
Taint Dependency Sequences: a characterization of insecure execution paths based
on input-sensitive cause sequences⋆

Dumitru Cear̆a and Laurent Mounier and Marie-Laure Potet
VERIMAG laboratory
University of Grenoble
38610 Gìeres, France

{Dumitru.Ceara, Laurent.Mounier, Marie-Laure.Potet}@imag.fr

Abstract—Numerous software vulnerabilities can be acti-
vated only with dedicated user inputs. Taint analysis is a se-
curity check which consists in looking for possible dependency
chains between user inputs and vulnerable statements (like
array accesses). Most of the existing static taint analysis tools
produce some warnings on potentially vulnerable program
locations. It is then up to the developer to analyze these results
by scanning the possible execution paths that may lead to these
locations with unsecured user inputs.

We present a Taint Dependency Sequences Calculus, based
on a fine-grain data and control taint analysis, that aims to
help the developer in this task by providing some information
on the set of paths that need to be analyzed. Following some
ideas introduced in [1], [2], we also propose some metrics
to characterize these paths in term of “dangerousness”. This
approach is illustrated with the help of the Verisec Suite [3]
and by describing a prototype, called STAC.

Keywords-static taint analysis; vulnerability detection; test
objectives.

I. I NTRODUCTION

Security has become a central issue for a large range of
software systems, from the operating system kernel libraries
to the top-level applications used on a regular basis by most
computer users. Indeed, in spite of the progress achieved in
terms of programming languages and techniques, it is still
very difficult to completely avoid the presence ofsoftware
vulnerabilitieswithin large pieces of code. Moreover, most
of these vulnerabilities are usually discoveredafter the
software has been put on the market, which means that
software editors have to deliver security patches on a regular
basis.

To face this situation, it is necessary to provide tools that
help the programmers to detect and possibly neutralize these
vulnerabilities at several steps of the development process,
either statically, during code reviews, or dynamically, during
runtime validations or test campaigns.

A. Taint analysis

Numerous software vulnerabilities can be activated only
with dedicated user inputs. For instance, abuffer overflow

⋆ This work was partially developed in the context of the Vulcain
Project (MSTIC 09-10, University of Grenoble).

may occur within a file editor only if the input file contains
special characters. Therefore, a well-established security
analysis consists in looking for possible dependency chains
between user inputs and vulnerable statements (like array
accesses). Thus, when the value of a user dependent variable
is used to perform a “critical” operation (from the security
point of view), a potential vulnerability can be reported.

Such a dependency analysis, sometimes calledtaint analy-
sis, can be performed either using static analysis techniques,
or at runtime, by monitoring the current execution sequence.
The former approach is more exhaustive, but may lead
to false positives, whereas the latter needs to select first
the execution sequences under check. Both techniques are
implemented within several tools (see section VI).

B. Our contribution

Most of the existing static taint analysis tools produce
some warnings on potentially vulnerable program locations.
It is then up to the user to analyze these results by scanning
the possible execution paths that may lead to this location
with unsecured user inputs. Following some ideas proposed
in [1], [2] our objective is to help the user in this task by
providing some information on the set of paths that need to
be analyzed. The main contributions of this paper can be
summarized as follows:

• First, we propose a taint dependency calculus based
on a formaltype system, which associates ataint envi-
ronmentto each program location (namely a partition
between tainted and untainted variables). This type
system has been developed for a typical imperative
programming language, and it encompasses most of
classical constructs.

• Second, we extend this type system to produce a
set of Taint Dependency Sequences(TDS for short)
explaining why a variable is tainted: roughly speaking,
a TDS is a set of program locations an execution path
should traverse to reach a given locationl, such that a
given variablev is tainted atl.

• Third, we propose sometaint metrics to characterize
each TDS in terms of “dangerousness”. For instance,

a TDS corresponding to a long dependency chain be-
tween a user input and a vulnerable statement, including
both control and data dependencies, is more likely to
be overlooked by the programmer.

Some of these contributions have been already imple-
mented within a prototype tool and the results obtained
are really encouraging with respect to mature existing taint-
checkers [4].

The rest of the paper is organized as follows: in section
II we illustrate in a more detailed manner our objective
on a small (realistic) motivating example. In section III
we describe our taint dependency calculus. In section IV
we give some results obtained when applying this calculus
to the motivating example, and in section V we discuss
some implementation details of our prototype tools, and we
give some experimental results. Section VI compares our
approach with similar works.

II. M OTIVATIONS AND CONTRIBUTIONS

A. The buildfname example

We chose C as the target language of our analysis because
of its popularity for implementing efficient and largely
scalable systems. Due to the fact that C is a very permissive
language, a wide set of vulnerabilities can be found in
the existing C code base. Among these, one of the most
known vulnerabilities is the buffer overflow. The Verisec
Suite [3] is a database created using known overflows which
can be found in open source programs. It consists of a set
of vulnerabilities discovered in real-life applications from
which we may point out the Apache http server, Bind DNS
server, the SAMBA suite, etc.

In the same suite we can find a few vulnerabilities regard-
ing thesendmail general purpose email routing application.
The function that we will address is thebuildfname
function, which stores thelogin data according to the
user suppliedgecos field (commonly referred to asreal-
name). The test case provided by Verisec abstracts the
functionality of the function, preserving only the relevant
parts for activating the vulnerability and also annotates the
code with/* BAD */ comments for the statements that
may be exploited by an attacker. This simplified version
appears in Listing 1.

