
Dynamic information-flow analysis for
multi-threaded applications

Laurent Mounier and Emmanuel Sifakis

VERIMAG laboratory – University of Grenoble
2 Av. Vignate, 38610 Gieres, France

{mounier,esifakis}@imag.fr

Abstract. Information-flow analysis is one of the promising techniques
to leverage the detection of software vulnerabilities and confidentiality
breaches. However, in the context of multi-threaded applications running
on multicore platforms, this analysis becomes highly challenging due to
data races and inter-processor dependences. In this paper we first review
some of the existing information-flow analysis techniques and we discuss
their limits in this particular context. Then, we propose a dedicated
runtime predictive approach. It consists in extending information-flow
properties computed from a single parallel execution trace to a set of
valid serialisations with respect to the execution platform. This approach
can be applied for instance in runtime monitoring or security testing of
multi-threaded applications.

1 Introduction

On-going advances in processor technology and computer design allow to drasti-
cally reduce the cost of computing power and make it available to a large audi-
ence. As an example, multi-core architectures are now commonly used in many
end user domains, ranging from small embedded devices like smart-phones to
powerful personal computers. To correctly exploit the huge computing capabili-
ties of these machines, applications are conceived as a set of asynchronous tasks
(or threads), able to execute on distinct processors, and cooperating each others
to provide the desired functionalities. An example of such a parallel programming
model is based on shared memory to implement inter-thread communications and
synchronisations.

However, exploiting efficiently and correctly this hardware-supplied paral-
lelism is notoriously difficult. In fact, the primitives offered by many classical
programming languages to control asynchronous parallel executions are still ba-
sic and error prone. As a consequence, it is necessary to develop suitable tech-
niques and tools allowing to analyse this kind of applications.

An important class of analysis is based on the notion of information flow.
Their purpose is to track how data processed by a program can transit inside the
memory at execution time. Such analysis are useful for many validation purposes,
and it is a central issue in computer security. In particular it allows to detect
information leakage (from a confidentiality point of view), or to compute taint



propagation (to check how user inputs may influence vulnerable statements).
Information inside applications can flow in various ways, some of which being
obvious and some others being more tedious to identify. Explicit flows, corre-
sponding to assignments between variables, are the most commonly analysed.
On the other hand, implicit flows using covert channels such as control flow and
timing delays are much harder to detect.

As many program analysis techniques, information-flow analysis is much
more challenging when considering parallel executions. This difficulty comes from
several sources, including for instance:

– the extra flows introduced by inter-thread communication channels;
– the conflicting accesses to shared resources or memory locations between

concurrent threads (e.g., race conditions);
– the non-determinism introduced by the execution platform (hardware and

operating system), which makes some program executions hard to reproduce;
– etc.

Various software analysis techniques have been proposed so far to address
these problems. These techniques are either static (they do not require any
program execution), like data-flow analysis or model-checking, or dynamic, like
runtime monitoring or test execution. The main difficulty here is to extend the
analysis techniques used for sequential programs while avoiding the so-called
“interleaving problems”. These problems are related to the exponential blow-up
occurring when considering all possible serialisations of a parallel execution.

More recent proposals, like predictive runtime-analysis, are based on ad hoc
combinations of static and dynamic approaches. These techniques consist in
extending the results obtained at runtime when observing a given parallel exe-
cution to a set of valid serialisations, corresponding to execution sequences that
have not been observed, but that could have occurred. Thus, this set can be
seen as a slice of the target program, computed from a single execution. How-
ever, most of the existing predictive runtime-analysis techniques focus on the
effects of coarse-grain parallelism, introduced by inter-thread scheduling. This
scheduling influences the execution order of concurrent eligible threads. Its deci-
sions depend on non-controllable events (e.g., I/O latency), and therefore other
interleavings could occur and they are taken into account by the analysis.

Another source of conflict is produced by the “simultaneous” execution of
multiple instructions by several processors. Here, the conflicting accesses are
(implicitly) solved by the execution platform, and this behaviour escapes from
the program level. A possible way to handle this fine-grain parallelism is to rely
on dedicated hardware elements, allowing to monitor the current execution at a
very low level. Thus, specific architectures for dynamic information-flow tracking
have been proposed.

