Taint Dependency Sequences: a characterization of inseaexecution paths based
on input-sensitive cause sequences

Dumitru Ceaa and Laurent Mounier and Marie-Laure Potet
VERIMAG laboratory
University of Grenoble
38610 Geres, France
{Dumitru.Ceara, Laurent.Mounier, Marie-Laure.Pot@imag.fr

Abstract—Numerous software vulnerabilities can be acti-
vated only with dedicated user inputs. Taint analysis is a se-
curity check which consists in looking for possible dependency
chains between user inputs and vulnerable statements (like
array accesses). Most of the existing static taint analysis tools
produce some warnings on potentially vulnerable program
locations. It is then up to the developer to analyze these results
by scanning the possible execution paths that may lead to these
locations with unsecured user inputs.

We present a Taint Dependency Sequences Calculus, based

on a fine-grain data and control taint analysis, that aims to
help the developer in this task by providing some information
on the set of paths that need to be analyzed. Following some
ideas introduced in [1], [2], we also propose some metrics
to characterize these paths in term of “dangerousness”. This
approach is illustrated with the help of the Verisec Suite [3]
and by describing a prototype, called STAC.

Keywords-static taint analysis; vulnerability detection; test
objectives.

I. INTRODUCTION

may occur within a file editor only if the input file contains
special characters. Therefore, a well-established ggcuri
analysis consists in looking for possible dependency chain
between user inputs and vulnerable statements (like array
accesses). Thus, when the value of a user dependent variable
is used to perform a “critical” operation (from the security
point of view), a potential vulnerability can be reported.
Such a dependency analysis, sometimes c#dlied analy-
sis can be performed either using static analysis techniques,
or at runtime, by monitoring the current execution sequence
The former approach is more exhaustive, but may lead
to false positives whereas the latter needs to select first
the execution sequences under check. Both techniques are
implemented within several tools (see section VI).

B. Our contribution

Most of the existing static taint analysis tools produce
some warnings on potentially vulnerable program locations

Security has become a central issue for a large range df is then up to the user to analyze these results by scanning
software systems, from the operating system kernel ligsari the possible execution paths that may lead to this location
to the top-level applications used on a regular basis by mostith unsecured user inputs. Following some ideas proposed
computer users. Indeed, in spite of the progress achieved in [1], [2] our objective is to help the user in this task by
terms of programming languages and techniques, it is stilproviding some information on the set of paths that need to

very difficult to completely avoid the presence sfftware

be analyzed. The main contributions of this paper can be

vulnerabilitieswithin large pieces of code. Moreover, most summarized as follows:

of these vulnerabilities are usually discoverafter the

software has been put on the market, which means that
software editors have to deliver security patches on a aegul

basis.

To face this situation, it is necessary to provide tools that
help the programmers to detect and possibly neutralizethes
vulnerabilities at several steps of the development psjces

either statically, during code reviews, or dynamicallyridg
runtime validations or test campaigns.

A. Taint analysis

Numerous software vulnerabilities can be activated only

with dedicated user inputs. For instancebufer overflow

* This work was partially developed in the context of the Vulcan
Project (MSTIC 09-10, University of Grenoble).

« First, we propose a taint dependency calculus based
on a formaltype systemwhich associates &int envi-
ronmentto each program location (namely a partition
between tainted and untainted variables). This type
system has been developed for a typical imperative
programming language, and it encompasses most of
classical constructs.

« Second, we extend this type system to produce a
set of Taint Dependency Sequenc€EDS for short)
explaining why a variable is tainted: roughly speaking,
a TDS is a set of program locations an execution path
should traverse to reach a given locatlonsuch that a
given variablev is tainted atl .

« Third, we propose som&int metricsto characterize
each TDS in terms of “dangerousness”. For instance,

©CO~NOODADWNE

a TDS corresponding to a long dependency chain tse- while (+bp !'="\0")

tween a user input and a vulnerable statement, includifig bp++;
. . . 1 } else {
both control and data dependencies, is more I|kelylg bp++:
be overlooked by the programmer. 2 xbp = *p; /+ BAD */

Some of these contributions have been already imé " }
mented within a prototype tool and the results obtaingd spp = *\0’; /+ BAD */
are really encouraging with respect to mature existingtta?4 }
checkers [4]. Listing 1. buildfname simplified vulnerable function
The rest of the paper is organized as follows: in section
Il we illustrate in a more detailed manner our objective

on a small (realistic) motivating example. In section |lI : : . . '
i (.) 9 P . \;md | ogi n, whereas the right-hand side gives the final
we describe our taint dependency calculus. In section | : : .
. . . . content of buffebuf . Pointerp is used to iterate ogecos
we give some results obtained when applying this calculus . :
L . i : and pointerbp to iterate onbuf .
to the motivating example, and in section V we discuss
some implementation details of our prototype tools, and we gecos
give some experimental results. Section VI compares our | st [ef s2k[sse[s]

approach with similar works.

