

A Taint Based Approach for Smart Fuzzing

Abstract— Fuzzing is one of the most popular test-based software
vulnerability detection techniques. It consists in running the
target application with dedicated inputs in order to exhibit
potential failures that could be exploited by a malicious user. In
this paper we propose a global approach for fuzzing, addressing
the main challenges to be faced in an industrial context: large-
size applications, without source code access, and with a partial
knowledge of the input specifications. This approach integrates
several successive steps, and we mostly focus here on an
important one which relies on binary-level dynamic taint analysis.
We summarize the main problems to be addressed in this step,
and we detail the solution we implemented to solve them.

Keywords-component: vulnrability detection; smart fuzzing;
taint analysis; dynamic analysis.

I. INTRODUCTION
Software security has become an important issue these last

years because of the serious damages that vulnerabilities may
cause when they can be exploited by attackers. Currently,
different techniques for vulnerability detection exist [1, 2] but
fuzzing remains the most efficient way for detecting
vulnerabilities in closed-source software. The technique is
today widely deployed in industry. It is also adopted,
additionally to other advanced methods, by VUPEN Security
research team. VUPEN Security is a leading vulnerability
research company providing advanced technical analysis and
exploitation of security vulnerabilities which enable companies
to protect against cyber attacks. In 2010, VUPEN discovered
147 critical vulnerabilities, allowing code execution, in
prominent software such as: Microsoft Office and Adobe
Acrobat/Reader. Many of those vulnerabilities were discovered
thanks to fuzzing. Despite all the flaws found, fuzzing
efficiency should be improved especially in industry where we
have to face real life constraints namely, the huge target sizes,
large inputs, and time constraints. For that, we propose to
enhance fuzzing with advanced approaches, notably coverage
and taint analysis techniques, to create an innovative approach
for zero-day vulnerability detection taking into account those
constraints. This approach targets both file processors (for
HTML, DOC, PDF formats) and packet processors (TCP/IP).
Because the source code of software is often not available to an

end user, the method is based on binary analysis. We assume a
partial knowledge of the target because input (files, packets)
structures are generally known, but not the implementation
details. First, we introduce fuzzing and categorize its main
strategies. Then, we present our general approach and focus on
an important issue, namely dynamic taint analysis.

The paper is organized as follows: Section II introduces
fuzzing and its main categories. In Section III, we discuss our
motivations and challenges. The proposed approach is
described in Section IV. Section V and Section VI present
respectively results to date and ongoing works. Finally,
conclusions and future works are given in Section VII.

II. FUZZING
In this section, we briefly introduce the field of fuzzing. We

categorize the various types of fuzzing and put in perspective
different strategies of data generation.

Nowadays, fuzz testing is the main security testing

approach for detecting serious security vulnerabilities in large
software [1, 2]. Many definitions exist in the literature [3, 4, 5,
6]. We adopt here the following synthetic definition: fuzzing
is an automatic approach based on injecting invalid or random
inputs into a program at execution in order to obtain an
unexpected behavior and identify potential vulnerabilities.
There is no precise methodology for fuzzing. It depends on the
target, and the input format. Different ways to implement this
approach are explained in more details later in this paper.

A. Fuzzing phases
Fuzzing generally respects the following basic steps no

matter the target and input format type [2].
1) Target identification: The user identifies the application

to test, according to which a tool or an approach is chosen.
This target can be a web application, a file processor, a
network protocol, etc. The fuzzing approach can vary greatly
from one target to another. It is entirely dependent on the
target application (file processor or network protocol), the

Sofia Bekrar Chaouki Bekrar Roland Groz Laurent Mounier
VUPEN Security

Montpellier, France
VUPEN Security

Montpellier, France
Grenoble University

Grenoble, France
Grenoble University

Grenoble, France
sofia.bekrar@imag.fr bekrar@vupen.com roland.groz@imag.fr Laurent.Mounier@imag.fr

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.182

818

format of the data being fuzzed and their sizes, the number of
different inputs that should be tested, and execution time that
is required to test the target.
E.g.: Microsoft Word.

