
Worst-Case Lifetime Computation of a Wireless Sensor
Network by Model-Checking∗

Laurent Mounier
Verimag

Gières, France
Laurent.Mounier@imag.fr

Ludovic Samper
France Telecom R&D, Meylan,

France
and Verimag, Gières, France

Ludovic.Samper@orange-
ftgroup.com

Wassim Znaidi
Verimag

Gières, France
Wassim.Znaidi@imag.fr

ABSTRACT
Wireless Sensor Network (WSN) technology is now mature
enough to be used in numerous application domains. How-
ever, due to the restricted amount of energy usually allo-
cated to each node, a crucial property of interest for the
users is the minimal lifetime of the network. In practice, this
value strongly depends both on the design choices performed
for each network element (hardware architecture, commu-
nication protocols, etc.) and on the whole execution en-
vironment (physical environment, execution platform, net-
work topology, etc.). We propose here an original approach
to evaluate this minimal network lifetime based on model-
checking techniques. It consists first in designing a timed
model of the entire network behavior (taking into account its
execution environment), and then to compute on the state
space associated to this model the shortest execution se-
quences (from a temporal point of view) leading to some
states considered as “terminal” (from the network lifetime
point of view). This approach is illustrated on a concrete
example of a WSN application to compare the influence on
the network lifetime of two classical routing algorithms.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Design, Experimentation, Verification

Keywords
Wireless Sensor Networks, Energy, Modeling, Analysis,
Model-Checking

∗This work was partially supported by the French Ministry
of Research under contract ARESA ANR-05-RNRT-01703.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’07, October 22, 2007, Chania, Crete Island, Greece.
Copyright 2007 ACM 978-1-59593-808-4/07/0010 ...$5.00.

1. INTRODUCTION
Although wireless sensor networks have emerged only re-

cently, this technology is now mature enough to be deployed
in many real world applications. For most of these appli-
cations, one of the key properties expected from the users
is that a minimal lifetime of the network infrastructure will
be guaranteed in spite of limited energetic resources allo-
cated to each nodes. Although a huge number of techni-
cal solutions have been proposed to maximize this lifetime
(dedicated node hardware architectures, lightweight oper-
ating systems, low-consumption communication protocols,
etc.), ensuring that a complete WSN application will ful-
fill its lifetime requirement is still a quite difficult task. In
particular, the network architect has to be convinced that
his design choices are the most appropriate with respect to
the application of interest, for a given physical execution
environment. A classical approach to tackle this problem is
to use simulation tools, able to produce quantitative data
on particular execution sequences (i.e., energy consumed by
each hardware components, activity periods of each network
element, etc.). Depending on the granularity of the simula-
tion steps and on the faithfulness of the input models, these
simulation results can be quite accurate, and they allow to
predict some reasonable lifetime values. However, these pre-
dictions still depend on the amount of simulation runs per-
formed, and on the criteria used to select these runs (either
randomly, or according to some execution profile provided
by the user). Therefore, the values obtained may not always
correspond to minimal lifetimes, in particular because (sel-
dom) worst case executions scenarios can be ignored during
the simulation campaign.

The objective of this work is to provide a complementary
approach based on model-checking techniques. It consists in
designing first a behavioral description of the whole network,
including its physical execution environment. This descrip-
tion is written using an appropriate specification language,
with a precise operational semantics. This semantics then
defines a model of the network behavior, consisting in a state
graph representing all its possible execution sequences (the
states encode the control location and data values of each
nodes, whereas the transitions describe the operations per-
formed when changing from one state to another). Interest-
ing properties on the network behavior can then be checked
during some traversal of this state graph. This technique
is implemented in several tools, and it has been success-
fully applied to verify correctness requirements of non-trivial
hardware or software systems.

We propose here to adapt this technique in order to find
on the state graph the worst-case execution sequences from
the network lifetime point of view (i.e., execution sequences
corresponding to a minimal lifetime of the network). To do
so, we consider a behavioral network specification includ-
ing both time duration and energy consumption indications.
Thus, it is possible to characterize in the derived state graph
the set of “final” states, from the network infrastructure life-
time point of view, according to a given criterion (e.g., more
than half of the nodes have spent their initial amount of en-
ergy). Hence, computing the shortest paths (from the time
duration point of view) leading to such final states gives
both the minimal lifetime of the network, and a worst case
execution scenario.