The behaviour of this function is illustrated in Figure 1:
the left-hand side gives the initial content of buffgrscos

II. MOTIVATIONS AND CONTRIBUTIONS
A. The buildfname example

We chose C as the target language of our analysis because
of its popularity for implementing efficient and largely g Buildfname Vulnerabilities
scalable systems. Due to the fact that C is a very permissive
language, a wide set of vulnerabilities can be found in
the existing C code base. Among these, one of the mogt
known vulnerabilities is the buffer overflow. The Verisec
Suite [3] is a database created using known overflows which
can be found in open source programs. It consists of a set S i) X
of vulnerabilities discovered in real-life applicationsor + using library functions that manipulate buffers (i.e., the

which we may point out the Apache http server, Bind DNS st r cpy function family when the source or destination
server. the SAMBA suite. etc buffers are controlled by the user).

In the same suite we can find a few vulnerabilities regard- There are three statements in tbei | df name func-
ing the sendmail general purpose email routing application. tion that may be exploited by a malicious user. The first
The function that we will address is theui | df name Vulnerability (at line 14) can be activated either by using
function, which stores thé¢ ogi n data according to the @ Value forgecos which contains a sufficient number of
user suppliedgecos field (commonly referred to ameal- & characters in order to subsequently append ibgi n
namg. The test case provided by Verisec abstracts thé@rgument to the fixed-size arrayuf or by supplying the
functionality of the function, preserving only the relevan " &' value forgecos and a large enough value fbogi n
parts for activating the vulnerability and also annotates t t© overflowbuf . o _ _
code with/ * BAD %/ comments for the statements that 1he second vulnerability (line 20) can be activated in
may be exploited by an attacker. This simplified versionmultiple ways. For instance, given an input valGe for

Figure 1. Behaviour of functiobui | df nanme

In our analysis we address mainly buffer overflow vulner-
bilities of the following forms:
« writing outside the bounds of arrays using indices that
may be influenced by the user (or, the equivalent, using
pointers whose value can be changed by the user).

appears in Listing 1. gecos larger than the size dpuf, the loop will always
: . execute theel se branch, thus leading to an overflow of
voi d bui |l df name(char xgecos, . . e
char <l ogi n, thebuf array. Another way to exploit this vulnerability is to
char =buf) execute the hen branch a certain amount of times (without
{ overflowing thebuf array) and afterwards execute thlese
char =*p;
char *bp = buf; branch untilbuf is overflowed. This can be achieved by
using an input of the forM &&. . &&S" . Obviously these are
for (p = gecos; o not the only execution paths that activate this vulnergpbili
*p 1="\0 && *p =", . . o
&& *p 1= ':' && *p 1= ' %: Different exploits can be built in order for the branches of
p++) { thei f statement to be executed alternately.

. o The vulnerability reported at line 23 represents (like the

if (xp=="&) { : ; :
strcpy(bp, login); [+ BAD / previous one) an out-of-bounds write bug which may be
*bp = toupper(*bp); activated by the user by supplying a value §@cos which

advance®dp inside the loop to the end of tHeuf such that In listing 4, variablesx andy are tainted at locatio®.
the last write will be done outside the bounds of the array.The taintness ofy comes from several facts. First, there
is a data dependenchetweeny and x (which is directly
) tainted). Thus, after two iterationg, itself becomes tainted.
As shown on the previous example, most buffer OVerﬂOWMoreover, there is also eontrol dependencpetweeny and
vulnerabilities can be exploited by providing dedicated-pr y sincex becomes tainted after one iteration. The TDS set
gram inputs, allowing to activate specific execution pathsexplaining whyy is tainted after two iterations i6<5, 4>,
Detecting the existence of such potential exploits would be<5, 3>1. For one iteration this set is empty. As a resul,
highly desirable, either during a review phase, or during &y |east two iterations are required to tajntat location6
testing phase. To achieve that, we propose to perfofan& 5 1o activate a potential vulnerability. As we will see in
dependency analysishose objective will be twofold: Sect. IlI-C, a third iteration will be taken into account to

1) to compute the variable taintness at each programompute the TDS, in order to capture the new dependency

location ; introduced at label 4 between the left-hand side and right-
2) to extract from the program source the whole depennand side occurrences pf

dency chains between each vulnerable statement and

the corresponding inputs leading to this vulnerability. ~ !Il. TAINT DEPENDENCYSEQUENCECALCULUS
This second information will be expressed by a so-called We present here a calculus dedicated to Taint Depen-
Taint Dependency Sequence (TDS, for short). Informally, adency Sequences. For readability reasons, this calculus is
TDS can be viewed as a sequence of statements that mumimposed of two parts: one part is dedicated to the taint
be executed in a specific order for a variable to becomealculus and the second one to TDS.
tainted at a given program location. Let us first illustrate
more precisely these two notions on some examples.

C. Taint dependency analysis

A. Notations

Let Taint be the se{T, U} whereT denotes tainted val-
1. x = get() ; 1. x = get() ; ues (depending on the user-input) ariddenotes untainted
g- y = gei()l : g y = geig) ; values.Taint is ordered in the following wayi’ < U. The
P A ! 4_(Xy 0) operator® between taint values is defined by:
5 tfz] =... el;egzy; T® =T U® z=2x TR y=yQRux
Listing 2. }
6. t[z] = ... A taint environment is a functiol : Name — Taint that
Listing 3 associates a taint value to each program variable name. The

operator® can be extended to taint environments in the

In listing 2 variablest, y, wandz are tainted at location following way:
5. Moreover, the taintness af comes from adata depgn— I=T,® I'ne T =\.T(z)®z)
dencybetweenz and bothx andw. x is tainted at location
1, whereasw is tainted because of a data dependency with In the rest of this section we use the notation— e
y. Thus, the taintness af at location5 is expressed by the to denote the association efto the element: and f|g]
TDS set{<1, 4>, <2, 3, 4>}. to denote the functionf overridden by the functiory:

