
Property Oriented Test Case Generation
Jean-Claude Fernandez, Laurent Mounier, and Cyril PachonVerimag, - Centre Equation - 2 avenue de Vignate - F38610 Gieres, FrancefJean-Claude.Fernandez,Laurent.Mounier,Cyril.Pachong@imag.fr,http://www-verimag.imag.fr/

Abstract. In this paper we propose an approach to automatically pro-duce test cases allowing to check the satis�ability of a linear property ona given implementation. Linear properties can be expressed by formulasof temporal logic. An observer is built from each formula. An observer isa �nite automaton on in�nite sequences. Of course, testing the satis�abil-ity of an in�nite sequence is not possible. Thus, we introduce the notionof bounded properties. Test cases are generated from a (possibly partial)speci�cation of the IUT and the property to validate is expressed by aparameterised automaton on in�nite words. This approach is formallyde�ned, and a practical test generation algorithm is sketched.
1 IntroductionTesting is certainly one of the most popular software validation techniques and itis a crucial activity in many domains such as embedded systems, critical systems,information systems, telecommunication, etc. Consequently, a lot of work wascarried out during the last decade to both formalise the testing activities and todevelop tools allowing to automate the production and execution of test suites.The particular problem of testing if an implementation is \correct" withrespect to its speci�cation is referred to as conformance testing. This problemwas mainly investigated inside the telecommunication area (as described in theISO standard 9646 [7]), and a formal approach was outlined in [19, 11, 3]. Theseworks gave birth to several (academic and commercial) tools[1, 12, 17, 6] ableto automatically generate test cases from a system speci�cation. For instance,in [5], a technique is proposed to derive test cases from a (formal) speci�cationand a test purpose. This technique is based on a partial exploration of a kindof product between the speci�cation and the test purpose. An associated tool,called Tgv, was developed by Irisa Rennes and Verimag Grenoble.We �rst explicit a bit more the concepts of black box testing and conformancetesting.Black box testing. We consider here \black box" testing, meaning that the be-haviour of the IUT (Implementation Under Test) is only visible by an externaltester, through a restricted test interface (called PCO, for Points of Control andObservation). There exists two kinds of interactions between the tester and theIUT: outputs of the tester are stimuli sent in order to control the IUT, whereas

inputs of the tester are observations of the IUT's outputs. These sets of interac-tions are described by a test architecture. In black box testing the internal stateof the IUT is not observable by the tester. Consequently:{ the tester cannot observe the internal non-determinism of the IUT ;{ the tester should remain deterministic since it cannot backtrack the IUT toa given internal state.A possible model to describe these sequences of interactions is Input-OutputLabelled Transition System (IOLTS, see de�nition below).Conformance testing. Conformance testing is based on the following concepts:{ IUT: Even if the internal code of the IUT is not visible from the outside,its behaviour can be characterised by its interactions with its environment.This external behaviour can be modeled with an IOLTS. We suppose in thefollowing that this IOLTS is input complete, that is, in each state the IUTcannot refuse any input proposed by the environment.{ Test architecture: Test architecture de�nes the set of interactions betweenthe IUT and an environment, distinguishing between controllable and ob-servable events. ISO9646 standard proposes four test methods : local testmethod, distributed test method, coordinated test method, and remote testmethod. All these methods are based on the black box testing principles anddescribe possible environment of the IUT. Of course, test architecture is aparameter of a test generation technique. In this paper, we consider a localtest architecture.{ Speci�cation: The speci�cation represents the expected behaviour of the IUT,to be used as a reference by the tester. This expected behaviour can be alsoformally modelled by an IOLTS. Note that the speci�cation not necessarilydescribes only the visible behaviour of the IUT, but it may also contain someof the internal actions performed by the implementation.{ Conformance relation: De�ning whether an IUT is correct or not with re-spect to a speci�cation is achieved in this context by introducing a formalrelation between IOLTS. Several relations have been proposed so far, suchas ioco [19]. Other relations have also been proposed on other models (suchconf [3]).{ Test case: Roughly speaking a test case is a set of interactions (input andoutput) sequences a tester can perform on an IUT interface. When executed,each interaction sequence delivers a verdict indicating whether the IUT wasfound conform or not on this particular execution (with respect to a givenconformance relation).{ Test purpose: The test purpose represents a particular functionality (or setsof abstract scenarios) the user wants to test. It can also be modeled by anIOLTS, and may be used to automate the test case generation.Although this conformance testing framework is now well established and hap-pens to be be very useful in the telecommunication area, its use in other appli-cation domains su�ers, in our opinion, from two important limitations:

