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Abstract— Fuzzing is one of the most popular test-based software 
vulnerability detection techniques. It consists in running the 
target application with dedicated inputs in order to exhibit 
potential failures that could be exploited by a malicious user. In 
this paper we propose a global approach for fuzzing, addressing 
the main challenges to be faced in an industrial context: large-
size applications, without source code access, and with a partial 
knowledge of the input specifications. This approach integrates 
several successive steps, and we mostly focus here on an 
important one which relies on binary-level dynamic taint analysis. 
We summarize the main problems to be addressed in this step, 
and we detail the solution we implemented to solve them. 

Keywords-component: vulnrability detection; smart fuzzing; 
taint analysis; dynamic analysis. 

I.  INTRODUCTION 
Software security has become an important issue these last 

years because of the serious damages that vulnerabilities may 
cause when they can be exploited by attackers. Currently, 
different techniques for vulnerability detection exist [1, 2] but 
fuzzing remains the most efficient way for detecting 
vulnerabilities in closed-source software. The technique is 
today widely deployed in industry. It is also adopted, 
additionally to other advanced methods, by VUPEN Security 
research team. VUPEN Security is a leading vulnerability 
research company providing advanced technical analysis and 
exploitation of security vulnerabilities which enable companies 
to protect against cyber attacks. In 2010, VUPEN discovered 
147 critical vulnerabilities, allowing code execution, in 
prominent software such as: Microsoft Office and Adobe 
Acrobat/Reader. Many of those vulnerabilities were discovered 
thanks to fuzzing. Despite all the flaws found, fuzzing 
efficiency should be improved especially in industry where we 
have to face real life constraints namely, the huge target sizes, 
large inputs, and time constraints. For that, we propose to 
enhance fuzzing with advanced approaches, notably coverage 
and taint analysis techniques, to create an innovative approach 
for zero-day vulnerability detection taking into account those 
constraints. This approach targets both file processors (for 
HTML, DOC, PDF formats) and packet processors (TCP/IP). 
Because the source code of software is often not available to an 

end user, the method is based on binary analysis. We assume a 
partial knowledge of the target because input (files, packets) 
structures are generally known, but not the implementation 
details. First, we introduce fuzzing and categorize its main 
strategies. Then, we present our general approach and focus on 
an important issue, namely dynamic taint analysis. 

The paper is organized as follows: Section II introduces 
fuzzing and its main categories. In Section III, we discuss our 
motivations and challenges. The proposed approach is 
described in Section IV. Section V and Section VI present 
respectively results to date and ongoing works. Finally, 
conclusions and future works are given in Section VII.  

II. FUZZING 
In this section, we briefly introduce the field of fuzzing. We 

categorize the various types of fuzzing and put in perspective 
different strategies of data generation. 

  
Nowadays, fuzz testing is the main security testing 

approach for detecting serious security vulnerabilities in large 
software [1, 2]. Many definitions exist in the literature [3, 4, 5, 
6]. We adopt here the following synthetic definition: fuzzing 
is an automatic approach based on injecting invalid or random 
inputs into a program at execution in order to obtain an 
unexpected behavior and identify potential vulnerabilities.  
There is no precise methodology for fuzzing. It depends on the 
target, and the input format. Different ways to implement this 
approach are explained in more details later in this paper. 

 

A. Fuzzing phases 
Fuzzing generally respects the following basic steps no 

matter the target and input format type [2]. 
1) Target identification: The user identifies the application 

to test, according to which a tool or an approach is chosen. 
This target can be a web application, a file processor, a 
network protocol, etc.  The fuzzing approach can vary greatly 
from one target to another.  It is entirely dependent on the 
target application (file processor or network protocol), the 
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format of the data being fuzzed and their sizes, the number of 
different inputs that should be tested, and execution time that 
is required to test the target. 
E.g.: Microsoft Word.  

2) Input identification: Input type depends directly on the 
chosen target. 

E.g.: To test Microsoft Word, the input will be a DOC file. 
3) Fuzzed data generation: Once the input type identified 

(files, packets, etc), fuzzed data are generated. This can be 
done in many ways: randomly, by modifying existing valid 
data, or by modeling the target. This step is the most important 
in the fuzzing process. 
E.g.: Generating inputs to test Microsoft Word may be 
realized by modifying some bytes on a valid DOC file. 

4) Fuzzed data execution: The target is run with new 
generated test cases. This step may vary depending on the 
target. 
E.g.: Run Microsoft Word by opening the new generated file. 