2) Input identification: Input type depends directly on the
chosen target.

E.g.: To test Microsoft Word, the input will be a DOC file.
3) Fuzzed data generation: Once the input type identified

(files, packets, etc), fuzzed data are generated. This can be
done in many ways: randomly, by modifying existing valid
data, or by modeling the target. This step is the most important
in the fuzzing process.
E.g.: Generating inputs to test Microsoft Word may be
realized by modifying some bytes on a valid DOC file.

4) Fuzzed data execution: The target is run with new
generated test cases. This step may vary depending on the
target.
E.g.: Run Microsoft Word by opening the new generated file.

5) Faults identification: Observing target under test is a
crucial step because it helps identifying and analyzing errors
that cause system crashes. A debugger is generally attached to
the program under test in order to detect triggered exceptions.

6) Exploitability evaluation: Each detected crash should
be analyzed to determine whether it is due to an exploitable
vulnerability. This step is usually performed manually.

B. Fuzzing methods
Generating relevant test cases is the key of fuzzing. A test

case can be created either by applying mutations on existing
well-formed inputs, or by generating them from scratch
according to the internals of the software. The first method is
known as Blackbox fuzzing because it does not require any
knowledge of the target behavior contrary to the second,
Whitebox fuzzing, which assumes a complete knowledge of the
application code and behavior to model the target for instance.
Blackbox techniques suffer from a lack of precision. Indeed,
test cases submitted to the system are not refined and
generally not pertinent. Recent works show that it can be more
efficient to assume a complete knowledge of the tested
application but this is not always possible because sources are
generally not available. This limits the use of this approach.
Several works based on Whitebox techniques have been
proposed. We can mention in particular SAGE (Scalability,
Automated, and Guided Execution) [7], a tool to test file
formats on Windows. Other tools such as Flayer [8] and
Bunny [9] also implement this technique. Graybox fuzzing, for
which we assume a partial knowledge of the target, stands
between the two previous methods aiming to take advantage
of both. Combining fuzzing and inference is a good example
of Graybox fuzzing. The technique aims to get a partial
knowledge of the target by providing inputs, observing
behavior and analyzing outputs. This knowledge will be used
to improve fuzzing by adjusting test cases. Works in this
direction have been recently proposed by [10, 11, 12]. They
show that this technique gives interesting results in the
absence of software source code.

C. Strategies of Generating Fuzzed Data
There are three main ways to generate test cases.
1) Random: The first and most traditional strategy for

creating input data for fuzzing is to use completely random
data, without any intelligence or special knowledge of the
application. Several vulnerabilities, especially in the past, have
been found thanks to this technique [13, 14, 15, 16, 17].
Although it is fast, low cost, and relatively simple to
implement, this method usually attacks only the applications
surface and thus it provides poor coverage. In [18], it was
described as the worst test case design methodology. Another
disadvantage is that this method is less efficient when
cheksums are involved. This is explained in [19].

2) Mutation of valid data: It is based on modifying
existing data i.e. mutating some fields in the original correct
input. This technique is theoretically more effective than
random generation and is relatively inexpensive to implement
(mutations on different fields). Note that its effectiveness
depends on the number of valid data available. Some protocol
fuzzers use this technique. They apply mutations directly on
the network traffic.

3) Model based: Test cases are created according to a
previously described model of the target. Test cases
correspond to specifications of the application. It can be
effective if the specification has been well modeled but can be
expensive. This method is implemented in several
frameworks: Autodafé [20], Peach [21], Sulley [22], etc.

 A comparison of the three strategies is shown in table 1.
Mutation based approach seems to be the most appropriate
method when software knowledge is not completely assumed.