{ �rst, it requires a rather exhaustive formal speci�cation, since conformance isde�ned with respect to this speci�cation, and any IUT exhibiting unexpectedbehaviours (from this speci�cation point of view) would be rejected;{ second, the conformance relation is not very exible: it is not always easyto understand what it does exactly preserve, and, more important, it is notpossible to adapt it to the particular functionality one wants to test.We propose in this work to extend this framework (and particularly what wasdone inside the Tgv tool) to the generation of property oriented test cases. Thegeneral idea is to allow automatic test generation from a partial speci�cation (notnecessarily expressing the overall expected behaviour of the system), and withrespect to a particular property (test case execution should indicate whether theIUT satisfy or not this property). This approach is outlined below.
Property testing. The properties we consider are linear properties: each propertyde�nes a language (i.e., a set of sequences), and an IUT satis�es a given propertyif and only if all its execution sequences belong to its associated language. In thiscontext it is a common practice to distinguish between safety properties, thatcan be checked by considering only �nite execution sequences of the IUT, andliveness properties that need to consider also the in�nite ones. Several charac-terisations of such properties have been proposed in the veri�cation community,based on various speci�cation formalisms : automata on in�nite words (recog-nising !-regular languages), linear-time temporal logics (or �-calculus), booleanequation systems, etc. Automata on in�nite words, like B�uchi automata [4], arevery interesting from an algorithmic point of view, and they are used in sev-eral decision procedures [20] implemented in model checkers. It can be shown inparticular that any !-regular language can be characterised by a B�uchi automa-ton, or, equivalently, by a deterministic Rabin automaton, see for example [9,16]. Since the use of a deterministic automaton is an important issue in thetest generation technique we propose in this paper, we will consider in the fol-lowing that the property to be checked is expressed by a deterministic Rabinautomaton. Of course, testing the satis�ability of a liveness property is not pos-sible: it would require an in�nite execution time. However, automata on in�nitewords can be parameterised to specify so-called bounded liveness properties: theautomaton recognises a set of in�nite execution sequences and some externalparameters simply limit the \length" of the sequences to consider (this lengthbeing expressed for instance in number of interactions, or as an overall executiontime).More precisely, the test generation technique we propose can be sketched asfollows:{ A (possibly partial) speci�cation S is used as a \guideline" for the test casesynthesis, and it is therefore supposed to be \closed enough" to the actualbehaviour of the IUT. Note however that we do not require at this level anyparticular conformance relation between S and the IUT.

{ A safety or bounded liveness property P is given through an observer Obsrecognising sequences of :P . This observer is a parameterised automaton onin�nite words.{ Test cases are automatically generated by traversing the speci�cation in or-der to �nd the \most promising" execution sequences able to show the nonsatis�ability of P by the IUT. These execution sequences are the sequencesrecognised by Obs that are the \closest" to the ones provided by the speci-�cation.Related Work. Producing test cases from a formal speci�cation to check thesatis�ability of a given property is a rather natural idea, and consequently nu-merous works have been already carried out in this area, leading to various kindsof tools. They mostly di�er in the nature of the speci�cation and property theyconsider, and they are often based on probabilities to select the test sequences(such in [15, 10, 8, 13]). However, an original aspect of our approach is the use ofparameterized automata on in�nite words to specify properties and to instanci-ate them only at test time. In addition, test cases we produce are IOLTS (notonly sequence sets) that can be executed against non deterministic IUTs.
2 ModelsThis section formalises the di�erent elements involved in the test case generationframework we propose.2.1 Input-Outputs labelled transition systemsThe basic models we consider are based on Input-Output Labelled TransitionSystems (IOLTS), namely Labelled Transition Systems in which input and out-put actions are di�erentiated (due to of the asymmetrical nature of the test-ing activity). We consider a �nite alphabet of actions A, partitioned into twosets: input actions AI and output actions AO. A (�nite) IOLTS is a quadrupletM=(QM; AM; TM; qMinit) where QM is the �nite set of states, qMinit is the initialstate, AM � A is a �nite alphabet of actions, and TM � QM �AM [f�g �QM isthe transition relation. Internal actions are denoted by the special label � 62 A.� is assumed to be unobservable for the system's environment whereas actionsof AM are visible actions representing the interactions either between the systemand its environment, or between its internal components.Notations. We denote by N the set of non negative integers. For each set X, X�(resp. X! = [X!N]) denotes the set of �nite (resp. in�nite) sequences on X.Let � 2 X� ; �i or �(i) denotes the ith element of �. We adopt the followingnotations and conventions: Let � 2 A�, � 2 A, p; q 2 QM. We write p �!M qi� (p; �; q) 2 TM and p �!M q i� 9�1; �2 � � ��n 2 A, p0; � � � ; pn 2 QM such that� = �1:�2 : : : �n and p0 = p, pi �i+1! M pi+1 for i < n, pn = q. In this case, � iscalled a trace or execution sequence, and p0 � � � pn a run over �. An in�nite run