1 void buildfname(char *gecos,
2 char *login,
3 char *buf)
4 {
5 char *p;
6 char *bp = buf;
7
8 for (p = gecos;
9 *p != ’\0’ && *p != ’,’

10 && *p != ’;’ && *p != ’%’;
11 p++) {
12
13 if (*p == ’&’) {
14 strcpy(bp, login); /* BAD */
15 *bp = toupper(*bp);

16 while (*bp != ’\0’)
17 bp++;
18 } else {
19 bp++;
20 *bp = *p; /* BAD */
21 }
22 }
23 *bp = ’\0’; /* BAD */
24 }

Listing 1. buildfname simplified vulnerable function

The behaviour of this function is illustrated in Figure 1:
the left-hand side gives the initial content of buffersgecos
and login, whereas the right-hand side gives the final
content of bufferbuf. Pointerp is used to iterate ongecos
and pointerbp to iterate onbuf.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

L

L L LS1 S2 S3 S4S1 S2 S3& & & S4

login

gecos

buf

Figure 1. Behaviour of functionbuildfname

B. Buildfname Vulnerabilities

In our analysis we address mainly buffer overflow vulner-
abilities of the following forms:

• writing outside the bounds of arrays using indices that
may be influenced by the user (or, the equivalent, using
pointers whose value can be changed by the user).

• using library functions that manipulate buffers (i.e., the
strcpy function family when the source or destination
buffers are controlled by the user).

There are three statements in thebuildfname func-
tion that may be exploited by a malicious user. The first
vulnerability (at line 14) can be activated either by using
a value forgecos which contains a sufficient number of
’&’ characters in order to subsequently append thelogin
argument to the fixed-size arraybuf or by supplying the
"&" value forgecos and a large enough value forlogin
to overflowbuf.

The second vulnerability (line 20) can be activated in
multiple ways. For instance, given an input valueS, for
gecos larger than the size ofbuf, the loop will always
execute theelse branch, thus leading to an overflow of
thebuf array. Another way to exploit this vulnerability is to
execute thethen branch a certain amount of times (without
overflowing thebuf array) and afterwards execute theelse
branch untilbuf is overflowed. This can be achieved by
using an input of the form"&&..&&S". Obviously these are
not the only execution paths that activate this vulnerability.
Different exploits can be built in order for the branches of
the if statement to be executed alternately.

The vulnerability reported at line 23 represents (like the
previous one) an out-of-bounds write bug which may be
activated by the user by supplying a value forgecos which

advancesbp inside the loop to the end of thebuf such that
the last write will be done outside the bounds of the array.

C. Taint dependency analysis

As shown on the previous example, most buffer overflow
vulnerabilities can be exploited by providing dedicated pro-
gram inputs, allowing to activate specific execution paths.
Detecting the existence of such potential exploits would be
highly desirable, either during a review phase, or during a
testing phase. To achieve that, we propose to perform ataint
dependency analysiswhose objective will be twofold:

1) to compute the variable taintness at each program
location ;

2) to extract from the program source the whole depen-
dency chains between each vulnerable statement and
the corresponding inputs leading to this vulnerability.

This second information will be expressed by a so-called
Taint Dependency Sequence (TDS, for short). Informally, a
TDS can be viewed as a sequence of statements that must
be executed in a specific order for a variable to become
tainted at a given program location. Let us first illustrate
more precisely these two notions on some examples.

1. x = get() ;
2. y = get() ;
3. w = y + 1 ;
4. z = x + w
5. t[z] = ...

Listing 2.

1. x = get() ;
2. y = get() ;
3. if (x >0)

4. y = 3 ;
else {

5. z = y ;
}

6. t[z] = ...

Listing 3.

In listing 2 variablesx, y, w andz are tainted at location
5. Moreover, the taintness ofz comes from adata depen-
dencybetweenz and bothx andw. x is tainted at location
1, whereasw is tainted because of a data dependency with
y. Thus, the taintness ofz at location5 is expressed by the
TDS set{<1,4>, <2,3,4>}.

In listing 3, variablesx, y, and z are also tainted at
location 6. Indeed, there are both acontrol dependency
betweenz andx, sincez is assigned within a conditional
statement controlled byx, and adata dependencybetween
z and y (at location5). The taintness ofz at location6
is therefore explained by the TDS set{<1,3>, <2,5>}.
In particular this set shows that taintingz can be obtained
either by executing statements1 and3 (whatever the value
of the condition), or by executing statements2 and5 (thus
choosing a negative value forx).
1. x = 0 ;
2. y = 5 ;
3. while (x < 10) {

4. y = x+y ;
5. x = get() ;

}
6. t[y] = ...

Listing 4.

In listing 4, variablesx andy are tainted at location6.
The taintness ofy comes from several facts. First, there
is a data dependencybetweeny and x (which is directly
tainted). Thus, after two iterations,y itself becomes tainted.
Moreover, there is also acontrol dependencybetweeny and
x, sincex becomes tainted after one iteration. The TDS set
explaining whyy is tainted after two iterations is{<5,4>,
<5,3>}. For one iteration this set is empty. As a result,
at least two iterations are required to tainty at location6
and to activate a potential vulnerability. As we will see in
Sect. III-C, a third iteration will be taken into account to
compute the TDS, in order to capture the new dependency
introduced at label 4 between the left-hand side and right-
hand side occurrences ofy.