5) Faults identification: Observing target under test is a 
crucial step because it helps identifying and analyzing errors 
that cause system crashes. A debugger is generally attached to 
the program under test in order to detect triggered exceptions. 

6)  Exploitability evaluation: Each detected crash should 
be analyzed to determine whether it is due to an exploitable 
vulnerability. This step is usually performed manually. 
 

B. Fuzzing methods 
Generating relevant test cases is the key of fuzzing. A test 

case can be created either by applying mutations on existing 
well-formed inputs, or by generating them from scratch 
according to the internals of the software. The first method is 
known as Blackbox fuzzing because it does not require any 
knowledge of the target behavior contrary to the second, 
Whitebox fuzzing, which assumes a complete knowledge of the 
application code and behavior to model the target for instance. 
Blackbox techniques suffer from a lack of precision. Indeed, 
test cases submitted to the system are not refined and 
generally not pertinent. Recent works show that it can be more 
efficient to assume a complete knowledge of the tested 
application but this is not always possible because sources are 
generally not available. This limits the use of this approach. 
Several works based on Whitebox techniques have been 
proposed. We can mention in particular SAGE (Scalability, 
Automated, and Guided Execution) [7], a tool to test file 
formats on Windows. Other tools such as Flayer [8] and 
Bunny [9] also implement this technique. Graybox fuzzing, for 
which we assume a partial knowledge of the target, stands 
between the two previous methods aiming to take advantage 
of both. Combining fuzzing and inference is a good example 
of Graybox fuzzing. The technique aims to get a partial 
knowledge of the target by providing inputs, observing 
behavior and analyzing outputs. This knowledge will be used 
to improve fuzzing by adjusting test cases. Works in this 
direction have been recently proposed by [10, 11, 12]. They 
show that this technique gives interesting results in the 
absence of software source code. 

 

C. Strategies of Generating Fuzzed Data 
There are three main ways to generate test cases. 
1) Random: The first and most traditional strategy for 

creating input data for fuzzing is to use completely random 
data, without any intelligence or special knowledge of the 
application. Several vulnerabilities, especially in the past, have 
been found thanks to this technique [13, 14, 15, 16, 17]. 
Although it is fast, low cost, and relatively simple to 
implement, this method usually attacks only the applications 
surface and thus it provides poor coverage. In [18], it was 
described as the worst test case design methodology. Another 
disadvantage is that this method is less efficient when 
cheksums are involved. This is explained in [19]. 

2) Mutation of valid data: It is based on modifying 
existing data i.e. mutating some fields in the original correct 
input. This technique is theoretically more effective than 
random generation and is relatively inexpensive to implement 
(mutations on different fields). Note that its effectiveness 
depends on the number of valid data available. Some protocol 
fuzzers use this technique. They apply mutations directly on 
the network traffic. 

3) Model based: Test cases are created according to a 
previously described model of the target.  Test cases 
correspond to specifications of the application. It can be 
effective if the specification has been well modeled but can be 
expensive. This method is implemented in several 
frameworks: Autodafé [20], Peach [21], Sulley [22], etc. 
 
     A comparison of the three strategies is shown in table 1. 
Mutation based approach seems to be the most appropriate 
method when software knowledge is not completely assumed.  
 

TABLE I.  FUZZING STRATEGIES COMPARISON 

 

III. CHALLENGES 
One of the major challenges that we encounter is working 

at binary level. This is due to the low-level semantics, 

 

 Random Mutation based Model 
based 

Advantages 

- Simple  
- Quick 
- Low cost 

 

 
- Relatively    
simple  
- Reusable 
across different 
software  

 
- Potentially 
efficient  
(if the target is 
well modeled )  
 

Dis- 
-advantages 

- Attacks only 
the application 
surface 
- Useless with 
checksums 
- Poor coverage 