In this paper we review some representative works (section 2) illustrating the
information-flow analysis techniques stated above and we identify their benefits
and limitations. The focus is essentially put on dynamic analysis techniques, and
therefore we present some of the monitoring techniques available (section 3) and
their use in the context of multi-core executions. Then, we propose a predictive



approach (section 4) to address fine-grain parallelism effects, without requir-
ing a specific architecture. Finally, we give some conclusions and perspectives
(section 5).

2 Information-flow analysis of multi-threaded programs

The importance of information flow has captured the interest of researchers
working in various domains of computer systems. Starting from hardware, where
special architectures have been conceived ([1,2,3]) to operating systems ([4]) and
up to the application layer which is dominated by static and dynamic approaches
detailed hereafter.

2.1 Static analysis techniques

Static approaches usually reason on source code level. For instance, a possi-
ble approach to secure a program execution against information leakage is to
promote type-safe languages, as proposed by [5,6], to guarantee by construction
secure information flows. In some cases these languages include primitives for
multi-threaded development ([7,8]).

Regarding general static analysis techniques, a work direction was to extend
the data-flow analysis techniques used for sequential code while avoiding the
“interleaving explosion problem” mentioned in the introduction. A first way to
address this problem was to take into account restricted forms of parallelism,
like in [9] (no parallel loops) or in [10] (cobegin/coend primitives). However, an
important step was made in [11]. In this work the authors proposed to consider a
sub-class of data-flow analysis problems, the so-called bit-vector problems. They
define an efficient generalisation of (unidirectional) bit-vector analysis to static
parallel programs which faithfully captures the effect of inter-thread dependen-
cies without requiring to enumerate each possible interleavings. The key assump-
tion is to consider bit-vector properties that are generated on an execution trace
by a single transition of the control-flow graph (and not by a combination of
transitions). This allows to reduce the effects of inter-thread dependencies at
the instruction level, without taking into account whole execution paths occur-
ring in other threads. Note that this category of bit-vector problems is large
enough to encompass many interesting properties, including information-flow
analysis. More recently, this solution has been extended to deal with dynamic
synchronisation primitives [12].

Other existing solutions for information-flow analysis rely on the computa-
tion of so-called “Program Dependency Graphs” (PDGs) to express data de-
pendencies. PDGs for concurrent programs were first proposed in [13], based on
the computation of may-happen-in-parallel (MHP) relations to approximate the
effects of concurrent access to shared variables. Precise computations of MHP
relations are known to be expensive. However, this static approach has been used
in several works dedicated to information flow analysis ([14,15]).



2.2 Dynamic analysis techniques

Dynamic approaches may look more appealing for analysing multi-threaded ap-
plications. However, they require some instrumentation facilities to track infor-
mation flows at execution time. There are several frameworks available (such
as [16,17,18]) that facilitate the implementation of dynamic monitoring tools.
More details about these frameworks are presented in section 3.

An interesting class of dynamic analysis techniques is the so-called predictive
runtime-analysis category. They consist in observing/monitoring a single paral-
lel execution sequence σ (as for sequential programs), and then to generalise the
results obtained to other execution sequences corresponding to possible interleav-
ings of σ (i.e., that could have been observed if another valid schedule occurred).
This gives a kind of program slice of reasonable size, that can be handled by var-
ious techniques like static analysis [19], or even test generation [20]. Depending
on the approach chosen to generalise the observed trace (and to represent the
resulting set of serialisations), the program slice obtained may over-approximate
or under-approximate the concrete program behaviour. A short survey on such
runtime prediction techniques is provided in [21], together with a precise trace
generalisation model.

Dynamic analysis techniques are widely used in the context of multi-threaded
applications for runtime error detection like deadlocks ([22,23]) and data races
([24,25]. Although detecting data races could be useful for information-flow anal-
ysis, it is not sufficient as such. Hence, more focused analyses are developed
to deal with malware detection ([26,27]) and enforcement of security policies
([28,29]).