TABLE I. FUZZING STRATEGIES COMPARISON

III. CHALLENGES
One of the major challenges that we encounter is working

at binary level. This is due to the low-level semantics,

 Random Mutation based Model
based

Advantages

- Simple
- Quick
- Low cost

- Relatively
simple
- Reusable
across different
software

- Potentially
efficient
(if the target is
well modeled)

Dis-
-advantages

- Attacks only
the application
surface
- Useless with
checksums
- Poor coverage

- Needs
numerous valid
inputs to get a
good coverage

-Time-
consuming to
set up
- Requires
knowledge of
the format/
protocol
- Reusable only
with the same
format

819

diversity, and complexity of assembly instructions. Another
difficulty is to identify potentially dangerous executions i.e. the
definition of vulnerability patterns that are useful to detect
potential vulnerabilities. Generating relevant inputs able to
trigger such vulnerabilities is also a challenging issue. In fact,
fuzzer efficiency depends on its ability to create effective
fuzzed inputs and to produce reliable verdicts. We also need to
measure and maximize coverage. In fact, evaluating the
amount of code exercised by a fuzzer in the whole target is an
important metric for measuring the effectiveness of the fuzzing
technique. Those challenges have to be overcome, notably in
industry, where we have to deal with numerous constraints
namely, the huge software sizes, huge inputs, the absence of
source code, the absence of format-specific knowledge, and
time constraints. Additionally to these main challenges, we also
need to address many other difficulties coming from the
techniques used within this general approach. Indeed, for
coverage analysis, it appears that none of the existing tools we
considered was able to satisfy our needs. As a consequence, we
implemented our own techniques and tools. This is also the
case with taint analysis for which various frameworks exist but
none of them fully satisfy our requirements: the ability to
operate without any recompilation (nor access to source code)
and portability considerations. Most of the existing
implementations do not support the Windows platform.
Temu[36] and Dytan[23] are two taint analysis frameworks.
The first one is based on PIN [24], a dynamic instrumentation
framework running on both Linux and Windows. The
implementation of Dytan working on Windows is not useful
yet. The second one is a framework based on a virtual machine
emulator and cannot be easily integrated into our approach.

IV. OUR APPROACH
In this section, we present the approach that we proposed

[25] which is illustrated by the tool architecture presented on
Figure 1. Then, a description of the main principles used and
the motivations behind their use are given.

We propose to start by identifying potentially vulnerable
sequences of code within the binary code using vulnerability
patterns that have to be defined first. The target is then
executed taking into account information obtained in the
previous step and analyzed dynamically thanks to taint
analysis approach. Untrusted data are marked as tainted and
their propagation at runtime is tracked. In this way,
information flow between sources and sinks are identified.
This helps to recognize which parts of the input should be
fuzzed in order to generate pertinent test cases and audit the
most dangerous paths of the application under test. Fuzzing
effectiveness is evaluated through coverage analysis
techniques. A method to detect faults is used to monitor
executions. A fault does not necessary mean that an
exploitable vulnerability exist that is why potential
exploitability of each detected fault should be evaluated.

A. Vulnerability Pattern
The first step is to identify dangerous functions in the

binary by defining vulnerability models, also called “patterns”,

based on both VUPEN Security expertise in finding and
exploiting security vulnerabilities in binaries, and also on
already discovered vulnerabilities. A vulnerability pattern
represents a model at assembly level that can potentially be
the cause of a fault. The function « strcpy » is a well-known
example of a vulnerable function at source code which may
lead to buffer overflow. In fact, this function can allow the
attacker to write outside the bounds of the array, hence
overwriting the current return address in the stack to replace
its value by the address of a shellcode.

B. Taint Analysis
 This technique is combined with vulnerability pattern
detection to identify the most interesting fields of the input
that should be fuzzed, and therefore to create the most
promising test sequences able to trigger potential
vulnerabilities (restricting the test space). Combining those
two techniques and applying them at assembly level is an
important challenge.

C. Test Generation
 The choice of test values is crucial in fuzzing. For that
reason, generating fuzzed data is the most important step in
the process. This step can be conducted in different ways as
already discussed. In order to generate the most promising test
sequences able to trigger particular paths that might reveal
faults, we apply a taint analysis at the assembly level to gather
information about potentially dangerous data.