III. TAINT DEPENDENCYSEQUENCECALCULUS

We present here a calculus dedicated to Taint Depen-
dency Sequences. For readability reasons, this calculus is
composed of two parts: one part is dedicated to the taint
calculus and the second one to TDS.

A. Notations

Let Taint be the set{T,U} whereT denotes tainted val-
ues (depending on the user-input) andU denotes untainted
values.Taint is ordered in the following way:T < U . The
operator⊗ between taint values is defined by:

T ⊗ x = T U ⊗ x = x x ⊗ y = y ⊗ x

A taint environment is a functionΓ : Name → Taint that
associates a taint value to each program variable name. The
operator⊗ can be extended to taint environments in the
following way:

Γ = Γ1 ⊗ Γ2 ⇔ Γ = λx . Γ1(x) ⊗ Γ2(x)

In the rest of this section we use the notationx 7→ e

to denote the association ofe to the elementx and f [g]
to denote the functionf overridden by the functiong:
f [g](x) = g(x) if x ∈ dom(g) and f [g](x) = f(x)
otherwise.

B. Taint and Taint Dependency Sequences Judgements

Our taint calculus is based on the following judgements
(with c a command ande an expression):

Γ, α ⊢ c : Γ′

Γ ⊢ e : τ

Γ represents the taint environment before the execution of
c (or the evaluation ofe) andα the current control flow (T
if the command is under the scope of a tainted condition,U

otherwise).Γ′ is the taint environment obtained afterc and
τ the taintness ofe.

Taint analysis is very close to non-interference [5], [6] so
the correctness property states that untainted values remain
unchanged when input values change (a similar property can

be stated for expressions: ife is evaluated as untainted from
Γ then its value is not sensitive to input data variation.)
In particular, if all variables are tainted the correctness
property obviously holds. Due to the correctness definition
the following subtyping rule can be stated:

Γ, α ⊢ c : Γ′ Γ′′ ≤ Γ′

Γ, α ⊢ c : Γ′′

with Γ′′ ≤ Γ′ iff Γ′′(x) ≤ Γ′(x) for eachx in Name.
According to the taint calculus we will compute taint

dependency sequences describing, for each variable and
each program point, a set of sequences of assignments or
conditions that can explain why the variable is tainted at
this point.

A TDS is of the form< l1, . . . , ln > with li a statement
label. A TDS environment is a functionΛ that associates a
set of taint dependency sequences to each program variable
name. Let t be a TDS at labell and P the concerned
program:t denotes the subset of paths ofP starting from
its entry point to the labell and containing all labels oft in
the same order. IntuitivelyΛ(x) at labell denotes all paths
of P effectively taintingx at labell. A contrario, a pathp

that does not correspond to a TDS inΛ(x) does not taint
x in any way: the value ofx obtained withp at label l is
insensitive to input variations.

Our TDS calculus is based on the two following judge-
ments (withc a command ande an expression):

Λ, φ ⊢ c : Λ′

Λ ⊢ e : λ

Λ represents the set of TDS associated to each variable
before the execution ofc (or the evaluation ofe) and
φ represents the set of TDS justifying the taintness of
conditions that may control the taintness ofc, if any.

Finally our taint and Taint dependency Sequences judge-
ments will be linked by the following global invariants
(whereAss(c) denotes the set of variables that are assigned
in commandc):

Inv1 : x ∈ Ass(c) ⇒ Γ′(x) ≤ α

Inv2 : φ = ∅ ⇔ α = U

Inv3 : Γ(x) = U ⇔ Λ(x) = ∅
Inv4 : τ = U ⇔ λ = ∅

C. Taint and TDS Calculus

We present here a calculus for a small language (see Sec.
V for our real implementation). The considered language is:

lvalue → idf | *lvalue
exp → num | lvalue | op(list exp) | get()
comm → (label) lvalue := exp | comm ; comm
comm → (label) if exp then comm else comm
comm → (label) while exp do comm

Labels associated to control flow commands will be at-
tached to the condition. Expressions of the form op(listexp)
denote any operator such as unary or binary arithmetic
operators or the unary * operator. Expression get() is a
particular function that reads values.

1) Literal: each literal value (string literal or numeric
literal) is considered untainted.

Γ ⊢ n : U Λ ⊢ n : ∅

2) Variable: The taint value and the explanation of this
taint are directly extracted from the current environmentsΓ
andΛ.

Γ ⊢ x : Γ(x) Λ ⊢ x : Λ(x)

3) Operator: The taint type and the TDS set of an
expression is obtained from the taint types and TDSs of
each subexpression.

Γ ⊢ e1 : τ1 . . . Γ ⊢ en : τn

Γ ⊢ op(e1, . . . , en) :
⊗

i∈1..n

τi

Λ ⊢ e1 : λ1 . . . Λ ⊢ en : τn, λn

Λ ⊢ op(e1, . . . , en) :
⋃

i∈1..n

λi

4) Get expression:obviously the returned value is input-
sensitive.

Γ ⊢ get() : T Λ ⊢ get() : {<>}

5) Simple assignment:When an assignment is executed
the mapping for the assigned variable inΓ is changed
according to the taint type of the right hand side expres-
sion. Furthermore, if this assignment is under the scope
of a tainted condition (α = T) then x becomes tainted,
independently ofe.

Γ ⊢ e : τ

Γ, α ⊢ (l) x := e : Γ[x7→τ ⊗ α]

For instance the assignmenty=5 of listing 4 (label 2)
does not tainty whereas the assignmenty=3 of listing 3
(label 4) leavesy tainted because we are under the scope of
the tainted conditionx>0.