Clearly, the main advantage of this approach is its ex-
haustiveness: it allows to detect seldom worst case execution
sequences, that would be beyond the capabilities of classi-
cal simulation campaigns. Furthermore, since the complete
worst case sequence is produced, it is possible to investi-
gate why such a bad scenario could occur, and, if necessary,
how to improve the network design. Similarly, by chang-
ing the network specification, for instance by replacing a
MAC protocol by another one, different design choices can
be compared from the lifetime point of view. However, this
approach may also suffer from a potential drawback: the
size of the state graph may prevent any practical applica-
tion for a realistic network design, with several hundred of
nodes. A possible solution is then to consider only a subset
of the network, with a smaller number of nodes, and to fo-
cus the specification of each node on some particular“layers”
(e.g., the MAC layer, or the routing layer), the other layers
being described only at a more abstract level. Of course,
the results obtained from such a model would be less ac-
curate, but the worst case scenario produced could then be
used as inputs to a classical simulation tool (operating on a
detailed network description). Thus, this would provide an
automatic way to produce execution scenario of interest for
simulation.

We illustrate this approach on a classical WSN application
for environmental monitoring, where nodes are supposed to
send alarms to a base station when a threshold value is
reached on their sensing device. First we explain how a
timed model of this application can be obtained using the
IF specification language. Then, we show how the model-
checking tools available in the IF toolbox can be used to
compute the minimal lifetime of the network. In particu-
lar, we compare the performances of two routing algorithms
with respect to this criteria.

The rest of the paper is organized as follows: Section 2
gives some informal description of the application we con-
sider, section 3 explains how it has been specified using IF
and section 4 indicates how we proceeded to compute min-
imal lifetimes and presents the results we obtained. Then,
a comparison with related works is performed in section 5,
and section 6 gives some conclusion and perspective to fu-
ture works.

2. A TYPICAL WSN APPLICATION
We present in this section what is for us a wireless sensor

network. Our study focuses on the routing layer however
it is impossible to analyze routing algorithms without any
context. That is why we explain here our assumptions on
higher and lower levels, application and medium access con-

trol respectively. We also detail the routing protocols we
analyze. As we evaluate consumption, our modeling frame-
work contains a consumption model. Our hypothesis on
energy models are also presented. Lastly, we define criteria
we used for network lifetime.

2.1 The Application
The range of sensor networks applications is really wide.

We will concentrate on environment monitoring applications.
In these applications, network reacts when an event occurs
in the environment. As already mentionned, the role of the
environment cannot be neglected in those applications [17].

In our example, when a sensor detects that pollution is
higher than a threshold, it sends an alarm message to the
sink. We assume only one single sink. The sink is a powerfull
node that collects alarms (to warn the rescue) and monitors
the network.

2.2 The environment
On sensor networks traffic is mostly generated by the envi-

ronment. In our application of pollution detection, we need
a mobility model of the target cloud. We assume that the
target cannot be at several nodes at the same time. At most
one node is stimulated at one moment. Moreover pollution,
our target, cannot jump: when the cloud is located on one
node, at the next instant it can still at the same position or
move to a neighboring node.

2.3 The Routing Layer
We compare two routing protocols. Our aim is to validate

the modeling method, not to evaluate new routing protocols.
Hence, we study classical sensor networks routing protocols:
flooding and directed diffusion.

Flooding is a very greedy algorithm: each packet is sent
to the whole network. When a node receives a packet, it
broadcasts the packet to all its neighbors except if it has
already send this packet. This prevents packets from doing
loops in the network. This algorithm is really sub-optimal
as each packet is sent to the whole network. Nevertheless, it
doesn’t need any infrastructure nor self-organization of the
network.

The second routing algorithm we modeled in IF is directed
diffusion [11]. See figure 1. In the first phase, which can be
considered as the organization phase, the sink sends an in-
terest message to the whole network, fig 1(a). This message
is sent using the flooding routing mechanism. When a node
receives a new interest, it sets up a gradient between the
sender and itself (fig 1(b)) and it forwards the packet. This
gradient is sets up only at the first reception of an interest.
This means that the selected route is the faster one. The
application is pollution detection, thus the interest is “send
an alarm when the cloud is detected”. Lastly when the event
is detected (figure 1(c)), nodes send alarm to the sink using
the gradients they set up.