3 Building tools for dynamic analysis

Building dynamic analysis tools necessitates integrating some monitoring facili-
ties to the analysed application. Monitoring features are added either at source
code level or binary level, either statically or dynamically. Waddington et al. [30]
present a survey on these techniques.

Instrumentation code is often added statically in applications as implicit
logging instructions. It necessitates access to the source code and can be added
accordingly by the developers (which is a tedious and error-prone procedure) or
automatically. To automate this process source-to-source transformations can be
applied, for instance using aspect-oriented programming. Apart from the source
level, static instrumentation can also be applied directly at the binary level, e.g.,
using frameworks like Dyninst [17]. Hereafter we take a closer look to dynamic
binary instrumentation (DBI) techniques.

3.1 Dynamic binary instrumentation

In general, DBI frameworks consist of a front-end and a back-end. The front-end
is an API allowing to specify instrumentation code and the points at which it



should be introduced at runtime. The back-end introduces instrumentation at
the specified positions and provides all necessary information to the front-end.

There are two main approaches for controlling the monitored application:
emulation and just-in-time (JIT) instrumentation. The emulation approach con-
sists in executing the application on a virtual machine while the JIT approach
consists in linking the instrumentation framework dynamically with the moni-
tored application and inject instrumentation code at runtime.

Valgrind [18] is a representative framework applying the emulation approach.
The analysed program is first translated into an intermediate representation
(IR). This IR is architecture independent, which makes it more comfortable to
write generic tools. The modified IR is then translated into binary code for the
execution platform. Translating code to and from the IR is time consuming. The
penalty in execution time is approximately four to five times (with respect to an
un-instrumented execution).

Pin [16] is a widely used framework which gains momentum in analysing
multi-threaded programs running on multi-core platforms. Pin and the anal-
ysed application are loaded together. Pin is responsible of intercepting the ap-
plications instructions and analysing or modifying them as described by the
instrumentation code written in so-called pintools. Integration of Pin is almost
transparent to the executed application.

The pintools use the frameworks front-end to control the application. Instru-
mentation can be easily added at various granularity levels from function call
level down to processor instructions. An interface exists for accessing abstract
instructions common to all architectures. If needed more architecture specific
analyses can be implemented using specific APIs. In this case the analysis writ-
ten is limited to executables of that specific architecture.

Adapting a DBI framework to parallel architectures is not straight forward.
Hazelwood et al. [31] point out the difficulties in implementing a framework that
scales well in a parallel environment and present how they overcame them in the
implementation of Pin. As mentioned in their article, extra care is taken to allow
frequently accessed code or data to be updated by one thread without blocking
the others. Despite all this effort in some cases the instrumenter will inevitably
serialise the threads execution or preempt them.

Another challenging issue is writing parallel analysis. The monitored data
must also be updated in parallel, and data races on the monitored data should
be eliminated.

3.2 Hardware-based monitoring techniques

The software instrumentation techniques described in the previous section suffer
from practical limitations in a multi-thread context. In particular:

– they may introduce a rather huge time overhead (making the execution be-
tween 10 and 100 times slower [32,18,33]);

– they do not take into account the specific features of a multi-core execution;



– they do not exploit as much as possible all the computational resources of
the execution platform.

To overcome these limitations, especially in the context of instruction-grain
monitoring, several proposals have been made to introduce some dedicated hard-
ware mechanisms. We discuss here some of these proposals.

First of all, let us recall that instruction grain monitoring is based on several
steps:

– capturing the relevant events after each executed instruction;
– propagating these events to the monitor process (event streaming);
– updating the meta-data (or shadow memory);
– executing the appropriate checks.

Each of these steps is a potential source of overhead, and techniques have been
proposed to optimise them at the hardware level.

Some of these acceleration techniques are not specific to multi-core execu-
tions. For instance Venkataramani et al. [34] proposes to add some extra pipeline
stage to perform metadata updates and checks, [35,36] improves the manage-
ment of metadata through micro-architectural changes. Another option is to
reduce the binary instrumentation cost by means of special registers [37], or
using cache line tags to trigger event handlers [38].