If the assignment taints the left hand side variable, then
the TDS set required to taint the right hand side expression
and the current label are associated to the assigned variable.
If α = T thenφ also explains the taintness ofx, as explained
above.

Λ ⊢ e : λ

Λ, φ ⊢ (l) x := e : Λ[x7→app(l,λ)∪φ]

The functionapp is defined byapp(l, λ) = {< p, l >|
p ∈ λ}, adding the labell at the end of each sequence inλ.
In particularapp(l, ∅) = ∅.

6) Assignment with dereferencing:The following rules
treat assignments of the form∗p := e, with p a variable
name. If p is initially tainted it remains tainted. The two
following rules can be easily extended to any chain of
dereferencing.

Γ ⊢ e : τ

Γ, α ⊢ (l) ∗ p := e : Γ[p7→Γ(p)⊗τ⊗α]

Λ ⊢ e : λ

Λ, φ ⊢ (l) ∗ p := e : Λ[p7→Λ(p)∪ app(l,λ)∪ φ]

In case of a structured object (as pointer or array structure)
any modification of some parts of this object affects the
object in the whole. Since it is not possible to statically
determine if a new modification concerns a part already
updated or not, the current taintness of this object must be
taken into account. A more precise algorithm should require
a fine-grain memory model, as in [7] for instance.

7) Sequencing:When executing a sequence of commands
the two environmentsΓ andΛ are modified according to the
two commands in the sequence.

Γ, α ⊢ c1 : Γ1 Γ1, α ⊢ c2 : Γ2

Γ, α ⊢ c1; c2 : Γ2

Λ, φ ⊢ c1 : Λ1 Λ1, φ ⊢ c2 : Λ2

Λ, φ ⊢ c1; c2 : Λ2

8) Control flow commands:for each if statement the
type environment obtained after applying the inference rule
will have to keep trace of all the assignments made on both
branches (Γ1 ⊗ Γ2). Moreover, as soon as the condition is
tainted each variable assigned in one branch of the condition
becomes tainted (Γ′) and the control flow dependence scope
is extended bye (α ⊗ τ for the taintness calculus and
φ ∪ app(l, λ) for the TDS calculus).

Γ ⊢ e : τ

Γ′ = Γ[{x 7→ τ ⊗ Γ(x) | x ∈ Ass(c1) ∪ Ass(c2)}]
Γ′, α ⊗ τ ⊢ c1 : Γ1

Γ′, α ⊗ τ ⊢ c2 : Γ2

Γ, α ⊢ (l) if e then c1 else c2 : Γ1 ⊗ Γ2

As previously,Ass(c) denotes the set of variables that
are modified in the commandc. For instance in Listing 3,
variablesy andz are tainted inside the two branches because
the user can control their values by controlling the value of
x. Then the TDS<1, 3> that explains why the condition
is tainted also explains the taintness ofy andz.

Λ ⊢ e : λ

Λ′ = Λ[{x 7→ app(l, λ) ∪ Λ(x) | x ∈ Ass(c1) ∪ Ass(c2)}]
Λ′, φ ∪ app(l, λ) ⊢ c1 : Λ1

Λ′, φ ∪ app(l, λ) ⊢ c2 : Λ2

Λ′′ = {x 7→ Λ1(x) ∪ Λ2(x) | x ∈ Name}

Λ, φ ⊢ (l) if e then c1 else c2 : Λ′′

9) Loop command:For the loop statement the resulting
taint environment can be characterized by a greatest fixpoint:

Γ ⊢ e : τ

Γ, α ⊢ c : Γ
∀x ∈ Ass(c) . Γ(x) ≤ τ ⊗ α

Γ, α ⊢ (l) while e do c : Γ

This greatest fixpoint will be computed by iteration us-
ing the subtyping rules (Section III-B) and the following
judgements:

Γ0, α ⊢ (l) while e do c : Γ′

Λ0, φ ⊢ (l) while e do c : Λ′

Variables assigned within a loop statement are tainted ei-
ther because of control dependencies with the loop condition
(as soon as this condition becomes tainted itself), or because
of data dependencies with other variables (inside or outside
the loop). Dependency chains can be much longer in the
second situation. In order to catch these longest chains we
first compute the minimal number of loop iterations required
to detect all data dependencies. This is obtained by rewriting
while statements as blocks of nestedif statements according
to the following definition:

while if(e, c, n) =

if e then

c;while if(e, c, n − 1)
else skip

n > 0

skip n = 0

Thus, with Γ, α ⊢ skip : Γ and Λ, φ ⊢ skip : Λ, the
algorithm we propose is:

1) ComputeΓi, α ⊢ c : Γi+1 starting with with i = 0.
Let n = i + 1, with i the smallest value such that
Γi+1 = Γi, be the number of iterations required to
establish the fixpoint.

2) ComputeΛ0, φ ⊢ while if(e, c, n) : Λ′.
3) Compute the final taint environment

Γ′(x) =

{

T if Λ′(x) 6= ∅
U if Λ′(x) = ∅

for eachx in Name.

Let us consider the example on listing 4. At step 1, three
iterations are required in order to stabilize the taintness
calculus (the first iteration taintsx, the second one taints
y and the third one establishes the fixpoint). At label6,
the setΛ(y) contains the following TDS sets:∅ after the
first iteration,{<5,4>, <5,3>} after the second iteration
extended by{<5,3,4>, <5,3,3>, <5,4,4>} after the
third one.