In listing 3, variablesx, y, andz are also tainted at f[g](z) = g(z) if 2 € dom(g) and flg](z) = f(x)
location 6. Indeed, there are both eontrol dependency Otherwise.
betweenz andx, sincez is assigned within a conditional
statement controlled by, and adata dependencietween .) o
z andy (at location5). The taintness of at location6 Qur taint calculus is based on thg following judgements
is therefore explained by the TDS sgt1, 3>, <2, 5>}. (with c @ command and an expression):

In particular this set shows that taintirgcan be obtained

B. Taint and Taint Dependency Sequences Judgements

. !
either by executing statemeritsand 3 (whatever the value Il:f e'_:cT' r
of the condition), or by executing statemegt@and5 (thus
choosing a negative value fan). T" represents the taint environment before the execution of
1. x =0 : ¢ (or the evaluation o) and« the current control flow T
2. y=5; if the command is under the scope of a tainted condition,
3. while (x < 10) { otherwise).I"” is the taint environment obtained afteand
Yz g;i’(j ; 7 the taintness of.
} Taint analysis is very close to non-interference [5], [6] so
6. tly] = ... the correctness property states that untainted valuesimema

Listing 4. unchanged when input values change (a similar property can

be stated for expressions:édfis evaluated as untainted from Labels associated to control flow commands will be at-
T" then its value is not sensitive to input data variation.)tached to the condition. Expressions of the form op(ésp)

In particular, if all variables are tainted the correctnessdenote any operator such as unary or binary arithmetic
property obviously holds. Due to the correctness definitioroperators or the unary * operator. Expression get() is a

the following subtyping rule can be stated: particular function that reads values.
1) Literal: each literal value (string literal or numeric
labe: " T'<IY literal) is considered untainted.
LT
LakeT Thn:U AFn:0
with T < T" iff T"(z) < I'(x) for eachx in Name. 2) Variable: The taint value and the explanation of this

According to the taint calculus we will compute taint taint are directly extracted from the current environments
dependency sequences describing, for each variable arnghdA.

each program point, a set of sequences of assignments or

conditions that can explain why the variable is tainted at I'F2:I(2) Arz: Az)
this point. 3) Operator: The taint type and the TDS set of an
A TDS is of the form< y,...,l, > with [; a statement expression is obtained from the taint types and TDSs of

label. A TDS environment is a functiof that associates a each subexpression.
set of taint dependency sequences to each program variable

name. Lett be a TDS at label and P the concerned Fre:m ... Then:m
program:¢ denotes the subset of paths Bfstarting from Tk opler,... en): ® o
its entry point to the label and containing all labels afin el
the same order. Intuitivelj\(z) at labell denotes all paths
of P effectively taintingz at labell. A contrario, a pathp Aber:hi ... Aben:min
that does not correspond to a TDS Afx) does not taint A op(er,...,epn): U i
x in any way: the value of: obtained withp at labell is i€l.n
insensitive to input variations. 4) Get expressionobviously the returned value is input-
Our TDS calculus is based on the two following judge- sensitive.
ments (withc a command and an expression):
I'kget(): T A get(): {<>}
Agbe: N 5) Simple assignmentWhen an assignment is executed

AFe:A the mapping for the assigned variable Ihis changed

A represents the set of TDS associated to each variabRCcording to the taint type of the right hand side expres-
before the execution of (or the evaluation ofe) and sion. Fgrthermore_,_ﬁ this assignment is under the scope
¢ represents the set of TDS justifying the taintness of2f @ tainted conditiond = T) then z becomes tainted,
conditions that may control the taintnessfif any. independently o.

Finally_our tair_1t and Taint dependgncy Seque_nces_judge- The:r
ments will be linked by the following global invariants
(where Ass(c) denotes the set of variables that are assigned

FakF({)r:=e: Tt g a

in commandc): For instance the assignmewnt5 of listing 4 (label 2)
does not tainty whereas the assignment3 of listing 3
Invy: x € Ass(c) = TM(z) <a (label 4) leavey tainted because we are under the scope of
Invy: ¢=0& a=U the tainted conditiorx>0.
Invy: T(a)=U<x A(z)=10 If the assignment taints the left hand side variable, then
Invg: 7=U& A=0 the TDS set required to taint the right hand side expression

. and the current label are associated to the assigned \ariabl

C. Taint and TDS Calculus If & = T theng also explains the taintness ofas explained
We present here a calculus for a small language (see Seabove.

V for our real implementation). The considered language is:

Ival idf | *lval AfeA

value — | *lvalue —

exp — num | Ivalue | op(listexp) | get() Ao F (D) @ = e: Mpaapp,ngl

comm — (label) Ivalue := exp| comm ; comm The functionapp is defined byapp(l, \) = {< p,l >
comm — (label) if exp then comm else comm p € A}, adding the label at the end of each sequenceln
comm — (label) while exp do comm In particularapp(l,) = 0.