Regarding multi-core platforms, one of the main proposals is to take ad-
vantage of the processors availability to dedicate one (or several) cores to the
monitoring task. This idea has been implemented for two typical instruction-level
monitoring problems.

Shetty et al. [39] propose in their work a monitoring technique dedicated to
memory bugs (e.g., memory leaks, unallocated memory errors, etc.). Its principle
is to associate a monitoring thread to each application thread. On a multi-core
platform, both threads can run in parallel on distinct cores. To improve the 2-way
communication between these threads, dedicated FIFO buffers are used (instead
of using shared memory): one buffer for check requests, and one buffer for check
reports. When one of these buffers is full/empty the application/monitoring
thread is stalled. Moreover, since the duty cycle of the monitoring thread may
be low1, it can be suspended at any time. Other optimisations include the use of a
separate L2 cache for the monitoring thread in order to reduce cache contention.
Evaluation results show a monitoring overhead less than 50%, depending on the
considered architecture.

The work of Nagarajan et al. [40] aims to enforce taint-based security policies.
The idea is to use a dedicated thread as a “shadow execution” to keep the taint
value of each register and memory locations of the application thread. This
monitoring thread interrupts the application thread when the taint policy is
violated. Here again, the main difficulties are to keep synchronised both threads
and to ensure communication between them. As in [39], a FIFO buffer is used.
A specific problem is to correctly react in case of policy violation to ensure fail-
safety (i.e., to stop the execution as soon as possible). The solution proposed uses

1 it may not be the case when monitoring other properties



a 2-way communication between the two threads before each critical operation
(with respect to the policy considered).

Finally, a more recent work [41] advocates the use of so-called log-based archi-
tecture as a suitable trade-off between efficiency (how reduced is the monitoring
overhead) and genericity (how general is the monitoring support). In this pro-
posal, each core is considered as a log producer/consumer during the execution.
When an instruction is executed on producer core, a (compressed) record is com-
puted to store relevant information (program counter, instruction type, operand
identifiers and/or addresses). Each record may correspond to one or more events
on the consumer side. Record transmission is achieved using a large (up to 1MB)
log buffer. As a consequence, an implicit synchronisation occurs between pro-
ducer and consumer threads when the buffer is full or empty (in the former case
the application is stalled). This may introduce a (bounded) lag between the time
a bug occurs, and the time it is detected. To improve metadata (e.g., taint val-
ues) tracking, another feature is to associate a (small) shadow register to each
data register in order to store the addresses from which it inherits (rather than
the data itself). This choice makes the tracking more general (suitable for more
applications) while keeping it efficient. In addition, to reduce the numbers of
checks, a dedicated event cache is used (when an event hits the cache it is con-
sidered as redundant and discarded). Finally, a rather sophisticated metadata
memory layout is provided, with a new instruction allowing to directly translate
a data address to its metadata counterpart.

Experiments performed in [42] with this architecture on several monitoring
applications (taint analysis, data race detection, memory checking) show an
overhead smaller than 50% can be obtained for CPU-intensive applications.

4 Extended Information-Flow Analysis

We present in this section an alternative approach to perform dynamic anal-
ysis on a multi-core execution. This approach fits in the category of (over-
approximative) predictive runtime-analysis. Its purpose is to extend the results
obtained from the observation of a (parallel) execution sequence σ∥ to the set of
all serialised execution sequences corresponding to valid interleavings of σ∥. The
interleaving we consider here are essentially the ones produced by “side effects”
introduced by the execution platform. The goal is to extend an observed execu-
tion σ∥ such that the effects of the hardware it was executed on are captured.

In fact, when executing an application in parallel on several cores, platform-
related effects may “obfuscate” the observed execution trace σ∥. This may hap-
pen for instance due to a cache miss which could delay the effect of an observed
instruction to a shared memory location. Similarly, small local overheads intro-
duced by the monitoring probes or by I/O operations may slightly perturb the
execution schedule (i.e., the sets of concurrently executed instructions), chang-
ing the sequence of (shared) memory updates. As a result, one can legitimately
consider that the observation of σ∥ does not fully nor accurately represent a real
(non monitored) parallel execution.