D. Data-input sensitive vulnerability detection

Based on our type system, we developed an algorithm that
computes the taint value of each variable at each label with
their associated TDS sets. These informations are exploited
to detect potential vulnerable statements. Let us consider
some examples:

• a statement of the formt[i] = e (or ∗t = e) may
provoke a sensitive user input buffer overflow if, in the
currentΓ environment, the following hold:Γ ⊢ i : T

or Γ ⊢ t : T .
• a call of the form strcpy(dest, source) or

strcat(dest, source) is potentially vulnerable if
Γ ⊢ dest : T or Γ ⊢ source : T .

IV. FROM TDS TO VALIDATION OBJECTIVES

A. TDS metrics

An immediate application of our static taint dependency
analysis is to provide some useful guides on the execution
paths that could be used at runtime for finding potential
exploits. In particular the TDS set we compute at each
vulnerable location could be viewed asvalidation objectives,
whose purpose is to select the execution paths to be exer-
cised during a code review or a test campaign.

First, as said in section III-B, each execution path leading
to a vulnerable location(l) which is not “covered” by a
TDS can be considered assafe. Indeed, the values produced
by this execution path are not sensitive to any user inputs1.
Thus, the TDS we compute give us (an over-approximation
of) the whole set of non-safe execution paths to be con-
sidered. This information provides useful indications by
delineating the path space to be considered.

Second, the TDSs associated to each potential vulnerabil-
ity also help us to classify the non safe execution paths
according to several criteria. For instance, they help to
characterize how “dangerous” a given execution path is, i.e.,
what are the chances for this path to correspond to an actual
exploit. Such a measure can be obtained by associating a set
of metricsto each TDS. Some possible metrics could be:

The TDS size:the longer a TDS is, the more precise
are the associated execution paths, and the longer the taint
dependency chains they involve are. We could assume that
long taint dependency chains are more likely to correspond
to exploits, since they have more chances to not be fully
controlled by the programmer with appropriate sanity checks
(as pointed out in [2]).

The taintness source:to each TDS can be associated
a set of variables corresponding totaint sources. These
variables are the ones that are directly tainted by means of
input functions. We can assume that some input streams are
more likely to carry unsecured data, or are easier to access

1of course, some vulnerabilities can also be activated independently to
any user input, but they are not in the scope of this paper.

from non trusted users. Corresponding execution paths are
therefore more critical.

The structure of the dependency chain:variable taint-
ness may have several causes: data dependencies with taint
variables, control dependencies with tainted expressions,
or combinations of both. Here again, we can assume that
complex dependency chains (i.e., with numerous combina-
tions between control and data dependencies), involving a
large amount of data, are more likely to escape from the
programmer attention, and therefore may lead to potential
exploits.

The number of loop iterations:many buffer overflow
exploits are obtained by increasing array indexes beyond
their expected values. This is usually achieved by iterating
on loop bodies. Therefore, TDS covering loop bodies are
more likely to correspond to potential exploits. Note also
that, when a taint dependency chain depends on loop itera-
tions, the TDS set we produce gives theminimal number of
iterations required to taint all the elements of the chain.

All these metrics can be easily obtained from basic
information associated to each TDS. In the following sec-
tion we give some examples of TDS obtained from the
buildfname function, the corresponding metrics, and their
relationship with the exploits we identified in section II.

B. Back to thebuildfname example

The control flow graph of thebuildfname function
(listing 1) is depicted in Figure 2. For a better understanding
we have associated to each statement the line number as
its label. Also, thefor loop has been changed into a
while loop (for uniformity) by adding a block for the
initialization step (label 8) and a block for the increment
step (label 11). The two initial blocks (labels 1 and 2) are
used to explicitly show the taintness of the two arguments.
The strcpy(bp, login), from the taintness point of
view, behaves as the assignment*bp=*login. Finally,
we consider in the following that the functiontoupper
(statement 15) is transparent from the taintness point of view
(the taint of its result is the one of its argument).

As stated in section II-B, three potential vulnerabilities
are identified in this example. All theses vulnerabilities are
detected by our type checking algorithm. Two iterations on
loop9 and one iteration on loop16 are required to compute
the fix-point of functionΓ. We focus on vulnerability 14.

C. TDS metrics for vulnerability 14

The statementstrcpy(bp, login) is marked as
“vulnerable” by our analysis for two distinct reasons: both
variableslogin and bp are tainted when executing this
statement.

Variable login is a user input (at location2), and
it is never assigned elsewhere in the function. Therefore
Λ(login) = {<2>}. Regarding Λ(bp), the situation is
more complex since there are numerous dependency chains

Figure 2. buildfname CFG

source data control only with 9(13) control with 16 #TDS
login 2 0 2 4
gecos 1 18 6 25
#TDS 3 18 8 29

Table I
TDS METRICS FORΛ(bp) AT LABEL 14

explaining why variablebp is tainted at location14. Indeed,
our algorithm produces29 (21 for the first iteration,8 until
label14 is reached again during the second iteration) distinct
TDS. Table I supplies a classification of this TDS set based
on the source (starting with 1 for a dependency withgecos
and starting with 2 for a dependency withlogin) and on
the type of dependency (pure data dependency vs control
and data dependencies).

D. Application to exploit generation

First, some useful indications are easy to extract from
Table I, either to guide a code review or to prepare a test
campaign dedicated to the search of actual exploits. Such
indications could help to better manage the time budget by
focussing first on the most critical parts, for instance:

• The gecos value can be considered as easier to
choose/modify by an untrusted user than thelogin
value (usually set by the administrator). Thus, execution
paths corresponding to TDS tainted bygecos could
be privileged.