6) Assignment with dereferencingthe following rules

treat assignments of the forep := e, with p a variable A e:)
name. Ifp is initially tainted it remains tainted. The two A’/ _ Al{z — app(l,) UA(z) | z € Ass(c1) U Ass(ca)}]
following rules can be easily extended to any chain of AU app(l,\) - er: Ay
dereferencing. N, dU app(l,\) F ca: Ag
N ={x— Ai(x) UAs(z) | * € Name}
Irhe:7 Aot (1) if e then ¢ else ca: N’
Loat () +p:=e: Tporporeal 9) Loop command:For the loop statement the resulting
taint environment can be characterized by a greatest fikpoin
AFe: A ke r
Aot (1) xpi=e: AMpon@p)u appt AU ¢ Fake: T
_) Vo € Ass(c) . T(x) <7«
In case of a structured object (as pointer or array strurture T.al () while ¢ do c: T

any modification of some parts of this object affects the
object in the whole. Since it is not possible to statically This greatest fixpoint will be computed by iteration us-
determine if a new modification concerns a part alreadying the subtyping rules (Section 11I-B) and the following
updated or not, the current taintness of this object must b#idgements:
tak_en into_ account. A more prec?se aIgori'Fhm should require To,a F (1) while e do c:T'
a fine-grain memory model, as in [7] for instance. Ao, ¢ = (1) while e do c: N

7) SequencingWhen executing a sequence of commands
the two environment§ and A are modified according to the
two commands in the sequence.

Variables assigned within a loop statement are tainted ei-
ther because of control dependencies with the loop comditio
(as soon as this condition becomes tainted itself), or scau
of data dependencies with other variables (inside or oaitsid
Fabe:Th PiaFe: Ty the loop). Dependency chains can be much longer in the
Iabepser: Iy second situation. In order to catch these longest chains we
first compute the minimal number of loop iterations required
to detect all data dependencies. This is obtained by regriti
Agbea:hr My¢Fe:hs while statements as blocks of nesiédtatements according
Aok cisear Ag to the following definition:

if e then

8) Control flow commandsfor eachif statement the

type environment obtained after applying the inference rul while_if (e, c,n) = G whi.le—if(e’ ¢cn—1) n>0
will have to keep trace of all the assignments made on both e]ige skip 0
skip n =

branchesI(; ® I';). Moreover, as soon as the condition is

tainted each variable assigned in one branch of the conditioThus, withT', o + skip : T and A, ¢ + skip : A, the

becomes tainted() and the control flow dependence scopealgorithm we propose is:

is extended bye (o ® 7 for the taintness calculus and 1) Computel’;,a + ¢ : 4, starting with withi = 0.

¢ Uapp(l, A) for the TDS calculus). Let n = i + 1, with i the smallest value such that
;41 = T, be the number of iterations required to
establish the fixpoint.

I'ke:r ile i !
2) Computelg, ¢ - while_if(e,c,n) : A’.
r_
=Tl{z—r ®,F(x) | @ € Ass(e1) U Ass(cz)}] 3) Compute the final taint environment
Ma@tke:Th , Tif N(z)#0 -
I a@7hcy: Ty IM(z) = U if A(z) = 0 for eachz in Name.
Tyab (1) if e then ¢ else c3:T1 ®@T9 Let us consider the example on listing 4. At step 1, three

iterations are required in order to stabilize the taintness
As previously, Ass(c) denotes the set of variables that calculus (the first iteration taints, the second one taints
are modified in the command For instance in Listing 3, y and the third one establishes the fixpoint). At labbel
variablesy andz are tainted inside the two branches becausehe setA(y) contains the following TDS setdl after the
the user can control their values by controlling the value offirst iteration, {<5, 4>, <5, 3>} after the second iteration
X. Then the TDS<1, 3> that explains why the condition extended by{<5, 3, 4>, <5, 3, 3>, <5, 4, 4>} after the
is tainted also explains the taintnessyofindz. third one.

D. Data-input sensitive vulnerability detection from non trusted users. Corresponding execution paths are

Based on our type system, we developed an algorithm thdferefore more critical. o ,
computes the taint value of each variable at each label with The structure of the depen.dency chawarlablg talnF-)
their associated TDS sets. These informations are exgloite €SS may have several causes: data dependencies with taint

to detect potential vulnerable statements. Let us considéffiables, control dependencies with tainted expressions
some examples: or combinations of both. Here again, we can assume that

. complex dependency chains (i.e., with numerous combina-
« a statement of the form[:] = e (or xt = ¢) may

- . . tions between control and data dependencies), involving a
provoke a sensitive user input buffer overflow if, in the

T . t the followina holdL - i : T large amount of data, are more likely to escape from the
glrjrliel?t . ;nwronmen » (N€ following ho L programmer attention, and therefore may lead to potential

exploits.

- a cal of the form strcpy(dest,source) or The number of loop iterationsmany buffer overflow
streat(dest, source) is potentially vulnerable if o 0 0ic” are obtained by increasing array indexes beyond
[dest: T or I't= source : T, their expected values. This is usually achieved by itegatin

on loop bodies. Therefore, TDS covering loop bodies are

more likely to correspond to potential exploits. Note also

A. TDS metrics that, when a taint dependency chain depends on loop itera-

An immediate application of our static taint dependencytions, the TDS set we produce gives tiénimal number of
analysis is to provide some useful guides on the executiofférations required to taint all the elements of the chain.
paths that could be used at runtime for finding potential All these metrics can be easily obtained from basic
exploits. In particular the TDS set we compute at eachinformation associated to each TDS. In the following sec-
vulnerable location could be viewed ealidation objectives ~ tion we give some examples of TDS obtained from the
whose purpose is to select the execution paths to be exdpui | df nanme function, the corresponding metrics, and their
cised during a code review or a test Campaign_ relationship with the eXpIOitS we identified in section II.