- Needs 
numerous valid 
inputs to get a 
good coverage 

 
-Time-
consuming to 
set up  
- Requires 
knowledge of 
the format/ 
protocol  
- Reusable only 
with the same 
format  
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diversity, and complexity of assembly instructions. Another 
difficulty is to identify potentially dangerous executions i.e. the 
definition of vulnerability patterns that are useful to detect 
potential vulnerabilities. Generating relevant inputs able to 
trigger such vulnerabilities is also a challenging issue. In fact, 
fuzzer efficiency depends on its ability to create effective 
fuzzed inputs and to produce reliable verdicts. We also need to 
measure and maximize coverage. In fact, evaluating the 
amount of code exercised by a fuzzer in the whole target is an 
important metric for measuring the effectiveness of the fuzzing 
technique. Those challenges have to be overcome, notably in 
industry, where we have to deal with numerous constraints 
namely, the huge software sizes, huge inputs, the absence of 
source code, the absence of format-specific knowledge, and 
time constraints. Additionally to these main challenges, we also 
need to address many other difficulties coming from the 
techniques used within this general approach. Indeed, for 
coverage analysis, it appears that none of the existing tools we 
considered was able to satisfy our needs. As a consequence, we 
implemented our own techniques and tools. This is also the 
case with taint analysis for which various frameworks exist but 
none of them fully satisfy our requirements: the ability to 
operate without any recompilation (nor access to source code) 
and portability considerations. Most of the existing 
implementations do not support the Windows platform. 
Temu[36] and Dytan[23] are two taint analysis frameworks. 
The first one is based on PIN [24], a dynamic instrumentation 
framework running on both Linux and Windows. The 
implementation of Dytan working on Windows is not useful 
yet. The second one is a framework based on a virtual machine 
emulator and cannot be easily integrated into our approach. 

IV. OUR APPROACH 
In this section, we present the approach that we proposed 

[25] which is illustrated by the tool architecture presented on 
Figure 1. Then, a description of the main principles used and 
the motivations behind their use are given. 
 

We propose to start by identifying potentially vulnerable 
sequences of code within the binary code using vulnerability 
patterns that have to be defined first. The target is then 
executed taking into account information obtained in the 
previous step and analyzed dynamically thanks to taint 
analysis approach. Untrusted data are marked as tainted and 
their propagation at runtime is tracked. In this way, 
information flow between sources and sinks are identified. 
This helps to recognize which parts of the input should be 
fuzzed in order to generate pertinent test cases and audit the 
most dangerous paths of the application under test. Fuzzing 
effectiveness is evaluated through coverage analysis 
techniques. A method to detect faults is used to monitor 
executions. A fault does not necessary mean that an 
exploitable vulnerability exist that is why potential 
exploitability of each detected fault should be evaluated. 

 

A. Vulnerability Pattern 
The first step is to identify dangerous functions in the 

binary by defining vulnerability models, also called “patterns”, 

based on both VUPEN Security expertise in finding and 
exploiting security vulnerabilities in binaries, and also on 
already discovered vulnerabilities. A vulnerability pattern 
represents a model at assembly level that can potentially be 
the cause of a fault. The function « strcpy » is a well-known 
example of a vulnerable function at source code which may 
lead to buffer overflow. In fact, this function can allow the 
attacker to write outside the bounds of the array, hence 
overwriting the current return address in the stack to replace 
its value by the address of a shellcode. 
 

B. Taint Analysis 
    This technique is combined with vulnerability pattern 
detection to identify the most interesting fields of the input 
that should be fuzzed, and therefore to create the most 
promising test sequences able to trigger potential 
vulnerabilities (restricting the test space). Combining those 
two techniques and applying them at assembly level is an 
important challenge. 
 

C. Test Generation 
      The choice of test values is crucial in fuzzing. For that 
reason, generating fuzzed data is the most important step in 
the process. This step can be conducted in different ways as 
already discussed. In order to generate the most promising test 
sequences able to trigger particular paths that might reveal 
faults, we apply a taint analysis at the assembly level to gather 
information about potentially dangerous data. 
 

D.  Coverage Analysis 
     Fuzzing effectiveness is evaluated along the process using 
coverage analysis techniques. Evaluating fuzzing is measuring 
how well the program is tested and identifying the 
modification necessary to expand the coverage and try to 
maximize it. 
 

E. Property Checking 
      Monitoring the program for possible faults at execution is 
necessary in the fuzzing process. Disassembling and 
debugging features facilitate such monitoring if they are 
attached to the program at execution. Here also, working at 
assembly level makes the task harder because of assembly 
code complexity. 
 

F. Exploitability Pattern 
    Evaluating potential exploitability of a fault is also a 
challenge. Analyzing after-crash information gathered from 
the binary, like the stack or the heap content, helps to 
determine whether this crash could lead or not to an exploit. 
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Figure 1.  Proposed approach. 