2.4 Assumptions about the MAC and link
layers

As we concentrate on routing, we will not detail the whole
protocol layers of our network nor every components of the
sensors. Nevertheless, the network we model is a sensor
network and to be realistic, we have to take into account all
the characteristics of such a network.

Sensor network MAC protocols are designed to be energy-

Sink
0

1

2

3

4

5

(a) Broadcast interest

Sink
0

1

2

3

4

5

(b) Setup gradient

Sink

Source

Event
Source

0

1

2

3

5

4

(c) Send alarm
Figure 1: Directed diffusion

aware. For that the MAC protocol switches the radio off
as often as possible. It implies additional delays in packet
transmissions.

As nodes communicate via radio waves, errors due to col-
lisions or noise can occur on the channel. To have guaranties
about the reception of messages, some MAC protocols use
acknowledgement packets. This means that the receiver rep-
plies an acknowledgment (ACK) packet to the sender just
after the correct reception of the message. Thus, the sender
knows that its packet was correctly received. If this ACK
packet does not arrive, the sender transmits again its mes-
sage. However, this mechanism cannot apply when a packet
is sent to multiple nodes. If a broadcast packet was ac-
knowledged, acknowledgments packets would arrive at the
sender at the same time and then collide. We will assume
that unicast messages are acknowledged but that broadcast
or multicast packets are not. First, we think it is realistic
and furthermore we show that our modeling language is ex-
pressive enough to model different kinds of communication
that can all happen in a sensor network.

The aim of the work is to use model-checking to check
properties that involve energy on sensor networks. For that,
we need to evaluate the energy consumption of the sensors.
In the sensor each element consumes: the radio, the micro-
controller, memories and the sensor. In our application,
nodes do not have to process data thus we will consider that
packet emission and reception are the major consumption
sources.

We will explain IF model of our network in section 3.

2.5 Lifetime Criteria
It is difficult to have a precise criterion that determines if

the network is still alive or if it is dead. Let us assume that
nodes do not recharge their batteries so that we can almost
say when a node is dead. For the whole network, it is more
difficult. The network is dead when it cannot assume its
service, but this criterion depends on the application! Thus,
we propose to study several criteria:

• The first node ran out of energy.

• The network is broken: almost two partitions appear in
the network. As we assume a single sink, this implies
that some nodes that still have energy can no more
communicate with the sink.

• A fraction of the network is dead. A certain percentage
(10 %, 50%, ... or whatever) of the nodes ran out of
energy.

3. MODELING

3.1 The IF Modeling language
IF is a description language for asynchronous timed sys-

tems. An IF specification consists in a set of processes, where
process instances run in parallel and interact either through
shared variables or message passing. We briefly present be-
low the main features provided by this language (see [8]) for
a more complete description).

Functional features.
The general behavior of a process is described by a timed

automaton, extended with data. Each process instance owns
a set of variables (that can be declared as “public” or “pri-
vate”) and a (FIFO) queue to store pending messages (i.e.,
that have been received but not yet consumed by this in-
stance).

A process can move from one control state to another
by executing some transition. Two kinds of transitions are
available: spontaneous transitions and transitions triggered
by a message reception (the transition is then enabled only
if this message is in first position in the input queue). Exe-
cution of a transition can also be restricted by boolean pred-
icates on variables. Notice that several transitions may be
enabled at the same time, allowing non-determinism. Tran-
sition bodies are sequential programs consisting of elemen-
tary actions (variable assignments, message sending, pro-
cess creation/destruction, etc). They are structured using
control-flow statements (like if-then-else, while-do, etc).

Inter-process communication media can be specified by
means of Signalroutes, that transport messages. The behav-
ior of a signalroute is described by its delivery policy (FIFO
or multi-set), its connection policy (peer to peer, unicast
or multicast), its delaying policy and its reliability (reliable
or lossy). More complex communication media can be de-
scribed explicitly as IF processes.

Finally, the IF notation provides several predefined basic
data types (bool, integer, real, pid) and a special type called
clock to measure time progress (see below). Structured data
types are built using usual type constructors (enumeration,
range, array, record).