D. Coverage Analysis
 Fuzzing effectiveness is evaluated along the process using
coverage analysis techniques. Evaluating fuzzing is measuring
how well the program is tested and identifying the
modification necessary to expand the coverage and try to
maximize it.

E. Property Checking
 Monitoring the program for possible faults at execution is
necessary in the fuzzing process. Disassembling and
debugging features facilitate such monitoring if they are
attached to the program at execution. Here also, working at
assembly level makes the task harder because of assembly
code complexity.

F. Exploitability Pattern
 Evaluating potential exploitability of a fault is also a
challenge. Analyzing after-crash information gathered from
the binary, like the stack or the heap content, helps to
determine whether this crash could lead or not to an exploit.

820

Figure 1. Proposed approach.

V. RESULTS TO DATE
Based on the approach presented in the above section, we

first proposed, developed and evaluated two block-level code
coverage techniques able to operate at binary level (without
need of the source code), addressing the software under test in
a whole (including dynamic libraries), and taking into account
the main constraints that have to be faced off in an industrial
context: large-sized applications with a wide input domain,
unavailability of source code, and minimal knowledge of the
input formats and specifications. We analyzed coverage of
AcroRd32.dll (+20,000 kilobytes), the most important library
in Acrobat Reader, with the same PDF file in the same
environment using our two tracers and two others: PinCov
[26], ccovtrace [27]. We selected a very large file including
some animations and text for our experiments. We repeated
this experiment several times in order to calculate the average
time required to trace the target with each tool. Exerimental
results comparing average execution time showed that the
difference in execution time between our two tools and their
competitors is important. In fact, our tools have reduced by
50% the required execution time. This can reduce
considerably the overhead time when analyzing large suite
sizes. Additionally to the fact that they are fast, our tools offer
other important features which will be described in more
details in another paper.

Our coverage analysis approach can improve fuzzing in two
ways: it is used to estimate fuzzing efficiency by measuring
how well the program has been tested and identifying the
modifications necessary to expand the coverage. It can also be
used to maximize coverage and reduce fuzzing time. In fact, it
is useful before test generation to find the minimal subset that
has an equivalent coverage as the large set of test cases.
Therefore, a set providing more important coverage can be
tested in minimal time. Coverage is a metric on which fuzzing
performance highly depends. That is why reducing test suite
size before fuzzing without reducing target coverage is
important. For that, we used test suite reduction algorithms.
We implemented and evaluated four of the well-known
algorithms classically used for test suite reduction according
to three criteria, different from the ones considered in most
previous studies, and particularly relevant in a fuzzing context:
the execution time, the percentage of suite size reduction, and
the rate of testing coverage after reduction. All our
experiments were performed with a real large application,
namely Acrobat Reader.

 We implemented a tool to monitor binaries at execution for
system exceptions and systematically identify violations at
runtime and gather information such as the exception type,
and the address of the instruction that causes the exception, to
avoid missing hidden vulnerabilities.

 Currently, we are working on defining a dynamic taint
analysis approach to enhance fuzzing. This approach is
presented in the following section.

VI. ONGOING WORK: TAINT ANALYSIS
Taint analysis has caught the attention of the security

community these last few years [28, 29, 30]. This is
highlighted by an increasing use of this technique in the
software security domain, and the existence of numerous
available frameworks. Taint analysis is a full software
vulnerability detection technique which can be performed
either statically or dynamically. The key idea behind this
analysis is to mark data originating from untrusted sources
(E.g.: user input) as tainted and determine, at each location in
the program, which variables can be influenced by tainted data
Determining whether a variable is tainted consists in
identifying its possible input dependencies. There are two
possible dependencies:

� Data flow dependencies, which correspond to direct
assignments between variables in the program. For
example, if x is tainted and y is not tainted, the result
of the addition x+y is tainted.