V. RESULTS TO DATE 
Based on the approach presented in the above section, we 

first proposed, developed and evaluated two block-level code 
coverage techniques able to operate at binary level (without 
need of the source code), addressing the software under test in 
a whole (including dynamic libraries), and taking into account 
the main constraints that have to be faced off in an industrial 
context: large-sized applications with a wide input domain, 
unavailability of source code, and minimal knowledge of the 
input formats and specifications. We analyzed coverage of 
AcroRd32.dll (+20,000 kilobytes), the most important library 
in Acrobat Reader, with the same PDF file in the same 
environment using our two tracers and two others: PinCov 
[26], ccovtrace [27]. We selected a very large file including 
some animations and text for our experiments. We repeated 
this experiment several times in order to calculate the average 
time required to trace the target with each tool. Exerimental 
results comparing average execution time showed that the 
difference in execution time between our two tools and their 
competitors is important. In fact, our tools have reduced by 
50% the required execution time. This can reduce 
considerably the overhead time when analyzing large suite 
sizes. Additionally to the fact that they are fast, our tools offer 
other important features which will be described in more 
details in another paper. 
 

Our coverage analysis approach can improve fuzzing in two 
ways: it is used to estimate fuzzing efficiency by measuring 
how well the program has been tested and identifying the 
modifications necessary to expand the coverage. It can also be 
used to maximize coverage and reduce fuzzing time. In fact, it 
is useful before test generation to find the minimal subset that 
has an equivalent coverage as the large set of test cases. 
Therefore, a set providing more important coverage can be 
tested in minimal time. Coverage is a metric on which fuzzing 
performance highly depends. That is why reducing test suite 
size before fuzzing without reducing target coverage is 
important. For that, we used test suite reduction algorithms. 
We implemented and evaluated four of the well-known 
algorithms classically used for test suite reduction according 
to three criteria, different from the ones considered in most 
previous studies, and particularly relevant in a fuzzing context: 
the execution time, the percentage of suite size reduction, and 
the rate of testing coverage after reduction. All our 
experiments were performed with a real large application, 
namely Acrobat Reader. 

 
     We implemented a tool to monitor binaries at execution for 
system exceptions and systematically identify violations at 
runtime and gather information such as the exception type, 
and the address of the instruction that causes the exception, to 
avoid missing hidden vulnerabilities.  
 
      Currently, we are working on defining a dynamic taint 
analysis approach to enhance fuzzing. This approach is 
presented in the following section.  
 

VI. ONGOING WORK: TAINT ANALYSIS 
Taint analysis has caught the attention of the security 

community these last few years [28, 29, 30]. This is 
highlighted by an increasing use of this technique in the 
software security domain, and the existence of numerous 
available frameworks. Taint analysis is a full software 
vulnerability detection technique which can be performed 
either statically or dynamically. The key idea behind this 
analysis is to mark data originating from untrusted sources 
(E.g.: user input) as tainted and determine, at each location in 
the program, which variables can be influenced by tainted data 
Determining whether a variable is tainted consists in 
identifying its possible input dependencies. There are two 
possible dependencies: 

� Data flow dependencies, which correspond to direct 
assignments between variables in the program. For 
example, if x is tainted and y is not tainted, the result 
of the addition x+y is tainted. 

 
 // x is tainted  
    y = 2; 
    z =x+ y;  
 // Result z is tainted  

 
� Control flow dependencies, which correspond to 

controlling values of program variables through the 
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control flow determined by conditional statements of 
the program. For example, a non tainted variable is 
modified if a tainted variable satisfies a conditional 
statement. 

 
 //x is tainted  
  if (x > 1) y = 1 else y = 2; 

 // y is tainted because it is influenced by x 

A. Taint Analysis 
We can distinguish two taint analysis approaches: 

� Static Taint Analysis is performed mostly at source 
level, thus covering all the possible execution paths 
[32, 33]. This approach allows in principle a complete 
analysis and deals with all possible runtime cases. 
However, most of the time, application sources are not 
available, and operating at the binary-level raises 
serious difficulties. Another general problem is that 
decidability is generally achieved by means of abstract 
interpretation techniques, leading to over-approximate 
the program behavior, which may generate a lot of 
false positives. 

� Dynamic Taint Analysis consists in analyzing code 
during its execution. Each object from user input (e.g.: 
network, files, etc) is marked as insecure. This taint 
allows us to track the influence of tainted objects along 
the execution of the program. This taint can be 
performed without access to application sources. 
Although in theory the approach should give 
interesting results, it is very complex to implement. In 
addition, implicit flows are not available at runtime. 
Therefore, it is not possible to take advantage of the 
full control flow information. Moreover, the program 
needs to be executed with specific inputs and hence 
cannot cover all possible executions [34, 35, 36, 37]. 