• Among them, several TDS have rather long dependency
chains (of size 5 or 6), including combinations of data
and control dependencies. The corresponding paths are
longer, their control flow is more complex, and they are
therefore more likely to lead to exploits.

However, a deeper analysis of the metrics summarized
in Table I allows to classify the TDS into four distinct
groups, and to retrieve the potential exploit we identified
in section II-B.

A first TDS set is obtained by considering the (pure)
data dependencies betweenbp and login (first line and
first column): <2,14>, <2,14,17>. The corresponding
exploit consists in appending a sufficiently large login value
(sufficiently often) to overflowbuf. Note that for tainting
bp at least one complete iteration of loop9 must be
performed.

A second TDS set is obtained by considering the (pure)
data dependencies betweenbp and gecos (second line,
second column). This set actually contains only one TDS,
<1,8,20>, becausebp can only be tainted bygecos, in
the first iteration, with the direct assignment at label20.
The corresponding exploit consists in overflowingbuf by
supplying a sufficiently large gecos value. Note that the
gecos input must contain at least one’&’ character in
order forbp to become tainted.

A third TDS set is obtained by considering that the
taintness ofbp can come from a control dependency with
p at location9 and 13. Column 3 does not contain any
TDS starting with 2, meaning that there is no data flow from
login to p. Exploiting the control dependency betweenbp
and p necessarily requires supplying an appropriate gecos
value. TDS examples are:<1,8,9>, <1,8,11,9,13>,
<1,8,9,13,17>, etc. The corresponding exploit consists
in choosing a gecos value leading to a sufficient number of
iterations of loop9 to overflowbuf.

A fourth TDS set is obtained by considering that the
taintness ofbp can come from a control dependency with
bp at location16 (column 4). The corresponding exploit
would consist in providing a sufficiently large login value
to execute sufficiently often statement17 to overflowbuf.
Note that executing statement14 has exactly the same effect
(loop 16 does not bring any new exploit), but a more
semantic analysis would be required to detect that.

Each TDS corresponds to a set of possible execution paths
on which the variable can become tainted. The whole TDS
set could be supplied to the developer in order to describe
all the possible executions that must be analyzed. However,
a classification of the computed TDS can be automatically
created (using the metrics described earlier), allowing the
developer to decide which are the TDS classes on which
further analyses should focus.

V. STAC IMPLEMENTATION

We present here a prototype, STAC2, which implements
the TDS calculus presented earlier, extended to cover a larger
subset of the C language (handling aliasing and the existence
of procedures).

A. Frama-C

STAC uses the Frama-C platform [7] as its front-end, an
extensible platform for source-code analysis of C programs,

2http://code.google.com/p/tanalysis/

built on top of CIL [8]. It can also be seen as a collaborative
framework for developing static analyzers. The collabora-
tive approach allows analyzers to use the results already
computed by other analyzers in the framework. The Frama-
C engine supports all the constructs of the C language.
However, each analyzer is allowed to define the subset of
the language it will address.

B. Addressing the C language

Due to the fact that our analysis aims at being sound
and because we target C programs, the presence of pointers
requires additional alias information. We use the implemen-
tation provided in [9] for Steensgaard’s algorithm for almost
linear inter-procedural points-to analysis ([10]).

The small language we provided in Sec. III does not cover
all the available constructs of the C language such as arrays,
structures and unions. In STAC we consider these kinds of
constructs as objects so, whenever we assign a taint value
to an entry of an array (or to a structure or union field) we
either change the value of the whole object toT (if the right-
hand side was tainted) or we keep the previous taint value of
the array in a manner similar as described for the assignment
with dereferencing in Sec. III. All these extensions are over-
approximations of our analysis. However, none of them
invalidates the correctness properties we have stated before.

C. Intra and Inter procedural analysis

For each procedure in the analyzed program, STAC per-
forms a flow sensitive analysis on the CFG3 high-level
representation of the procedure (as provided by Frama-
C). The analysis applies the type system rules to all the
statements in the CFG starting with the entry point of the
procedure. In this way, when the analysis is performed for a
given procedure, we compute a taintness environment for its
exit point (the effect of the execution according to taintness).
We will refer to this environment as thesummaryof the
procedure. The taintness values in the summary will be
dependent on the taintness of the formal parameters of the
procedure.

Regarding the inter-procedural aspect of our calculus,
STAC performs a context sensitive analysis. When a proce-
dure call-site is reached the effect of the summary is applied
to the environment associated to the call-site environment.
The order in which STAC analyzes the procedures is given
by the reverse topological ordering of the strongly connected
components in the call-graph provided by Frama-C (in a
manner similar to the one presented in [4]). Computing the
summaries for each procedure inside a strongly connected
component is equivalent to a fix-point computation (as each
component corresponds to a loop in the call-graph of the
program).

3Control Flow Graph

D. Experiments

In order to evaluate the performance of our implementa-
tion we have performed experiments using the NIST Samate
reference dataset ([11]), but also some widely used Linux
applications likesendmail and mailx. We used the set of
vulnerability patterns given in Sec. III-D.