Time model.
The time model of IF is that of timed automata with ur-

gency [7]. As for regular timed automata [5], the execution of
a transition is instantaneous, and time is allow to progress
only between the execution of two transitions. Moreover,
an urgency attribute is associated to transitions to indicate
their priority over time progress. We distinguish between
eager, lazy and delayable transitions. Eager transitions are
urgent, and they have to be executed as soon as they become
enabled (except if they are disabled by executing another ea-

ger transition). Lazy transitions are never urgent, and they
may be disabled by time progress. Delayable transitions are
a combination of both eager and lazy: they are not urgent,
except for the moment when time progress would disable
them.

Like in timed automata, time distances between events
are measured by variables of type “clock”. Clocks can be
created, set to some value or reset (deleted) in any transi-
tion. They can be used in time guards to restrict the time
points at which transitions can be taken. Local clocks allow
the specification of timing constraints, such as task duration
(modeled by time passing in a state associated to this task)
and deadlines. Global time constraints, such as end-to-end
delays, can be expressed by means of global clocks. In addi-
tion, the use of delayable transitions allows to specify time
non-determinism (i.e., time durations chosen within some
given intervals).

3.2 Modeling the application
The WSN application we consider (section 2) consists in a

network of nodes, communicating via radio links, and evolv-
ing within a given environment. The corresponding IF spec-
ification provides a formal models for each of these three
elements.

Modeling the environment.
The external environment of this application is supposed

to stimulate the node sensors with some input events indi-
cating when a given pollution level has been reached. In the
real world, the time and geographical distribution of these
inputs follows some specific laws: it depends on a physical
source (e.g., a pollution cloud), possibly influenced by ex-
ternal factors (wind, etc). We chose here to model this envi-
ronment by a dedicated IF process (Environment), running
in parallel with the application. This process repeatedly
mimics the behavior of a “pollution cloud” as follows:

• send an envInput message to a selected node n, indi-
cating that this node is currently subject to a pollution
source;

• non deterministically choose a direct neighbor of n (in-
cluding n itself) to be the next selected node.

The execution period of this cyclic behavior is given by a
time constant, and changing this constant allows to model
various “wind” profiles.

Modeling a node.
Network nodes are specified using an IF process called

Node, each individual node being a specific instance of this
process (the sink node is considered as a particular node,
distinguished by its instance number). At a coarse level,
a node behavior strictly follows the informal description of
the application, depending on the routing protocol under
consideration:

• For the flooding protocol, upon reception of an envIn-

put message, each node broadcasts a (uniquely iden-
tified) Alarm message to its neighbors. When a (non
duplicated) Alarm message is received by a node, it is
propagated using the same mechanism (broadcast to
each neighbors).

• For the directed diffusion protocol, the sink node first
initiates the construction of the virtual routes by send-
ing an Interest message using the flooding protocol.
Thus, each node stores the identity of its “next neigh-
bor” along this route. When an envInput message is
received, each node unicasts an Alarm message to this
“next neighbor”, that will be propagated up to the sink
node using the same mechanism (unicast to each “next
neighbor”).

In addition, the model of a node should also take into
account the energy consumption. We assume here that the
only consuming operations are the basic communication prim-
itives, i.e., sending/receiving a broadcast/unicast message.
Therefore, each of these four operations performed by a
nodes decreases its total amount of energy available by a
given value. This value depends only on the nature of the op-
eration, not on the message length. When this total amount
of energy is spent, the node becomes inactive (it does no
longer send any message).

Modeling the radio communications.
Modeling the radio communications means taking into ac-

count the network topology, the communication durations
(introduced by the MAC and physical layers), and the com-
munication hazards. To do so, we introduce an additional
process, Topology, owning a shared matrix that contains the
neighborhood relation (from the radio range point of view).
This matrix is initialized with a given topology (provided
by the user), and it does not change during the network
lifetime. Communication operations are then modeled as
follows:

• A broadcast emission consists in sending a message to
all the neighbors of the transmitter, in a single atomic
operation, taking a constant time duration. To do that
with IF, we used a while loop in which the sender emits
an unicast signal to each of its neighbors. From the
network point of view, messages are sent simultane-
ously. In case of collision, when one of the transmit-
ter’s neighbor is already involved in another communi-
cation, then this neighbor miss (silently) the message
sent (broadcasts are not acknowledged).

• Unicast communications are supposed to be reliable
(i.e., acknowledged). As long as collisions occur, the
sender transmits again its message, after a non deter-
ministic waiting time (taken within a given interval
and modeled using IF delayable transitions). There-
fore, the overall amount of time and energy required
for a unicast communication depends on the number
of attempts performed.

