998.[KM97] Jean-Pierre Krimm and Laurent Mounier. Compositional State Space Gen-eration from Lotos Programs. In Ed Brinksma, editor, Proceedings ofTACAS'97, Enschede, The Netherlands, April 1997. Springer Verlag.[KP92] S. Katz and D. Peled. De�ning conditional independence usin collapses.Theoretical Computer Science, 101(1):337{359, 1992.[Lip75] Lipton. Reduction, a method of proving properties of parallel programs.Communications of the ACM, 18(12):717{721, dec 1975.[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.[Pel96] Doron Peled. Combining partial-order reductions with on-the-y model-checking. Formal Methods in System Design, 8:39{64, 1996.[Val90] A. Valmari. A Stubborn Attack on State Explosion. In Workshop onComputer-Aided Veri�cation, Rutgers, USA, June 1990. DIMACS, R.P.Kurshan and E.M. Clarke.[Val96] Antti Valmari. Compositionality in State Space Veri�cation. In Applicationand Theory of Petri Nets, volume 1091 of LNCS, pages 29{56. SpringerVerlag, June 1996.[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstractionin Bisimulation Semantics (extended abstract). CS R8911, Centrum voorWiskunde en Informatica, Amsterdam, 1989.