A possible way to take into account this uncertainty in the observed execution
sequence, is to assume the existence of a bounded time interval δ, during which
the effects of instructions executed by concurrent threads may interleave. This
value δ depends on the execution platform we consider. We present hereafter the
method we propose for taking into account all these possible serialisations of σ∥
during a dynamic information-flow analysis.

4.1 The “butterfly” approach

The method we propose is partially inspired by the work proposed in [42]. We
summarise here what are the main similarities and differences between these two
approaches.

The main objective of [42] is to provide a lifeguard mechanism for (multi-
threaded) applications running on multi-core architectures. It is a runtime en-
forcement technique, which consists in monitoring a running application to raise
an alarm (or interrupt the execution) when an error occurs (e.g., writing to an
unallocated memory). The main difficulty is to make the lifeguard reasoning
about the set of parallel executions. To solve this issue, the authors considered
(monitored) executions produced on specific machine architectures [41] on which
heartbeats can be sent regularly as synchronisation barriers, to each core. This
execution model can be captured by a notion of uncertainty epochs, correspond-
ing to code fragments such that a strict happens-before execution relation holds
between non-adjacent epochs. These assumptions allow to define a conserva-
tive data-flow analysis, based on sliding window principle, taking into account
a superset of the interleaving that could occur in three consecutive epochs. The
result of this analysis is then used to feed the lifeguard monitor. This approach
can be used to check various properties like use-after-free errors or unexpected
tainted variable propagation.

Our objectives are not the same. Our intention is to provide some verdict
to be used in a property oriented test-based validation technique for multi-core
architectures. As such, our solution does not need to be necessarily conservative:
false negatives are not a critical issue. A consequence is that we do not require any
specific architecture (nor heartbeat mechanism) at execution time. Another main
distinction is that we may proceed in a post-mortem approach: we first produce
log files which record information produced at runtime, then this information
is analysed to provide various test verdicts (depending on the property under
test). This makes the analysis more flexible by decoupling the execution part
and the property checking part. From a more technical point of view, we also
introduced some differences in the data-flow analysis itself. In particular we
considered a sliding window of two epochs (instead of three). From our point
view, this makes the algorithms simpler, without sacrificing efficiency. Finally,
a further contribution is that we take into account the information provided by
mutex locks to reduce the number of false positives.



4.2 A window-based information flow analysis

We present here the basis of our window-based dynamic information-flow anal-
ysis. More details can be found in [43]. Its goal is to extend the analysis verdict
of σ0 (the observed serialisation) to a set of valid serialisations σδ, where δ is a
platform-dependent time interval representing the (maximal) overlap between in-
struction sequences executed in parallel. The main concern is to avoid the whole
enumeration of this set. To that end, we use a sliding window-based approach.
Each window contains a set of concurrent instruction sequences belonging to
the active threads (the ones currently executing on a given core). The analy-
sis technique consists in summarising the parallel execution up to the current
window W, and to update this summary by taking into account the effects of
possible serialisations of the execution sequences belonging to W. This update
is performed by means of iterative fix-point algorithms, as explained below.

To properly define each window, we time slice σ0 using arbitrary time inter-
vals greater than δ. We call these time slices epochs. However, instructions at
the boundaries of adjacent epochs (hence within a time distance smaller than
δ) may interleave, according to our hypothesis. To take this into account we de-
fine windows of size two epochs, and we extend the interleaving assumption such
that all instructions of a window may interleave. This extension ensures that our
analysis results will actually capture the serialisations of a set σs, where σs ⊇ σδ.

Fig 1 illustrates the parallel execution of two threads (A and B). The dots
represent instructions. Each instruction can be identified by a triplet (l, t, j)
where l is the epoch it was executed in, t is the thread that executed it and j is
an identifier of the instruction inside t. Instructions executed by the same thread
in an epoch are surrounded by a box which is a basic block identified as (l, t).
The arrows originating from the (highlighted) instruction (lb,B, i) illustrates our
interleaving assumptions. We can note at the boundary between epochs lh and lb
the definition of the time interval δ. The solid arrows capture the serialisations of
(lb,B, i) for all σδ and the dashed arrows the extended serialisations of (lb,B, i)
in σs.