Finally, a (global) clock called lifetime is attached to the
process Topology. This clock is started when the network
begins to work, and it is used to compute its minimal lifetime
duration (see section 4).

4. WORST CASE LIFETIME
COMPUTATION

In this section, we explain the approach we used to com-
pute the worst-case lifetime of the network from the IF spec-
ification. Then we give the results obtained with the two
specific routing protocols we considered in our case-study.

4.1 Lifetime computation
The IF operational semantics allows to represent the be-

havior expressed by an IF specification as a state graph,
where state encode the control location and data values of
each IF processes, and transition corresponds to the oper-
ations performed at the IF level. This state graph can be
computed on demand by the IF simulation engine. Several
tools are then available to explore this state graph, providing
various validation facilities [8] (e.g., interactive simulation,
test generation, model-checking, etc.).

In particular, computing the worst-case lifetime of the net-
work can be reduced to find a shortest path (regarding ex-
ecution time) between the initial state of the graph (when
the network starts working) and a state that corresponds
to a goal state with respect to the lifetime criterion we con-
sider (either at least a node is inactive, or the set of inac-
tive nodes split the network into several strongly connected
components). Since the lifetime global clock introduced in
the IF model stamps each state of the graph with the time
elapsed since the initial state, such shortest paths can be
computed by means of usual graph exploration algorithms.
After having tried several algorithms we chose here to use
the (classical) A* algorithm, which is recalled below.

A* Algorithm
p : state

Q : set of pairs (state, duration)

V : set of (visited) states

begin
Q ← (initial_state, 0) ; V ← ∅
while Q 6= ∅ do
extract from Q a pair (p, d) s.t.d is minimal

if p 6∈ V and not is_goal(p) then
foreach q in succ(p)

Q← Q ∪ {(q, cost(q))}
else

if is_goal(p) then
return d

endif
endwhile
end

The efficiency of this algorithm is based on the following
elements. First, the set Q (pending states) is implemented
as a priority queue on the duration attribute. Second, the
cost(q) function is the sum of two values: the time elapsed
to reach q from the initial state (obtained by consulting the
value of lifetime in state p), and the estimated remain-
ing time to reach a goal state. This second value is used
to tighten the set to explore by privileging the states “that
seems” bring us closer to the goal state. This is obtained
by using a heuristic estimation. To ensure the optimality of
the algorithm this heuristic estimation should be admissible:
it should never overestimates the time duration required to
reach a goal state to ensure that A* is optimal. The heuris-
tic we chose is based on the following consideration: making
a node inactive requires to spend at least the amount of time
needed to repeatedly perform on this node the most energy
consuming operation. Indeed, this amount of time is always
less or equal than the time needed to reach a goal state fol-
lowing any possible execution sequence from a current state
of the graph. Assuming that the most energy consuming
operation requires an energy amount of e0 and takes a du-

Sink
0

1

3

4

5

2

6

7

89

10

Figure 2: Different experiments, from 4 to 11 nodes

ration d0 to be executed, then function cost is defined as
follows:

cost(p) =

let
d = the value of lifetime in state p

e = the energy of the weakest node in state p

x = e/e0

d’ = x× d0

in
d + d’

Finally, this algorithm can be easily extended to provide
not only the worst-case lifetime value, but also a correspond-
ing execution sequence. Such a scenario is then particularly
useful to better understand this worst case behavior (see
below).

4.2 Experimental results
We performed this worst-case lifetime computation anal-

ysis on the IF specification considering the two routing al-
gorithms described above.

We did experiments with several network sizes. Figure 2
shows the different topologies we experimented, the number
of nodes ranges from 4 to 11. For instance, our four-node
network is the network containing nodes number 0, 1, 2 and
3. As explained before, our model-based technique relies on
the (partial) traversal of a state graph. The size of this state
graph, and hence the computation time, highly depends on
the number of nodes we consider in the network: for a four
nodes networks shortest path computation takes less than
three minutes whereas for an eleven nodes network it lasts
more than two days. Therefore, we finally chose to per-
form our experiments on a six nodes network, for which the
computation times takes about six hours on a powerfull PC
computer. All results concern the six-node network shown
on figure 1.