First, as said in section llI-B, each execution path leadin
to a vulnerable locatior{l) which is not “covered” by a))
TDS can be considered asfe Indeed, the values produced _ The control flow graph of theoui | df name function
by this execution path are not sensitive to any user ifputs (listing 1) is depicted in Figure 2. For a better understagdi
Thus, the TDS we compute give us (an over-approximatioVe have associated to each statement the line number as
of) the whole set of non-safe execution paths to be conitS label. Also, thef or loop has been changed into a
sidered. This information provides useful indications byWi | € loop (for uniformity) by adding a block for the
delineating the path space to be considered. initialization step (label 8) and a block for the increment

Second, the TDSs associated to each potential vulnerabifteP (label 11). The two initial blocks (labels 1 and 2) are
ity also help us to classify the non safe execution pathé’sed to explicitly show 'the taintness of the two argpments.
according to several criteria. For instance, they help tol "€ Strcpy(bp, |ogin), from the taintness point of
characterize how “dangerous” a given execution path is, i.e ViEW. behaves as the assignmertip=+1 ogi n. Finally,
what are the chances for this path to correspond to an actu$fe consider in the following that the functionoupper
exploit. Such a measure can be obtained by associating a dstatement 15) is transparent from the taintness pointenf vi
of metricsto each TDS. Some possible metrics could be:; (the taint of its result is the one of its argument).

The TDS sizethe longer a TDS is, the more precise As stated in section 1I-B, three potential vulnerabilities
are the associated execution paths, and the longer the taifif€ identified in this example. All theses vulnerabilities a
dependency chains they involve are. We could assume thgftected by our type checking algorithm. Two iterations on
long taint dependency chains are more likely to correspondP©P 9 and one iteration on loop6 are required to compute
to exploits, since they have more chances to not be fu”);he fix-point of functionI. We focus on vulnerability 14.

controlled by the programmer with appropriate sanity ceck - Tps metrics for vulnerability 14
(as pointed out in [2]).

The taintness sourceto each TDS can be associated
a set of variables corresponding taint sources These
variables are the ones that are directly tainted by means
input functions. We can assume that some input streams aﬁj_;atement.

more likely to carry unsecured data, or are easier to access _Vanable ! ogin Is a user mplut (at Iocat!orﬁ), and
it is never assigned elsewhere in the function. Therefore

Lof course, some vulnerabilities can also be activated imtigtly to ~ A(login) = {<_2>}' Regarding A(bp), the situation is)
any user input, but they are not in the scope of this paper. more complex since there are humerous dependency chains

IV. FROM TDS TO VALIDATION OBJECTIVES

%. Back to thebui | df nane example

The statementstrcpy(bp, |ogin) is marked as
vulnerable” by our analysis for two distinct reasons: both
64&riables| ogi n and bp are tainted when executing this

v
9: while(*p != 0 && *p =,
&& *p I=";' &&p !='%")

[23:

C— 12
*bp ="\0] [13:if(*p ==

&)
—

——
[19: bp++] [14: strcpy(bp, login)]

K72

‘20: *bp = *p‘ ‘15:*bp=toupper(*bp)‘
M Z—

[16: while(*bp != "0")]

v
[17: bp++]

[11: p++]
\

Figure 2. buildfname CFG

source | data | control only with 9(13) | control with 16 | #TDS

1 ogin 2 0 2 4

gecos 1 18 6 25

#TDS 3 18 8 29
Table |

TDS METRICS FORA(bp) AT LABEL 14

explaining why variablép is tainted at locatiori4. Indeed,
our algorithm produceg9 (21 for the first iteration8 until
label14 is reached again during the second iteration) distinct A fourth TDS set is obtained by considering that the
TDS. Table | supplies a classification of this TDS set basedaintness ofop can come from a control dependency with
on the source (starting with 1 for a dependency wi#it os
and starting with 2 for a dependency witlogi n) and on
the type of dependency (pure data dependency vs contrgh execute sufficiently often statemetif to overflowbuf .
and data dependencies).

D. Application to exploit generation

First, some useful indications are easy to extract from
Table |, either to guide a code review or to prepare a tes

A first TDS set is obtained by considering the (pure)
data dependencies betwebp and | ogi n (first line and
first column): <2, 14>, <2, 14, 17>. The corresponding
exploit consists in appending a sufficiently large loginueal
(sufficiently often) to overflonbuf . Note that for tainting
bp at least one complete iteration of lod® must be
performed.

A second TDS set is obtained by considering the (pure)
data dependencies betwebp and gecos (second line,
second column). This set actually contains only one TDS,
<1, 8, 20>, becausép can only be tainted bgecos, in
the first iteration, with the direct assignment at laBél.
The corresponding exploit consists in overflowingf by
supplying a sufficiently large gecos value. Note that the
gecos input must contain at least orie& character in
order forbp to become tainted.