 // x is tainted
 y = 2;
 z =x+ y;
 // Result z is tainted

� Control flow dependencies, which correspond to

controlling values of program variables through the

Generation

Test
Execution

Vulnerability

Pattern

Taint

Analysis

Coverage
Analysis

Exploitability

Analysis

Property
Checking

821

control flow determined by conditional statements of
the program. For example, a non tainted variable is
modified if a tainted variable satisfies a conditional
statement.

 //x is tainted
 if (x > 1) y = 1 else y = 2;

 // y is tainted because it is influenced by x

A. Taint Analysis
We can distinguish two taint analysis approaches:

� Static Taint Analysis is performed mostly at source
level, thus covering all the possible execution paths
[32, 33]. This approach allows in principle a complete
analysis and deals with all possible runtime cases.
However, most of the time, application sources are not
available, and operating at the binary-level raises
serious difficulties. Another general problem is that
decidability is generally achieved by means of abstract
interpretation techniques, leading to over-approximate
the program behavior, which may generate a lot of
false positives.

� Dynamic Taint Analysis consists in analyzing code
during its execution. Each object from user input (e.g.:
network, files, etc) is marked as insecure. This taint
allows us to track the influence of tainted objects along
the execution of the program. This taint can be
performed without access to application sources.
Although in theory the approach should give
interesting results, it is very complex to implement. In
addition, implicit flows are not available at runtime.
Therefore, it is not possible to take advantage of the
full control flow information. Moreover, the program
needs to be executed with specific inputs and hence
cannot cover all possible executions [34, 35, 36, 37].

B. Proposed Dynamic Taint Analysis Approach for Smart
Fuzzing

1) Taint analysis for improving test case quality
As already discussed, there are three main fuzzing

strategies: random, generation and mutation. A generation
based fuzzer is a self-contained program that generates its own
invalid inputs based on the target model. A mutation fuzzer
takes a valid input and mutates the sample to create many
invalid sessions. The main problem is how to know which
parts of the valid input should be mutated in order to create
relevant test cases able to trigger faults. Vulnerability is
exploitable if its execution can be triggered by user but how to
detect parts of the input that influence the target. The idea
behind using taint analysis to improve fuzzing is to identify
the specific offsets that taint a specific program scope
(interesting functions) and then to mutate only those
interesting parts.

 Despite the widespread usage of taint analysis, there has
been little effort to apply it to binaries and to summarize the
critical issues that arise when these techniques are performed
at assembly level. Indeed, we do not only have to deal with the

open taint analysis challenges, but also with the complexity of
assembly language. Different errors can occur in taint
analysis. First, marking a variable as tainted when it is not
derived from a tainted source. This will typically result in
generating false positives. Second, missing the information
flow from a source to a sink, and then generating false
negatives.

a) Taint propagation rules
The main issues to address when using taint analysis to

analyze a program execution are the following: new taint
introduction, taint propagation as instructions execute, taint
checking during execution, and taint elimination. At the binary
level, two objects can be tainted: memory locations and
registers, as shown in figure 2.

Figure 2. Taint propagation.

 The quality of information obtained thanks to taint analysis
depends on the markings that can be either bit-precision or
byte-precision. Although the higher degree of precision
provided with bit-precision markings, the level of details
provided with byte-precision markings are accurate enough for
our purposes.

� Memory locations (memory addresses): to taint
memory locations we have to keep track of
- The initial address of the memory location

 - The size of memory location to be tainted
� Registers: we have to keep track of all registers (32,

16, and 8 bits registers)
 - Register name
 - Register content
 - Register taint value (tainted/untainted)

Everything that is controlled by user is tainted.