B. Proposed Dynamic Taint Analysis Approach for Smart 
Fuzzing 

1) Taint analysis for improving test case quality 
As already discussed, there are three main fuzzing 

strategies: random, generation and mutation. A generation 
based fuzzer is a self-contained program that generates its own 
invalid inputs based on the target model. A mutation fuzzer 
takes a valid input and mutates the sample to create many 
invalid sessions. The main problem is how to know which 
parts of the valid input should be mutated in order to create 
relevant test cases able to trigger faults. Vulnerability is 
exploitable if its execution can be triggered by user but how to 
detect parts of the input that influence the target. The idea 
behind using taint analysis to improve fuzzing is to identify 
the specific offsets that taint a specific program scope 
(interesting functions) and then to mutate only those 
interesting parts. 

 
     Despite the widespread usage of taint analysis, there has 
been little effort to apply it to binaries and to summarize the 
critical issues that arise when these techniques are performed 
at assembly level. Indeed, we do not only have to deal with the 

open taint analysis challenges, but also with the complexity of 
assembly language. Different errors can occur in taint 
analysis. First, marking a variable as tainted when it is not 
derived from a tainted source. This will typically result in 
generating false positives. Second, missing the information 
flow from a source to a sink, and then generating false 
negatives. 
 

a) Taint propagation rules 
The main issues to address when using taint analysis to 

analyze a program execution are the following: new taint 
introduction, taint propagation as instructions execute, taint 
checking during execution, and taint elimination. At the binary 
level, two objects can be tainted: memory locations and 
registers, as shown in figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Taint propagation. 

     The quality of information obtained thanks to taint analysis 
depends on the markings that can be either bit-precision or 
byte-precision. Although the higher degree of precision 
provided with bit-precision markings, the level of details 
provided with byte-precision markings are accurate enough for 
our purposes.  
 

� Memory locations (memory addresses): to taint 
memory locations we have to keep track of  
- The initial address of the memory location 

 -  The size of memory location to be tainted  
� Registers: we have to keep track of all registers (32, 

16, and 8 bits registers) 
 - Register name 
 - Register content 
 - Register taint value (tainted/untainted)  
 
Everything that is controlled by user is tainted. 

� Object X is tainted if X is influenced by the 
value of a tainted object Y. We say:  Y 
tainted X and write X→ t(Y) 

         E.g. mov eax, ecx   
                // ecx tainted => eax tainted  

� If an object is influenced by an object 
derived from a tainted object, the first one 
is tainted because of the transitivity  

 
 
 
 
 
 

Untrusted sources 
(files, user inputs, etc) 

Registers Memory 
locations 

Taint
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    X → t(Y) and Y→ t(Z) => X→ t(Z) 
 
An object is tainted if it was: 

� assigned from an unstruted source 
E.g.: mov eax, userbuffer[ecx] 
� assigned from a tainted object 

                      E.g.: add eax, eax (eax tainted) 
 
Taint should be deleted if the object was: 
 -      assigned from an untainted object 
        E.g.: mov eax, ecx (ecx not tainted) 
 -     assigned from a constant  
        E.g.: mov eax, 0x10 
 -     assigned from a tainted object but the assignment   
        result is a constant. 
        E.g.: xor eax, eax 
 
     Applying dynamic taint analysis at binary level is a 
challenging task because of the variety of cases that we have 
to deal with. To implement the technique, we have to 
automatically: 

� Identify all operands of each instruction 
      Difficulty: An instruction can have from one to  
      four operands. 
   

� Identify each operand type 
(source/destination) 

    Difficulty: An operand can be: 
-A register: there are nine 32-bit registers, 
four 16-bit registers, and eight 8-bits 
registers: eax (32 bits), ax (16 bits), al and 
ah  (8 bits). 
-An address: [ebp+4], or [eax+edx-4] 
-A value 

� Track each tainted object 
Difficulty: deal with all propagation types and             
taint in all the following cases: memory-              
register,   register-register, and register-memory. 