Other important experimental parameters are the energy
consumptions assigned to the different actions. Costs of
emission and receptions had been set up to 3 and 2 energy
units respectively. It is not our topic here to discuss about
accurate costs of emission and reception regarding specific
hardware architectures. Of course any other values could
have been used. Battery capacities of nodes (except the
sink) have a capacity of 40 energy units. It means that one
node can send no more than 14 emissions during its whole

life. This is very few. Indeed, we study the network behav-
ior only during a small time interval. We could deduce the
real network lifetime with more realistic battery capacities
by extrapolating the results obtained. Nevertheless, our goal
is essentially to compare protocols, not to have an absolute
value of the network lifetime. Let us point out that a similar
abstraction is performed when using simulators: a simula-
tion campaign does not cover the entire network lifetime.
About time, a transmission can take between 1 and 3 time
units, if a retransmission is needed (in case of collision), it
takes 5 more time units. The cloud sends a polluting signal
each 7 time units.

To evaluate lifetime, we considered two lifetime criteria:

• First criterion: the network is dead when one node
dies.

• Second criterion: death of the network is when the
network is no more connected. Let us precise that
if directed diffusion is the routing protocol, one new
interest request is sent by the sink when a node dies.
Thus when one node runs out of energy, the network
self repairs if possible, otherwise, it is dead.

Table 1 gives the lifetimes of the network (in time units)
under different routing protocols (flooding and directed dif-
fusion) for our two criteria. As expected, the protocol di-
rected diffusion performs better from the lifetime point of
view than flooding. Indeed, to send an alarm to the sink
with flooding, much more messages are generated. More-
over, the second lifetime criterion (network partition) takes
more time to be reached. Indeed, if the network is par-
titioned, at least one node ran out of energy whereas one
node can be dead without partitioning the network. That is
why the first criterion is always satisfied before the second.

1st criterion 2nd criterion

Flooding 14 21
Directed Diffusion 41 52

Table 1: Minimum lifetime duration

To underline the differences between a worst case and a
medium case, we compared on table 2 worst-case lifetimes
with medium-case lifetimes. IF simulator, from the IF tool-
box, can be used to generate a possible execution sequence
of the system. It corresponds to a random exploration of
the state graph (without the need to generate it). This ex-
ploration leads to a simulation of the system. Here, we used
this tool to generate possible execution scenarios of our net-
work. The lifetime reported in table 2 corresponds to a
mean on ten scenarios. This comparison allows to measure
the importance of computing the worst-case scenario with
respect to an “average” scenario, as obtained by a standard
simulation tool.

We have demonstrate that our modeling approach can
lead to an estimation of the worst case network lifetime.
Moreover, we can exhibit the worst-case scenario correspond-
ing to this shortest lifetime. As an example, we analyzed the
worst-case scenario for directed diffusion. Figure 3 shows the
gradients set up by nodes in this worst-case scenario. We

Sink
0

1

2

3

4

5

Figure 3: Gradients set up in directed diffusion for
the worst case scenario

can already notice that routes are not as expected. On fig-
ure 1(b), we have depicted the expected routes which seems
more “natural” as they are the shortest paths between the
node and the sink. Here, with our modeling hypothesis, we
observe that unexpected gradient installation can occur re-
ducing the lifetime up to 60% (table 2). In this worst case
scenario, the cloud activates nodes number 3 and 4 in turns.

Worst case Mean case

Flooding 14 24
Directed Diffusion 41 101

Table 2: Computation of the lifetime for the 1st cri-
terion

5. RELATED WORKS
Sensor networks are complex distributed systems that need

to be simulated, evaluated or checked before their deploy-
ment. Indeed, many optimizations are done at each layer
and researchers need tools and methods to evaluate their
advances.

People from network research community are used to work
with network simulators. A huge number of network sim-
ulators were developed, each corresponding to a particular
need. One of the most popular network simulator is NS-2 [2],
The Network Simulator. As it is popular, numerous proto-
cols for ad hoc networks are implemented in NS-2, which
offers the ability to easily compare two protocols. However,
NS-2 is not dedicated to sensor networks and the computa-
tion of the energy consumption is not included in the simu-
lator. Therefore numerous simulators were developed specif-
ically for WSN applications, able to take into account the
energy consumption. A major issue is then to obtain a cor-
rect trade-off between an accurate estimation of the energy
consumption and the scalability of the simulator (to handle
large networks). Our point of view is that network simula-
tors are useful tools to have ideas about the medium case
whereas our exhaustive approach gives information about
the worst case.