� Object X is tainted if X is influenced by the
value of a tainted object Y. We say: Y
tainted X and write X→ t(Y)

 E.g. mov eax, ecx
 // ecx tainted => eax tainted

� If an object is influenced by an object
derived from a tainted object, the first one
is tainted because of the transitivity

Untrusted sources
(files, user inputs, etc)

Registers Memory
locations

Taint

822

 X → t(Y) and Y→ t(Z) => X→ t(Z)

An object is tainted if it was:

� assigned from an unstruted source
E.g.: mov eax, userbuffer[ecx]
� assigned from a tainted object

 E.g.: add eax, eax (eax tainted)

Taint should be deleted if the object was:
 - assigned from an untainted object
 E.g.: mov eax, ecx (ecx not tainted)
 - assigned from a constant
 E.g.: mov eax, 0x10
 - assigned from a tainted object but the assignment
 result is a constant.
 E.g.: xor eax, eax

 Applying dynamic taint analysis at binary level is a
challenging task because of the variety of cases that we have
to deal with. To implement the technique, we have to
automatically:

� Identify all operands of each instruction
 Difficulty: An instruction can have from one to
 four operands.

� Identify each operand type
(source/destination)

 Difficulty: An operand can be:
-A register: there are nine 32-bit registers,
four 16-bit registers, and eight 8-bits
registers: eax (32 bits), ax (16 bits), al and
ah (8 bits).
-An address: [ebp+4], or [eax+edx-4]
-A value

� Track each tainted object
Difficulty: deal with all propagation types and
taint in all the following cases: memory-
register, register-register, and register-memory.

� Understand the semantic of each instruction
Difficulty: There are Hundreds of x86 different
instructions (mov, add, xch, etc), and at least
one propagation rule for each instruction.

b) Implementation and preliminary results
 We first run the target with a well-formed input and
monitor execution to identify how the program uses user
inputs. These data are marked as tainted and their propagation
tracked along the execution of the program. At each execution
a taint trace is gathered. It contains information about taint
propagation during program execution i.e. all tainted objects,
and all input fields that tainted these objects at each instruction
of the program. Figure 3 is a simple representation of how
dynamic taint analysis maps file offsets to instructions
influenced by tainted data. We associate to each variable, not
only, a boolean value (tainted\untainted), but also offsets in
the input instance that tainted this variable, monitoring how
input data influences the program. Consequently, input

locations that could affect potentially dangerous locations such
as strcpy(), or memcpy() functions are automatically
identified. We tested our tool with small executables
containing different functions. The output generated with our
dynamic taint analysis program contains all executed
instructions at runtime with the address of each instruction, its
operands, and all tainted registers at this instruction. A list of
tainted memory locations is also maintained at each
instruction and updated if necessary. In this way, all tainted
objects and offsets that taint them are identified at each
instruction. A simple example is the memcpy () example. If
memcpy(), which is considered as a dangerous function, is
called with a tainted source, taint is propagated to destination,
and sensitive fields are automatically identified . The second
step of the approach is to mutate sensitive fields to generate
relevant new inputs. Mutating the offsets associated to the
source argument of the memcpy() function could generate an
interesting test case able to trigger a fault at this instruction.

Figure 3. Mapping file offsets to tainted instructions/functions.

 Once the mapping is available, fuzzing is driven using this
mapping, and offsets that taint specific functions identified as
potentially dangerous (thanks to vulnerability patterns) are
fuzzed, generating in turn new inputs that are fed to the target
in order to trigger faults. This process is given in figure 4.

Figure 4. Mapping file offsets to tainted instructions/functions.

2) Taint analysis for exploitability
Dynamic taint analysis not only helps to create relevant test

cases able to trigger faults, but also helps to evaluate the
exploitability level of each detected fault because a detected

 Influences

Taint
mapping

information

Fuzzing

new

inputs Find dangerous
offsets

generates

…
mov [ecx], eax
mov edx, eax
mov eax, [esi]
mov eax, [eax+8]
add ecx, 7
mov edi, [eax]
call dword ptr
[edi+0Ch]
…