A third TDS set is obtained by considering that the
taintness ofbp can come from a control dependency with
p at location9 and 13. Column 3 does not contain any
TDS starting with 2, meaning that there is no data flow from
| ogi n to p. Exploiting the control dependency betwesm
and p necessarily requires supplying an appropriate gecos
value. TDS examples aresl, 8, 9>, <1, 8, 11, 9, 13>,
<1, 8,9, 13, 17>, etc. The corresponding exploit consists
in choosing a gecos value leading to a sufficient number of
iterations of loop9 to overflowbuf .

bp at location16 (column 4). The corresponding exploit
would consist in providing a sufficiently large login value

Note that executing statemebd has exactly the same effect
(loop 16 does not bring any new exploit), but a more
semantic analysis would be required to detect that.

Each TDS corresponds to a set of possible execution paths
on which the variable can become tainted. The whole TDS

campaign dedicated to the search of actual exploits. Suchet could be supplied to the developer in order to describe
indications could help to better manage the time budget b@ll the possible executions that must be analyzed. However,

focussing first on the most critical parts, for instance:

a classification of the computed TDS can be automatically
created (using the metrics described earlier), allowirg th

« The gecos value can be considered as easier Oye aloper to decide which are the TDS classes on which
choose/modify by an untrusted user than thagi n

value (usually set by the administrator). Thus, execution
paths corresponding to TDS tainted bggcos could
be privileged.

« Among them, several TDS have rather long dependencyh
chains (of size 5 or 6), including combinations of data
and control dependencies. The corresponding paths al
longer, their control flow is more complex, and they are

therefore more likely to lead to exploits.

further analyses should focus.

V. STAC IMPLEMENTATION

We present here a prototype, STAGvhich implements

e TDS calculus presented earlier, extended to cover arlarg
rsubset of the C language (handling aliasing and the existenc
St procedures).

A. Frama-C

~ However, a deeper analysis of the metrics summarized STAC uses the Frama-C platform [7] as its front-end, an
in Table | allows to classify the TDS into four distinct extensible platform for source-code analysis of C programs

groups, and to retrieve the potential exploit we identified

in section II-B.

2http://code.google.com/p/tanalysis/

built on top of CIL [8]. It can also be seen as a collaborativeD. Experiments

framework for developing static analyzers. The collabora- |y order to evaluate the performance of our implementa-
tive approach allows analyzers to use the results alreadygn we have performed experiments using the NIST Samate
computed by other analyzers in the framework. The Framageference dataset ([11]), but also some widely used Linux

C engine supports all the constructs of the C languageappiications likesendmail and mailx. We used the set of
However, each analyzer is allowed to define the subset ofyinerability patterns given in Sec. II-D.

the language it will address. The Samate dataset contains small vulnerability examples
_ and after running our implementation on 300 test-cases we
B. Addressing the C language obtained an average of 46.5% tainted statements. In order

Due to the fact that our analysis aims at being sound© exploit the taintness information for detecting potahti
and because we target C programs, the presence of pointéfglnerable statements we use the set of patterns given in
requires additional alias information. We use the implemenSec. lll-D. The results we obtained can be seen in table II.
tation provided in [9] for Steensgaard’s algorithm for akho The #loc column indicates the number of lines of code in
linear inter-procedural points-to analysis ([10]). the analyzed programs wheres tainted stmts and %

The small language we provided in Sec. Ill does not covepMulnerable stmts indicate the percentz_ige of tainted state-
all the available constructs of the C language such as array8'€nts computed by STAC and respectively the percentage of
structures and unions. In STAC we consider these kinds opotential vulnerable statements according to the prelyous
constructs as objects so, whenever we assign a taint val#scribed patterns.
to an entry of an array (or to a structure or union field) we

either change the value of the whole objecft¢if the right- Seargr%an 812239 % tamé?‘;tmts ® VUIne?_lgle Stmts
hand side was tainted) or we keep the previous taint value of [mailx | 10171 61.6 10.5

the array in a manner similar as described for the assignment Table Il

with dereferencing in Sec. Ill. All these extensions arerove STAC RESULTS FOR SENDMAIL AND MAILX.

approximations of our analysis. However, none of them

invalidates the correctness properties we have statedebefo o ,))
Our results are similar to the ones obtained in [4] using

the context sensitive approach to compute user-input depen

dencies. The small differences can be explained by the fact
For each procedure in the analyzed program, STAC perthat results are influenced by the way the library functions

forms a flow sensitive analysis on the C¥F@igh-level are annotated: if a summary for a library call is not provided

representation of the procedure (as provided by FramasTAC assumes the worst case and taints the return values
C). The analysis applies the type system rules to all thgyf the function.

statements in the CFG starting with the entry point of the
procedure. In this way, when the analysis is performed for a
given procedure, we compute a taintness environment for its Computing user input dependencies, or variable taint-
exit point (the effect of the execution according to taissje nes$, to detect potential vulnerabilities within a software
We will refer to this environment as theummaryof the is not an original idea. Thus, a large amount of work has
procedure. The taintness values in the summary will béeen already published on this topic. We briefly review in
dependent on the taintness of the formal parameters of thiis section the most commonly used approaches focusing
procedure. more on the works that are close to the one we proposed in
Regarding the inter-procedural aspect of our calculusthis paper.
STAC perfgrms a context sensitive analysis. When_ a Procea pynamic taint-analysis
dure call-site is reached the effect of the summary is agplie i
to the environment associated to the call-site environment The notion oftaint _vanable has been |r_1troduced_ within
The order in which STAC analyzes the procedures is giveri’® FERL language, with the use of a special execution mode
by the reverse topological ordering of the strongly conect called tamt.mode) W|th|n this mOde’ theERL mterpr_eter
components in the call-graph provided by Frama-C (in JPropagates information about tainted dgta (i.e., comlogﬁr
manner similar to the one presented in [4]). Computing théjntrugted sources) across program assignments and raises a
summaries for each procedure inside a strongly connecte%ecurlty error when an insecure system call occurs. This
component is equivalent to a fix-point computation (as eacfA€@ Of computing variable taintness runtime has been

component corresponds to a loop in the call-graph of thdeneralized in several tools like [12], [13], [14], see [15]
program). a more complete survey.