Since Kleinrock and Tobagi ([12]), a classical method to
study wireless networks is to use the probability theory. In
some sense this technique is more exhaustive than simula-
tion where only a medium case is studied. However the lack
of expressiveness of this approach (from the functional point
of view) prevents correct estimations of the energy consump-
tion. In particular it is really difficult to express the complex

behavior of a sensor network and its energy consumption us-
ing only probabilistic models.

As far as we know, there are not formal tools specially
dedicated to sensor networks validation. However, due to
the success of these tools in other application domains (com-
munication protocols, embedded systems), several attempts
have been performed to experiment them for sensor networks
issues. We summarize here some of these works.

Watteyne et al. propose in [18] a real-time MAC pro-
tocol for sensor networks; then they had to simulate it on
large scale networks. As their application is critical, pro-
viding a formal validation is essential. However, validation
here only consists in verifying that in any case, messages
arrive on time at the sink node. Properties they check con-
cern behavior only and not the energy consumption. They
have used UPPAAL [4], as modeling and formal validation
architecture. This example shows the interest of formal val-
idation in the context of ad hoc networks, however it is not
“sensor-network-specific”. Our application focuses on sensor
network key issue as we address the problem of energy and
provide a way to guaranty a minimum lifetime.

A well-known framework to develop sensor network ap-
plications is TinyOS [3]. Authors of [9] modeled a node
described in nesC using HyTech [10]. HyTech is a tool to
model and analyze hybrid automata. Authors first mod-
eled a single node described using hybrid automata. With
this model, they perform safety checks with HyTech. Here
again, what they verify does not concern energy. Then, us-
ing SHIFT [1], they simulate a network of hybrid automata
that corresponds to a sensor network. Here, the simulation
concerns energy consumption but it is still simulation, they
are not doing exhaustive state space exploration.

Authors of [16] show on a case study that Real-Time
Maude [15] provides a good framework to model, simulate
and analyze a sensor network. Our work is directed at the
same object. Indeed, it is not more difficult to model a sen-
sor network problem using a formal framework as Real-Time
Maude or IF than using a classical network simulator. Then,
with the simulation engine of the formal framework, simu-
lations of the model can be performed leading to the same
results as with a network simulator. Moreover, thanks to
the model-checker, formal verifications can also be done us-
ing the same model. Let us precise that model-checking con-
cerns a smaller network (up to 6 nodes in their paper). How-
ever, our case-study is more sensor network-specific. First,
we model the radio channel: collisions and delays can oc-
cur. In their study, perfect MAC and physical layers are
assumed. Secondly, we tackle the problem of energy that
is crucial in sensor networks, in their work verification only
concerns functional properties.

A complementary approach consists in developing mod-
els and tools dedicated to verify power systems. In those
methods, the user have to model its problem in a dedicated
formalism. Formalisms are such that there exists an effi-
cient representation to find the worst case scenario. The
problem with those dedicated formalisms is that they can
be dedicated to a specific problem and it can be too much
restrictive to express another consumption problem in the
dedicated formalism. We did not use such a formalisms in
this work. However it could have been useful in order to
model one node. Our node models are very abstract, those
abstractions could be the result of the analysis of a more
detailed model.

6. CONCLUSION
We have proposed a model-based approach to automati-

cally compute the worst-case lifetime duration of a WSN ap-
plication. This approach consists in designing first a global
specification of the network, using a formalism that com-
bines a sufficient expressiveness level and a well-defined op-
erational semantics. Thus, the exhaustive behavior expressed
by this specification can be modeled as a state graph, and
worst-case lifetime estimation is then reduced to a partic-
ular shortest paths computation on this state graph, using
classical algorithms. This approach has been illustrated on a
representative case study to compare two routing algorithms
from the energy consumption point of view.

We strongly believe that this approach increases the set
of techniques available to estimate the efficiency of a WSN
architecture. In particular it automatically computes infor-
mation about seldom execution sequences, that are beyond
the scope of classical simulation tools (mostly tailored to
analyze a system either on average scenarios, or according
to some specific input profiles). Therefore, we claim that
the approach we propose is particularly suitable in the early
phases of the system development, for so-called design ex-
ploration, when choosing the most appropriate network ar-
chitecture (hardware components, protocol stack, network
topology, etc.), for a given application and according to a
specific execution environment.