δ

i

lh

lb

lt

A B

Fig. 1. Interleaving assumptions



4.3 Iterative information flow computation

As explained above, processing a window of two epochs means computing the
effects produced by all possible serialisations of the parallel instruction sequences
it contains (since all these serialisations are considered as valid). To do so, we
use an iterative fix-point computation algorithm. This algorithm proceeds as
follows:

– First, we define a sequential data-flow analysis of the property under check.
This property could be for instance a taint-analysis, a memory consistency
checking, a null-pointer analysis, etc. An important requirement is that this
data-flow analysis should be expressed as a bit-vector problem (which is
in fact the case for most of the analysis used in practice). Running this
sequential data-flow analysis on a single thread t allows to update a given
initial summary S0 (expressed as a state vector) into a a new summary St1.

– Since threads are not independent (they may share memory locations), the
sequential analysis ran on each thread should be combined with the others.
In other words, results produced by executing instruction (l, t, i) should be
made available to all instructions (l, t′, j) of the window for t ≠ t′ (according
to our assumptions). This could be achieved by running again each sequential
analysis on each thread t, starting now from an initial state S1 = ∪t≠t′S

t
1.

– This step is repeated as long as the summary is changed. Since we consider
bit-vector problems, this process will eventually reach a fix-point.

This algorithm can be implemented using two generic procedures: a first one
(vertical step) iterates the sequential analysis over each thread, the second one
(horizontal step) runs the vertical step along the two epochs of the window. Since
adjacent epochs may also interleave, the vertical step should be repeated until
a (window-level) fix-point is reached. Depending on the analysis under consid-
eration, further processing may be required to “clean up” the results produced
(removing the effects of some non valid execution sequences).

It has been showed in [43] that for a taint-analysis:

– this algorithm detects all tainted variables;
– the set of variables detected can be split into strongly tainted variables (cor-

responding to variables really tainted), and weakly tainted variables (po-
tential false positives). These false positives are due to our sliding window
techniques which may over-approximate the set of valid serialisations across
several windows.

4.4 Experimental results

The window-based methodology we presented can be applied both at runtime
or off-line as a post-mortem analysis. We have implemented a tool chain for
taint analysis using a post-mortem approach. The tool necessitates the source
code of the multi-threaded application (written in C using pthreads library).
Instrumentation code is added as logging instructions via a source to source



transformation. At execution time log files are generated containing address
information on assignments.

For taint analysis the summary actually contains variables that can be tainted
through a valid serialisation up to the preceding window. The window analysis
must hence infer local serialisations (of instructions in window) which either
taint new variables or untaint some existing. The serialisations are discovered
through the iterative algorithm. Some special care must be taken though on
how gen/kill information is propagated and how the summary of a window is
computed.

Experimental results on small handcrafted benchmarks using five threads
racing for access to a shared data structure show an overhead of 50% for pro-
ducing the log files. The taint-analysis then takes less than 1 second to analyse
about 5000 log lines on a Intel i3 CPU @2.4GHz with 3GB of RAM.

5 Conclusion

In this work we have discussed some issues regarding dynamic information-flow
monitoring of multi-thread applications running on multi-core architectures. We
gave a brief overview of the main existing techniques and underlying tools consid-
ered so far to address this issue. The general concerns are to limit the monitoring
overhead at runtime, to avoid the explicit exploration of all possible execution se-
quence interleavings, and to propose general enough frameworks (able to handle
various kinds of analysis). In our opinion, two directions are rather promising:

– runtime-prediction techniques, which allow to extend the results produced
by a single (parallel) execution to a whole program slice consisting of valid
“neighbour” executions;

– hardware-level optimisations of the monitoring techniques.

The former solution can be used in a general context, for instance in a test-
based approach where the goal is to evaluate the “robustness” of the application
on various execution conditions. The later solution is better suited for specific ap-
plications (e.g., with strong security or reliability requirements), and it provides
an integrated hardware/software monitoring and enforcement framework.