C. Intra and Inter procedural analysis

VI. RELATED WORKS

4the difference between these two notions is that in taialyeis one
3Control Flow Graph usually assumes a notion of sanitization.

Dynamic taint-analysis provides several advantages since are computed. This measure provides metrics allowing
it considers a concrete execution path, with all informatio us to classify execution paths leading to a vulnerability
available regarding the current variable valuations. Thus (the longest being the most dangerous). However, loop
sanity checks can be handled accurately, avoiding mang fals executions are not precisely taken into account in this
positives. However, since each analysis is reduced to ¢esing computation.

(current) execution path, its coverage level may remaigy ver « Execution paths are also considered in [1], from a
weak and control dependencies cannot be fully taken into qualitative point of view. In particular they propose
account. Therefore this technique may lead to numerous a path classification into 4 categories: infeasible, safe

false negatives (i.e., unrevealed vulnerabilities). (sanitized), vulnerable (tainted), user-independent and
Because we aim to be complete in terms of vulnerability “don’t-know”. Such a classification is obtained using
detection, a dynamic taint analysis is not appropriate for u a backward analysis technique in conjunction with

Nevertheless, since we want to build some precise guides a solver to compute over-approximations of variable
for the generation of exploits, we have to be as precise as valuations (to detect infeasible or safe paths).

possible, and close to the notion of execution paths. Thusfhe work we presented here borrows some ideas from [2]
our TDS calculus is similar to a dynamic taint analysis inand [1]. In particular we tried to provide a finer classificati

the sense that variable taintness is attached to a subset §f the set of vulnerable paths than the one proposed in [2]
execution paths. by taking into account the possible combinations of user
input sources to taint a given expression. Furthermore, we

B. Static taint-analysis 4 :
]) . also proposed some metrics to characterize these paths from
Another approach to compute variable taintness is to Usg quantitative point of view.

static analysis techniques, allowing to take into accohat t
whole set of a program execution sequences. VIl. CONCLUSION

Static taint analysis can be based on several formaliza- We have proposed a Taint Dependency Sequence Calculus
tions: program dependence grapli$6] and [17], program whose objective is twofold: it relies on a fine-grain taint
slicing techniques [18], or type systems [19] as used in theariable analysis (including data and control dependaigcie
CQual tool [20]. For scalability reasons, internal reprége and it produces some explicit representation of the sets
tions as SSA (Static Single Assignment), GSA (Gated Singlef dependency chains from each input statements to each
Assignment) or aSSA (Augmented Static single Assignmentpotentially vulnerable program locations.
are often used [4]. Note also that static taint analysis We believe that such a calculus provides a useful “basic
techniques are now also widely investigated for specifichlock” within a more complete vulnerability detection en-
vulnerability detections within web based applicationd][2 vironment. First, dealing with combinations of both cohtro
[22], [23]. and data dependencies increases the chance of detecting un-

Most of static taint analysis tools are only dedicated toforeseen program behaviours, since they are hard to master
user input data dependencies [24]. Since we strongly l&elievby developers. In particular they offer more subtle ways to
that this approach is not sufficient to detect every poténtiabuild exploits by controlling which assignments will take
exploit our taintness calculus fully implements user inputplace or not (e.g., the number of & in gecos in our example).
control dependencies. As pointed out in Sec. V, our workMoreover, by making such combinations explicit in terms
is quite close to the ARFAIT tool [4]: we handle (sensitive) of execution paths, we give a concrete representation of the
inter-procedural analysis in a similar way, we use a (sijnple parts of code that need to be further analyzed (through a code
may-alias analysis to deal with pointers, and the behasiourreview, or a test campaign). An interesting feature is thiat t
of C library functions are abstracted by function summariescalculus also provides some precise indications regarding
However, their taintness calculus for control dependencyhe minimal number of loop iterations to be performed in
does not exactly correspond to the one used in informatiomrder to taint a loop body. This should improve the classical
flow analysis ([25], [16]) and its clear underlying notion test generation process, where loop iterations are pegrm
of correctness we aim to encompass (see [4] for a finerandomly.
comparison). This work can be continued in several directions. First,
it would be interesting to study how the TDS (and TDS
metrics) we produce could be turned into concréset

As discussed in this paper, from a security checking poinpbjectives to be used as input within a test process. This
of view it is desirable to extend results on variable taistne step could for instance take into account some other kinds
with information on the corresponding execution pathssThi of analysis (such as symbolic evaluation for instance), in
idea has been already developed in a few works: particular to deal with sanity checks (and remove some false

« In [2], lengths of user dependency chains between gositives). On a similar basis, the TDS we produce could

potential vulnerability and the corresponding user inputalso be used to guide some dynamic program execution,

C. Computing path information

possibly by combinations between concrete and symboli§14] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
data representations (like @aoncolic execution26]). To do
so, it would be useful to define first some clear notion of
equivalence (or subsumption) between TDS.