� Understand the semantic of each instruction 
Difficulty: There are Hundreds of x86 different         
instructions (mov, add, xch, etc), and at least             
one propagation rule for each instruction. 
 

b) Implementation and preliminary results 
     We first run the target with a well-formed input and 
monitor execution to identify how the program uses user 
inputs. These data are marked as tainted and their propagation 
tracked along the execution of the program. At each execution 
a taint trace is gathered. It contains information about taint 
propagation during program execution i.e. all tainted objects, 
and all input fields that tainted these objects at each instruction 
of the program. Figure 3 is a simple representation of how 
dynamic taint analysis maps file offsets to instructions 
influenced by tainted data. We associate to each variable, not 
only, a boolean value (tainted\untainted), but also offsets in 
the input instance that tainted this variable, monitoring how 
input data influences the program. Consequently, input 

locations that could affect potentially dangerous locations such 
as strcpy(), or memcpy() functions are automatically 
identified. We tested our tool with small executables 
containing different functions. The output generated with our 
dynamic taint analysis program contains all executed 
instructions at runtime with the address of each instruction, its 
operands, and all tainted registers at this instruction. A list of 
tainted memory locations is also maintained at each 
instruction and updated if necessary. In this way, all tainted 
objects and offsets that taint them are identified at each 
instruction. A simple example is the memcpy () example. If 
memcpy(), which is considered as a dangerous function,  is 
called with a tainted source, taint is propagated to destination, 
and sensitive fields are automatically identified . The second 
step of the approach is to mutate sensitive fields to generate 
relevant new inputs. Mutating the offsets associated to the 
source argument of the memcpy() function could generate an 
interesting test case able to trigger a fault at this instruction. 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Figure 3.  Mapping file offsets to tainted instructions/functions. 

 
 
     Once the mapping is available, fuzzing is driven using this 
mapping, and offsets that taint specific functions identified as 
potentially dangerous (thanks to vulnerability patterns) are 
fuzzed, generating in turn new inputs that are fed to the target 
in order to trigger faults. This process is given in figure 4. 
 

 
 
 
 
 
 
 

Figure 4.  Mapping file offsets to tainted instructions/functions. 

2) Taint analysis for exploitability  
Dynamic taint analysis not only helps to create relevant test 

cases able to trigger faults, but also helps to evaluate the 
exploitability level of each detected fault because a detected 
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fault does not necessary mean that an exploitable vulnerability 
exists. Dynamic taint analysis is thus also involved in the 
“exploitability pattern” step of our global approach. 
Determining the root cause of a fault in order to understand 
the problem and exploit the vulnerability is today a very hard 
and time consuming task.  Taint information provided by 
dynamic taint analysis can be very useful to alleviate this 
problem. In fact, an offline data flow analysis of the collected 
taint trace of an execution leading to a program fault can be 
performed automatically to determine the origin of the fault. 
Potentially dangerous inputs are tainted, and taint is 
propagated along the execution of the program thanks to 
dynamic taint analysis which also records trace files.  The idea 
is to implement a technique for backward slicing of traces to 
parse and analyze those trace files and extract conditions 
leading to a fault. Detailed information about each executed 
instruction in a program, starting from the input and going up 
to a crash, should be extracted. Backward slicing can be 
considered as a complementary step to data tainting: data 
tainting taints and propagates taint from an attacker-controlled 
input to determine what it affects and generate associated 
inputs, and slicing starts analyzing from the crash to 
understand its causes. Currently, there is few tools, such as the 
binary analysis tool BitBlaze [36], and !exploitable [38] to 
help determining whether a crash is caused by a potentially 
exploitable vulnerability or not. However these tools do not 
satisfy our needs. BitBlaze is based on a virtual machine 
which makes its use complex and !exploitable does not always 
provide relevant information because it assumes that all data 
are tainted from the state where the fault is triggered. 
 

VII. CONCLUSION AND FUTURE WORK 
In this paper, first we introduced the field of fuzzing and 

present briefly our general approach [25]. Then we focused on 
an important issue, namely dynamic taint analysis, that we are 
currently exploring in order to improve fuzzing efficiency. 
Dynamic taint analysis aims to map some locations in the 
program to associated specific fields of the user input. It also 
helps to determine causes of a fault and thus to determine its 
exploitability. This works takes place in a larger perspective 
whose objective is to set up a fuzzing environment for 
software vulnerability detection according to the general 
approach that we discussed in [25]. Our objective is first to 
experiment the approach on real and large-sized applications 
with a wide input domain. We also plan to combine dynamic 
taint analysis and static analysis in order to further improve 
the mutation step. And, finally, we will integrate the results 
obtained into our fuzzing environment. 
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