The Samate dataset contains small vulnerability examples
and after running our implementation on 300 test-cases we
obtained an average of 46.5% tainted statements. In order
to exploit the taintness information for detecting potential
vulnerable statements we use the set of patterns given in
Sec. III-D. The results we obtained can be seen in table II.
The #loc column indicates the number of lines of code in
the analyzed programs whereas% tainted stmts and %
vulnerable stmts indicate the percentage of tainted state-
ments computed by STAC and respectively the percentage of
potential vulnerable statements according to the previously
described patterns.

prog #loc % tainted stmts % vulnerable stmts
sendmail 83499 67.2 7.9

mailx 10171 61.6 10.5

Table II
STAC RESULTS FOR SENDMAIL AND MAILX.

Our results are similar to the ones obtained in [4] using
the context sensitive approach to compute user-input depen-
dencies. The small differences can be explained by the fact
that results are influenced by the way the library functions
are annotated; if a summary for a library call is not provided,
STAC assumes the worst case and taints the return values
of the function.

VI. RELATED WORKS

Computing user input dependencies, or variable taint-
ness4, to detect potential vulnerabilities within a software
is not an original idea. Thus, a large amount of work has
been already published on this topic. We briefly review in
this section the most commonly used approaches focusing
more on the works that are close to the one we proposed in
this paper.

A. Dynamic taint-analysis

The notion oftaint variable has been introduced within
the PERL language, with the use of a special execution mode
called “taint mode”. Within this mode, the PERL interpreter
propagates information about tainted data (i.e., coming from
untrusted sources) across program assignments and raises a
security error when an insecure system call occurs. This
idea of computing variable taintnessat runtime has been
generalized in several tools like [12], [13], [14], see [15]for
a more complete survey.

4the difference between these two notions is that in taint-analysis one
usually assumes a notion of sanitization.

Dynamic taint-analysis provides several advantages since
it considers a concrete execution path, with all information
available regarding the current variable valuations. Thus,
sanity checks can be handled accurately, avoiding many false
positives. However, since each analysis is reduced to a single
(current) execution path, its coverage level may remain very
weak and control dependencies cannot be fully taken into
account. Therefore this technique may lead to numerous
false negatives (i.e., unrevealed vulnerabilities).

Because we aim to be complete in terms of vulnerability
detection, a dynamic taint analysis is not appropriate for us.
Nevertheless, since we want to build some precise guides
for the generation of exploits, we have to be as precise as
possible, and close to the notion of execution paths. Thus,
our TDS calculus is similar to a dynamic taint analysis in
the sense that variable taintness is attached to a subset of
execution paths.

B. Static taint-analysis

Another approach to compute variable taintness is to use
static analysis techniques, allowing to take into account the
whole set of a program execution sequences.

Static taint analysis can be based on several formaliza-
tions: program dependence graphs[16] and [17], program
slicing techniques [18], or type systems [19] as used in the
CQual tool [20]. For scalability reasons, internal representa-
tions as SSA (Static Single Assignment), GSA (Gated Single
Assignment) or aSSA (Augmented Static single Assignment)
are often used [4]. Note also that static taint analysis
techniques are now also widely investigated for specific
vulnerability detections within web based applications [21],
[22], [23].

Most of static taint analysis tools are only dedicated to
user input data dependencies [24]. Since we strongly believe
that this approach is not sufficient to detect every potential
exploit our taintness calculus fully implements user input
control dependencies. As pointed out in Sec. V, our work
is quite close to the PARFAIT tool [4]: we handle (sensitive)
inter-procedural analysis in a similar way, we use a (simple)
may-alias analysis to deal with pointers, and the behaviours
of C library functions are abstracted by function summaries.
However, their taintness calculus for control dependency
does not exactly correspond to the one used in information
flow analysis ([25], [16]) and its clear underlying notion
of correctness we aim to encompass (see [4] for a finer
comparison).

C. Computing path information

As discussed in this paper, from a security checking point
of view it is desirable to extend results on variable taintness
with information on the corresponding execution paths. This
idea has been already developed in a few works:

• In [2], lengths of user dependency chains between a
potential vulnerability and the corresponding user input

are computed. This measure provides metrics allowing
us to classify execution paths leading to a vulnerability
(the longest being the most dangerous). However, loop
executions are not precisely taken into account in this
computation.

• Execution paths are also considered in [1], from a
qualitative point of view. In particular they propose
a path classification into 4 categories: infeasible, safe
(sanitized), vulnerable (tainted), user-independent and
“don’t-know”. Such a classification is obtained using
a backward analysis technique in conjunction with
a solver to compute over-approximations of variable
valuations (to detect infeasible or safe paths).

The work we presented here borrows some ideas from [2]
and [1]. In particular we tried to provide a finer classification
of the set of vulnerable paths than the one proposed in [2]
by taking into account the possible combinations of user
input sources to taint a given expression. Furthermore, we
also proposed some metrics to characterize these paths from
a quantitative point of view.

VII. C ONCLUSION

We have proposed a Taint Dependency Sequence Calculus
whose objective is twofold: it relies on a fine-grain taint
variable analysis (including data and control dependencies),
and it produces some explicit representation of the sets
of dependency chains from each input statements to each
potentially vulnerable program locations.

We believe that such a calculus provides a useful “basic
block” within a more complete vulnerability detection en-
vironment. First, dealing with combinations of both control
and data dependencies increases the chance of detecting un-
foreseen program behaviours, since they are hard to master
by developers. In particular they offer more subtle ways to
build exploits by controlling which assignments will take
place or not (e.g., the number of & in gecos in our example).
Moreover, by making such combinations explicit in terms
of execution paths, we give a concrete representation of the
parts of code that need to be further analyzed (through a code
review, or a test campaign). An interesting feature is that this
calculus also provides some precise indications regarding
the minimal number of loop iterations to be performed in
order to taint a loop body. This should improve the classical
test generation process, where loop iterations are performed
randomly.