We also proposed a prospective runtime-prediction technique. Its purpose
is to deal explicitly with fine-grain interleavings produced by the multi-core
execution platform. Experimental results obtained so far for taint-analysis are
encouraging in terms of performance. Further work is now required to extend
the prototype and consider other kinds of analysis.

References

1. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
data lifetime via whole system simulation. In: Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13. SSYM’04, Berkeley, CA, USA,
USENIX Association (2004) 22–22



2. Crandall, J.R., Wu, S.F., Chong, F.T.: Minos: Architectural support for protecting
control data. ACM Trans. Archit. Code Optim. 3(4) (December 2006) 359–389

3. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. SIGARCH Comput. Archit. News 32(5) (October
2004) 85–96

4. Clemente, P., Rouzaud-Cornabas, J., Toinard, C.: Transactions on computational
science xi. Springer-Verlag, Berlin, Heidelberg (2010) 131–161

5. Volpano, D., Smith, G.: A type-based approach to pro-gram security. In: In
Proceedings of the 7th International Joint Conference on the Theory and Practice
of Software Devel-opment, Springer (1997) 607–621

6. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21 (2003)

7. Barthe, G., Rezk, T., Russo, A., Sabelfeld, A.: Security of multithreaded programs
by compilation. ACM Trans. Inf. Syst. Secur. 13(3) (July 2010) 21:1–21:32

8. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative lan-
guage. In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages. POPL ’98, New York, NY, USA, ACM (1998)
355–364

9. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel programs.
In: PPOPP, ACM (1993)

10. Krinke, J.: Static slicing of threaded programs. SIGPLAN (1998)
11. Knoop, J., Bernhard, S., Vollmer, J.: Parallelism for free: efficient and optimal

bitvector analyses for parallel programs. ACM Trans. Program. Lang. Syst. (1996)
12. Farzan, A., Kincaid, Z.: Compositional bitvector analysis for concurrent programs

with nested locks. In: SAS, Springer-Verlag (2010)
13. Krinke, J.: Context-sensitive slicing of concurrent programs. SIGSOFT (2003)
14. H., C.: Information flow control for java based on path conditions in dependence

graphs. In: Secure Software Engineering, IEEE Computer Society (2006)
15. Liu, Y., Milanova, A.: Static information flow analysis with handling of implicit

flows and a study on effects of implicit flows vs explicit flows. In: Software Main-
tenance and Reengineering, IEEE Computer Society (2010)

16. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation. PLDI ’05, New York, NY,
USA, ACM (2005) 190–200

17. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. The International
Journal of High Performance Computing Applications 14 (2000) 317–329

18. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Proceedings of ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation (PLDI 2007), San Diego, California,
USA (June 2007) 89–100

19. Ganai, M.K., Wang, C.: Interval analysis for concurrent trace programs using
transaction sequence graphs. RV (2010) 253–269

20. Kundu, S., Ganai, M.K., Wang, C.: Contessa: Concurrency testing augmented
with symbolic analysis. In: CAV, Springer (2010) 127–131

21. Wang, C., Ganai, M.K.: Predicting concurrency failures in the generalized execu-
tion traces of x86 executables. In: RV. (2011)

22. Li, T., Ellis, C.S., Lebeck, A.R., Sorin, D.J.: Pulse: a dynamic deadlock detection
mechanism using speculative execution. In: Proceedings of the annual conference on



USENIX Annual Technical Conference. ATEC ’05, Berkeley, CA, USA, USENIX
Association (2005) 3–3

23. Castillo, M., Farina, F., Cordoba, A.: A dynamic deadlock detection/resolution
algorithm with linear message complexity. In: Proceedings of the 2012 20th Eu-
romicro International Conference on Parallel, Distributed and Network-based Pro-
cessing. PDP ’12, Washington, DC, USA, IEEE Computer Society (2012) 175–179

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dy-
namic data race detector for multithreaded programs. ACM Trans. Comput. Syst.
15(4) (November 1997) 391–411

25. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications.
WBIA ’09, New York, NY, USA, ACM (2009) 62–71

26. Bayer, U., Kirda, E., Kruegel, C.: Improving the efficiency of dynamic malware
analysis. In: Proceedings of the 2010 ACM Symposium on Applied Computing.
SAC ’10, New York, NY, USA, ACM (2010) 1871–1878

27. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2) (March 2008)
6:1–6:42

28. Zhu, D.Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Tainteraser: protecting
sensitive data leaks using application-level taint tracking. SIGOPS Oper. Syst.
Rev. 45(1) (February 2011) 142–154

29. Cristia, M., Mata, P.: Runtime enforcement of noninterference by duplicating
processes and their memories. In: WSEGI. (2009)

30. Waddington, Roy, Schmidt: Dynamic analysis and profiling of multi-threaded sys-
tems

31. Hazelwood, K., Lueck, G., Cohn, R.: Scalable support for multithreaded appli-
cations on dynamic binary instrumentation systems. In: Proceedings of the 2009
international symposium on Memory management. ISMM ’09, New York, NY,
USA, ACM (2009) 20–29

32. Nethercote, N.: Dynamic Binary Analysis and Instrumentation. PhD thesis, Com-
puter Laboratory, University of Cambridge, United Kingdom (November 2004)

33. Uh, G.R., Cohn, R., Yadavalli, B., Peri, R., Ayyagari, R.: Analyzing dynamic
binary instrumentation overhead. In: Workshop on Binary Instrumentation and
Application, San Jose, CA (October 2007)

34. Venkataramani, G., Roemer, B., Solihin, Y., Prvulovic, M.: Memtracker: Efficient
and programmable support for memory access monitoring and debugging. In: Pro-
ceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture. HPCA ’07, Washington, DC, USA, IEEE Computer So-
ciety (2007) 273–284

35. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via dy-
namic information flow tracking. SIGPLAN Not. 39(11) (October 2004) 85–96

36. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Flexitaint: A pro-
grammable accelerator for dynamic taint propagation. In: 14th International Sym-
posium on HighPerformance Computer Architecture. (2008)

37. Corliss, M.L., Lewis, E.C., Roth, A.: Dise: a programmable macro engine for
customizing applications. SIGARCH Comput. Archit. News 31(2) (May 2003)
362–373

38. Zhou, Y., Zhou, P., Qin, F., Liu, W., Torrellas, J.: Efficient and flexible archi-
tectural support for dynamic monitoring. ACM Trans. Archit. Code Optim. 2(1)
(March 2005) 3–33



39. Shetty, R., Kharbutli, M., Solihin, Y., Prvulovic, M.: Heapmon: a helper-thread
approach to programmable, automatic, and low-overhead memory bug detection.
IBM J. Res. Dev. 50(2/3) (March 2006) 261–275

40. Nagarajan, V., H-S.Kim, Y.Wu, Gupta, R.: Dynamic information flow tracking
on multicores. In: Workshop on Interaction between Compilers and Computer
Architectures, Salt Lake City (February 2008)

41. Chen, S., Kozuch, M., Strigkos, T., Falsafi, B., Gibbons, P.B., Mowry, T.C., Ra-
machandran, V., Ruwase, O., Ryan, M., Vlachos, E.: Flexible hardware accelera-
tion for instruction-grain program monitoring. In: Proceedings of the 35th Annual
International Symposium on Computer Architecture. ISCA ’08, Washington, DC,
USA, IEEE Computer Society (2008) 377–388

42. Goodstein, M.L., Vlachos, E., Chen, S., Gibbons, P.B., Kozuch, M.A., Mowry,
T.C.: Butterfly analysis: adapting dataflow analysis to dynamic parallel monitor-
ing. In: Proceedings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems. ASPLOS ’10, New York, NY,
USA, ACM (2010) 257–270

43. Sifakis, E., Mounier, L.: Extended dynamic taint analysis of multi-threaded appli-
cations. Technical report, VERIMAG, University of Grenoble (June 2012)


	Dynamic information-flow analysis for multi-threaded applications