Header

Body
 offset

x offset
y

 « xref » table

Trailer

AcroRd32.dll Template.pdf

823

fault does not necessary mean that an exploitable vulnerability
exists. Dynamic taint analysis is thus also involved in the
“exploitability pattern” step of our global approach.
Determining the root cause of a fault in order to understand
the problem and exploit the vulnerability is today a very hard
and time consuming task. Taint information provided by
dynamic taint analysis can be very useful to alleviate this
problem. In fact, an offline data flow analysis of the collected
taint trace of an execution leading to a program fault can be
performed automatically to determine the origin of the fault.
Potentially dangerous inputs are tainted, and taint is
propagated along the execution of the program thanks to
dynamic taint analysis which also records trace files. The idea
is to implement a technique for backward slicing of traces to
parse and analyze those trace files and extract conditions
leading to a fault. Detailed information about each executed
instruction in a program, starting from the input and going up
to a crash, should be extracted. Backward slicing can be
considered as a complementary step to data tainting: data
tainting taints and propagates taint from an attacker-controlled
input to determine what it affects and generate associated
inputs, and slicing starts analyzing from the crash to
understand its causes. Currently, there is few tools, such as the
binary analysis tool BitBlaze [36], and !exploitable [38] to
help determining whether a crash is caused by a potentially
exploitable vulnerability or not. However these tools do not
satisfy our needs. BitBlaze is based on a virtual machine
which makes its use complex and !exploitable does not always
provide relevant information because it assumes that all data
are tainted from the state where the fault is triggered.

VII. CONCLUSION AND FUTURE WORK
In this paper, first we introduced the field of fuzzing and

present briefly our general approach [25]. Then we focused on
an important issue, namely dynamic taint analysis, that we are
currently exploring in order to improve fuzzing efficiency.
Dynamic taint analysis aims to map some locations in the
program to associated specific fields of the user input. It also
helps to determine causes of a fault and thus to determine its
exploitability. This works takes place in a larger perspective
whose objective is to set up a fuzzing environment for
software vulnerability detection according to the general
approach that we discussed in [25]. Our objective is first to
experiment the approach on real and large-sized applications
with a wide input domain. We also plan to combine dynamic
taint analysis and static analysis in order to further improve
the mutation step. And, finally, we will integrate the results
obtained into our fuzzing environment.

AKNOWLEDGEMENT
 This work is supported by VUPEN Security and University
of Grenoble. We would like to thank VUPEN Security for
funding our work and for allowing us to publish these results.

REFERENCES
[1] A. Takanen, J. DeMott, and C. Miller, “Fuzzing for software security

testing and quality assurance”. Artech House Publishers, 2008.
[2] M. Sutton, A. Greene, P. Amini. “Fuzzing: Brute Force Vulnerability

Discovery”. United States. Addison–Wesley Professional, 2007.
[3] Virus.org Mailing List Archive, 2007. http://lists.virus.org/fuzzing-

0703/msg00014.html.
[4] P. Oehlert, “Violating assumptions with fuzzing,” Security & Privacy,

IEEE, vol. 3, no. 2, pp. 58–62, 2005.
[5] J. Koziol, “Ultimate fuzzers,” 2005.

http://www.infosecinstitute.com/blog/2005/12/fuzzers-ultimate-list.html.
[6] G. Zhao, W. Zheng, J. Zhao, and H. Chen, “An heuristic method for

web-service program security testing,” in ChinaGrid Annual
Conference, 2009. ChinaGrid ’09. Fourth, 2009, pp. 139 –144.

[7] P. Godefroid, M. Y. Levin, D. A. Molnar, “Automated Whitebox Fuzz
Testing”. In NDSS, The Internet Society 2008.

[8] W. Drewry, T. Ormandy, “Flayer: exposing application internals”. In 1st
USENIX Workshop on Offensive Technologies (WOOT '07),August 6,
2007, Boston, MA, USA, 2007.

[9] Bunny the Fuzzer. http://code.google.com/p/bunny-the-fuzzer/.
[10] G. Shu et D. Lee. Testing security properties of protocol

implementations – a machine learning based approach. In ICDCS. IEEE
Computer Society, 2007.

[11] G. Shu, Y. Hsu, D. Lee. “Detecting communication protocol security
flaws by formal fuzz testing and machine learning”. FORTE 2008, pages
299–304, 2008.