This work can be continued in several directions. First,
it would be interesting to study how the TDS (and TDS
metrics) we produce could be turned into concretetest
objectives, to be used as input within a test process. This
step could for instance take into account some other kinds
of analysis (such as symbolic evaluation for instance), in
particular to deal with sanity checks (and remove some false
positives). On a similar basis, the TDS we produce could
also be used to guide some dynamic program execution,

possibly by combinations between concrete and symbolic
data representations (like inconcolic execution, [26]). To do
so, it would be useful to define first some clear notion of
equivalence (or subsumption) between TDS.

Finally, as described in Sec. V we provide a prototype
implementation of our calculus. In order to improve per-
formance, we could either perform the calculus in a ”lazy”
manner such that environment computations are evaluated
only when needed or use symbolic efficient data structures
for handling the environments and TDS sets.

REFERENCES

[1] W. Le and M. L. Soffa, “Refining buffer overflow detection
via demand-driven path-sensitive analysis,” inPASTE ’07:
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering.
New York, NY, USA: ACM, 2007, pp. 63–68.

[2] C. Nagy and S. Mancoridis, “Static security analysis based
on input-related software faults,” inConference on Software
Maintenance and Reengineering. Los Alamitos, CA, USA:
IEEE Computer Society, 2009.

[3] http://se.cs.toronto.edu/index.php/VerisecSuite.

[4] B. Scholz, C. Zhang, and C. Cifuentes, “User-input de-
pendence analysis via graph reachability,” inSource Code
Analysis and Manipulation, IEEE International Workshop on,
Los Alamitos, CA, USA, 2008, pp. 25–34.

[5] D. Volpano, C. Irvine, and G. Smith, “A sound type system
for secure flow analysis,”J. Comput. Secur., vol. 4, no. 2-3,
pp. 167–187, 1996.

[6] J. A. Goguen and J. Meseguer, “Security policies and security
models,” inIEEE Symposium on Security and Privacy, 1982.

[7] http://frama c.cea.fr.

[8] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer,
“Cil: Intermediate language and tools for analysis and trans-
formation of c programs,” inCC ’02: Proceedings of the
11th International Conference on Compiler Construction.
London, UK: Springer-Verlag, 2002, pp. 213–228.

[9] http://hal.cs.berkeley.edu/cil/.

[10] B. Steensgaard, “Points-to analysis in almost linear time,” in
POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. New
York, NY, USA: ACM, 1996, pp. 32–41.

[11] http://samate.nist.gov/SRD.

[12] J. Newsome and D. X. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” inProceedings of the
Network and Distributed System Security Symposium, San
Diego, California. The Internet Society, 2005.

[13] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy
enforcement: a practical approach to defeat a wide range of
attacks,” inUSENIX-SS’06: Proceedings of the 15th confer-
ence on USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, 2006.

[14] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” inProceedings of the 2007 International
Symposium on Software Testing and Analysis. New York,
NY, USA: ACM, 2007, pp. 196–206.

[15] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible
security enforcement using dynamic data flow analysis,” in
Proceedings of the 15th ACM conference on Computer and
Communications Security. New York, NY, USA: ACM,
2008, pp. 39–50.

[16] C. Hammer, J. Krinke, and G. Snelting, “Information Flow
Control for Java Based on Path Conditions in Dependence
Graphs,” in In IEEE International Symposium on Secure
Software Engineering, 2006.

[17] G. Snelting, T. Robschink, and J. Krinke, “Efficient path
conditions in dependence graphs for software safety analysis,”
ACM Trans. Softw. Eng. Methodol., vol. 15, no. 4, 2006.

[18] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar,
“Interprocedural analysis for privileged code placement and
tainted variable detection,” inECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July
25-29, 2005, Proceedings, ser. Lecture Notes in Computer
Science, vol. 3586. Springer, 2005, pp. 362–386.

[19] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type
qualifiers,” in PLDI ’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and im-
plementation. New York, NY, USA: ACM, 2002, pp. 1–12.

[20] http://www.cs.umd.edu/ jfoster/cqual/.

[21] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper),” inIN IEEE SYMPOSIUM ON SECURITY AND
PRIVACY, 2006, pp. 258–263.

[22] G. Wassermann and Z. Su, “Sound and precise analysis
of web applications for injection vulnerabilities,” inPLDI
’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation. New
York, NY, USA: ACM, 2007, pp. 32–41.

[23] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man, “Taj: effective taint analysis of web applications,” in
PLDI ’09: Proceedings of the 2009 ACM SIGPLAN confer-
ence on Programming language design and implementation.
New York, NY, USA: ACM, 2009, pp. 87–97.

[24] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and
V. Shmatikov, “Inputs of Coma: Static Detection of Denial-
of-Service Vulnerabilities,” inCSF ’09: Proceedings of the
2009 22nd IEEE Computer Security Foundations Symposium.
Washington, DC, USA: IEEE Computer Society, 2009, pp.
186–199.

[25] A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,” IEEE Journal on Selected Areas in Communi-
cations, vol. 21, 2003.

[26] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed auto-
mated random testing,” inPLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation. New York, NY, USA: ACM, 2005, pp.
213–223.