This preliminary work could be extended into several di-
rections. First of all, it is clear that such exhaustive state ex-
ploration methods are limited by the size of the state graph
that can be analyzed. To scale up, these methods should
integrates sound abstraction techniques, allowing to reduce
the size of the model to explore while preserving the proper-
ties of interest (namely the worst case lifetime duration). In
this particular context these abstraction techniques should
allow to focus on a particular design level (e.g., the routing
algorithm), and simplify the description of the other lev-
els. We are currently investigating how to automatically
prove the soundness of such abstractions. A second direc-
tion would be to improve the lifetime computation algorithm
itself. Many interesting research works have been performed
in the model-checking community to alleviate the state ex-
plosion problem, and they could be re-used in this partic-
ular context. Two of them are clearly appealing: directed
model-checking ([14]), and symbolic state space representa-
tions allowing to handle both dense-time and associated cost
values ([13]). Finally, it would also remain to perform more
detailed experiments, to better investigate the possible com-
bination of this model-based technique with more classical
simulation approaches. In practice, this could be done using
the translation tool [6] from nesC to BIP (an extension of
the IF formalism), that allows to derive formal specifications
from a nesC application.

7. REFERENCES
[1] The hybrid simulation programming language.

http://www.path.berkeley.edu/shift.

[2] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[3] Tinyos. www.tinyos.net.

[4] Uppaal home page. http://www.uppaal.com/.

[5] R. Alur and D. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126:183–235, 1994.

[6] A. Basu, L. Mounier, M. Poulhiès, J. Sifakis, and
J. Pulou. Using bip for modeling and verification of
networked systems - a case study on tinyos-based
networks. In Proceedings of the 6th IEEE
International Symposium on Network Computing and
Applications, July 2007.

[7] S. Bornot and J. Sifakis. An Algebraic Framework for
Urgency. Information and Computation, 163:172–202,
2000.

[8] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis.
The if toolset. In F. Corradinni and M. Bernanrdo,
editors, Proceedings of SFM’04, volume 3185 of LNCS.
Springer-Verlag, September 2004.

[9] S. Coleri, M. Ergen, and T. J. Koo. Lifetime analysis
of a sensor network with hybrid automata modelling.
In WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks
and applications, pages 98–104. ACM Press, 2002.

[10] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech:
A model checker for hybrid systems. In CAV ’97:
Proceedings of the 9th International Conference on
Computer Aided Verification, pages 460–463.
Springer-Verlag, 1997.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In
MOBICOM, The Annual International Conference on
Mobile Computing and Networking, pages 56–67, 2000.

[12] L. Kleinrock and F. A. Tobagi. Packet switching in
radio channels: Part ii–the hidden terminal problem in
carrier sense multiple-access and the busy-tone
solution. In IEEE Transactions on Communications,
volume 23, pages 1417–1433, december 1975.

[13] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,
T. Hune, P. Pettersson, and J. Romijn. As cheap as
possible: Efficient cost-optimal reachability for priced
timed automata. Lecture Notes in Computer Science,
2102:493–505, 2001.

[14] A. Lluch-Lafuente, S. Edelkamp, and S. Leue. Partial
order reduction in directed model checking. In
Proceedings of the 9th International SPIN Workshop
on Model Checking of Software, pages 112–127.
Springer-Verlag, 2002.

[15] P. C. Ölveczky and J. Meseguer. Semantics and
pragmatics of real-time maude. Higher-Order and
Symbolic Computation, 20(1-2):161–196, 2007.

[16] P. C. Ölveczky and S. Thorvaldsen. Formal modeling
and analysis of wireless sensor network algorithms in
real-time maude. In The 14th International Workshop
on Parallel and Distributed Real- Time Systems, 2006.

[17] L. Samper, F. Maraninchi, L. Mounier, E. Jahier, and
P. Raymond. On the importance of modeling the
environment when analyzing sensor networks. In IEEE
International Workshop on Wireless Ad-hoc and
Sensor Networks (IWWAN), June 2006.

[18] T. Watteyne, I. Augé-Blum, and S. Ubéda. Dual-mode
real-time mac protocol for wireless sensor networks: a
validation/simulation approach. In InterSense ’06:
Proceedings of the first international conference on
Integrated internet ad hoc and sensor networks, pages
2–8. ACM Press, 2006.