[12] J. Viide, A. Helin, M. Laakso, P. Pietikäinen, M. Seppänen, K. Halunen,
R. Puuperä, J. Röning, “Experiences with Model Inference Assisted
Fuzzing”. In Dan Boneh, Tal Garfinkel, and Dug Song, editors, WOOT.
USENIX Association, 2008.

[13] B. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no.
12, pp. 32–44, 1990.

[14] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and
J. Steidl, “Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services”. Citeseer, 1995.

[15] J. Forrester and B. Miller, “An empirical study of the robustness of
windows nt applications using random testing,” in Proceedings of the 4th
conference on USENIX Windows Systems Symposium-Volume 4,
2000, pp. 6–6.

[16] N. Kropp, P. Koopman, and D. Siewiorek, “Automated robustness
testing of off-the-shelf software components,” in Fault-Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual International
Symposium on. IEEE, 1998, pp. 230–239.

[17] B. Miller, G. Cooksey, and F. Moore, “An empirical study of the
robustness of macos applications using random testing,” in Proceedings
of the 1st International workshop on Random testing. ACM, 2006, pp.
46–54.

[18] G. Myer, “The art of software testing,” A Willy-Interscience Pub, pp. –
1979.

[19] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Security and Privacy (SP), 2010 IEEE Symposium on, May 2010, pp.
497 –512.

[20] M. Vuagnoux. Autodafé: an Act of Software Torture. In 22th Chaos
Communication Congress, Berlin, Germany, 2005.
http://autodafe.sourceforge.net/docs/autodafe.pdf.

[21] Peach Fuzzing Platform. http://peachfuzzer.com/.
[22] Sulley. http://code.google.com/p/sulley/.
[23] J. A. Clause, W. Li, A. Orso, “Dytan: a generic dynamic taint analysis

framework”. ISSTA 2007:196-206.
[24] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S.

Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: building customized

824

program analysis tools with dynamic instrumentation”, In Sarkar and
Hall, pages 190-200.

[25] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software
vulnerabilities by smart fuzzing,” in Proceedings of the 2011 Fourth
IEEE International Conference on Software Testing, Verification and
Validation, ser. ICST ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 427–430.

[26] http://code.google.com/p/pincov/.
[27] http://www.ruxcon.org.au/assets/Presentations/ben-nagy.prospecting-

for-rootite.2010.pdf.
[28] J. Newsome and D. Song, "Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity
software," 2005.

[29] D. Zhu, J. Jung, D. Song, T. Kohno, D. Wetherall, “TaintEraser:
protecting sensitive data leaks using application-level taint tracking.”
Operating Systems Review (SIGOPS) 45(1):142-154 (2011)

[30] P. Godefroid, N. Klarlund, and K. Sen, "DART: Directed automated
random testing," Acm Sigplan Notices, vol. 40, pp. 213-223, Jun 2005.

[31] D. M. Koushik Sen, Gul Agha, "CUTE: A concolic unit
testing engine for C," 13th ACM SIGSOFT 2005.

[32] D. Ceara, L. Mounier, M-L Potet: Taint Dependency Sequences: A
Characterization of Insecure Execution Paths Based on Input-Sensitive
Cause Sequences. ICST Workshops 2010:371-380.

[33] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, "Static detection of
vulnerabilities in x86 executables," in Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2006, pp. 269-
278.

[34] E. J. Schwartz, T. Avgerinos, D. Brumley, “All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask)”. IEEE Symposium on Security
and Privacy 2010:317-331

[35] V. Ganesh, T. Leek, and M. Rinard, "Taint-based directedwhitebox
fuzzing," 2009, pp. 474-484.

[36] D. Song, et al., "BitBlaze: A New Approach to Computer Security via
Binary Analysis," Information Systems Security,Proceedings, vol. 5352,
pp. 1-25 307, 2008.

[37] M. Kang, S. McCamant, P. Poosankam, D. Song: DTA : Dynamic Taint
Analysis with Targeted Control-Flow Propagation. NDSS 2011.

[38] http://msecdbg.codeplex.com/.

825