Finally, as described in Sec. V we provide a prototype[15]
implementation of our calculus. In order to improve per-
formance, we could either perform the calculus in a "lazy”

manner such that environment computations are evaluated

only when needed or use symbolic efficient data structures

for handling the environments and TDS sets.

REFERENCES

[1] W. Le and M. L. Soffa, “Refining buffer overflow detection

(2]

(3]
(4]

(5]

(6]

(7]
(8]

&)
[10]

[11]
[12]

[13]

via demand-driven path-sensitive analysis,” RASTE '07:

(16]

Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop[17]

on Program analysis for software tools and engineering
New York, NY, USA: ACM, 2007, pp. 63-68.

C. Nagy and S. Mancoridis, “Static security analysis based
on input-related software faults,” i@onference on Software
Maintenance and ReengineeringLos Alamitos, CA, USA:
IEEE Computer Society, 2009.

http://se.cs.toronto.edu/index.php/VerisBaite.

[18

]

B. Scholz, C. Zhang, and C. Cifuentes, “User-input de- (19]

pendence analysis via graph reachability,” Source Code
Analysis and Manipulation, IEEE International Workshop on
Los Alamitos, CA, USA, 2008, pp. 25-34.

D. Volpano, C. Irvine, and G. Smith, “A sound type system
for secure flow analysisJ. Comput. Secuyrvol. 4, no. 2-3,
pp. 167-187, 1996.

J. A. Goguen and J. Meseguer, “Security policies and security
models,” inlEEE Symposium on Security and Privadé®82.

http://frama c.cea.fr.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer,
“Cil: Intermediate language and tools for analysis and trans-
formation of ¢ programs,” inCC '02: Proceedings of the
11th International Conference on Compiler Construction
London, UK: Springer-Verlag, 2002, pp. 213-228.

http://hal.cs.berkeley.edu/cil/.

B. Steensgaard, “Points-to analysis in almost linear time,” in
POPL '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languageklew
York, NY, USA: ACM, 1996, pp. 32-41.

http://samate.nist.gov/SRD.

J. Newsome and D. X. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software,” irfProceedings of the
Network and Distributed System Security Symposium, San
Diego, California The Internet Society, 2005.

(20]
(21]

(22]

(23]

(24]

(25]

W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy[26]

enforcement: a practical approach to defeat a wide range of
attacks,” inUSENIX-SS’06: Proceedings of the 15th confer-
ence on USENIX Security SymposiurBerkeley, CA, USA:
USENIX Association, 2006.

analysis framework,” ifProceedings of the 2007 International
Symposium on Software Testing and Analysislew York,
NY, USA: ACM, 2007, pp. 196—206.

W. Chang, B. Streiff, and C. Lin, “Efficient and extensible
security enforcement using dynamic data flow analysis,” in
Proceedings of the 15th ACM conference on Computer and
Communications Security New York, NY, USA: ACM,
2008, pp. 39-50.

C. Hammer, J. Krinke, and G. Snelting, “Information Flow
Control for Java Based on Path Conditions in Dependence
Graphs,” inIn IEEE International Symposium on Secure
Software Engineering2006.

G. Snelting, T. Robschink, and J. Krinke, “Efficient path
conditions in dependence graphs for software safety analysis,”
ACM Trans. Softw. Eng. Methodplol. 15, no. 4, 2006.

M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar,
“Interprocedural analysis for privileged code placement and
tainted variable detection,” IECOOP 2005 - Object-Oriented
Programming, 19th European Conference, Glasgow, UK, July
25-29, 2005, Proceedingser. Lecture Notes in Computer
Science, vol. 3586. Springer, 2005, pp. 362-386.

J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type
qualifiers,” in PLDI '02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and im-
plementation New York, NY, USA: ACM, 2002, pp. 1-12.

http://www.cs.umd.edu/ jfoster/cqual/.

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper),” idN IEEE SYMPOSIUM ON SECURITY AND
PRIVACY 2006, pp. 258-263.

G. Wassermann and Z. Su, “Sound and precise analysis
of web applications for injection vulnerabilities,” iRLDI

'07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementatiorNew
York, NY, USA: ACM, 2007, pp. 32-41.

O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man, “Taj: effective taint analysis of web applications,” in

PLDI '09: Proceedings of the 2009 ACM SIGPLAN confer-

ence on Programming language design and implementation
New York, NY, USA: ACM, 2009, pp. 87-97.

R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and
V. Shmatikov, “Inputs of Coma: Static Detection of Denial-
of-Service Vulnerabilities,” inCSF '09: Proceedings of the
2009 22nd IEEE Computer Security Foundations Symposium
Washington, DC, USA: IEEE Computer Society, 2009, pp.
186-199.

A. Sabelfeld and A. C. Myers, “Language-based information-
flow security,”IEEE Journal on Selected Areas in Communi-
cations vol. 21, 2003.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed auto-
mated random testing,” iIRLDI '05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation New York, NY, USA: ACM, 2005, pp.
213-223.