of M over an in�nite execution sequence � is an in�nite sequence � of QM suchthat 1: �(0) = qMinit and 2: �(i) �(i)! M �(i+ 1)). inf(�) denotes the set of symbolsfrom QM occurring in�nitely often in �: inf(�)=fq j 8n: 9i: i � n: ^ �(i) = qg.Let V a subset of the alphabet A. We de�ne a projection operator #V : A�!V �in the following manner: � #V= �, (a:�) #V= � #V if a 62 V , and (a:�) #V= a:(� #V)if a 2 V . This operator can be extended to a language L (and we note L # V)by applying it to each sequence of L. The language recognised by M is L(M) =fw j 9q such that qMinit w! qg.
Let M=(QM; AM; TM; qMinit) an IOLTS, we recall the completeness, determinismand quiescence notions.Completeness. M is complete with respect to a set of actions X � A if and only iffor each state qM of QM and for each action x of X, there is at least one outgoingtransition of TM from qM labelled by x 2 X:8pM 2 QM � 8x 2 X � 9qM 2 QM such that pM x!M qM.Determinism. M is said deterministic with respect to a set of actions X if andonly if it is a deterministic IOLTS containing only actions labelled by elementsof X:8pM 2 QM � 8x 2 X � pM x!M qM ^ pM x!M q0M) qM = q0M.We introduce a determinisation operatordet (M,X)=(Qdet (M,X); Adet (M,X); T det (M,X); qdet (M,X)init) to compute a determin-istic IOLTS with respect to X associated to M. This IOLTS is de�ned as follows:Qdet(M,X) � 2QM , Adet(M,X) = X, qdet(M,X)init = fq 2 QM j qMinit !!M q^! 2 (AnX)�gand T det(M,X) = f(Sp; a; Sq) j 9p 2 Sp: 9q 2 Sq: p !:a!M q with a 2 X ^ ! 2(A nX)�g. Note that, L(M) # X = L(det (M;X)).Quiescence. A test should be able to observe IUT quiescence [19]. Several kindsof quiescence may happen: a state p is said quiescent in M either if it has nooutgoing transition (deadlock), or if it belongs to a cycle of internal transitions(livelock): quiescent (p) � (6 9(a; q): p a!M q) _ p �+!M pQuiescence can be modelled at the IOLTS level by introducing an extra tran-sition to each quiescent state labelled by a special symbol �. � is considered as anoutput (observable by the environment). In practice, the quiescence is observedby means of timers: a timeout occurs if and only if the implementation is lockedinside a quiescent state. Formally, we handle quiescence by associating to LTS Mits so-called \suspension automaton" � (M) = (QM ; AM [f�g; T �(M); qM0) whereT �(M) = TM [f(p; �; p) j p 2 QM ^ quiescent (p)g

2.2 Speci�cation and implementationThe system speci�cation is in general expressed using a dedicated languageor notation (SDL, Lotos, UML, etc). The operational semantics of this lan-guage can be described in terms of IOLTS. Thus, we note the speci�cationS=(QS; AS; T S; qSinit), with AS = ASI [ASO.The Implementation Under Test (IUT) is assumed to be a \black box" thosebehaviour is known by the environment only through a restricted interface (aset of inputs and outputs). From a theoretical point of view, it is convenient toconsider the IUT behaviour as an IOLTS IUT=(QIUT; AIUT; T IUT; qIUTinit), whereAIUT = AIUTI [AIUTO is the IUT interface. We assume in addition that this IUT iscomplete with respect to to AI (it never refuses an unexpected input), and thatthe speci�cation S is a partial IOLTS of the IUT:AS � AIUT and L(S) � L(IUT) # (AS).Intuitively, a speci�cation is partial if each trace of the speci�cation may beexecuted by the IUT (but the IUT may contain unspeci�ed behaviours).2.3 Property and satis�ability relationThe objective of this work is to generate test cases allowing to check the sat-is�ability of some classes of properties on a given IUT. In particular we re-strict ourselves to linear properties, those associated models are sets of IOLTSexecution sequences. Two kinds of linear properties can be considered: safetyproperties, characterised by �nite execution sequences, and liveness properties,characterised by in�nite ones. Thus, an IUT will satisfy a given linear propertyP if and only if all of its execution sequences belong to the model of P .From the test point of view, only the (non-)existence of a �nite executionsequence can be checked on a given IUT (since the test execution time has toremain bounded). This restricts in practice the test activity to the validation ofsafety properties. Nevertheless, an interesting sub-class of safety properties arethe so-called bounded liveness. Such properties allow for instance to a expressthat the IUT will exhibit a particular behaviour within a given amount of time,or before a given number of iterations has been reached. From a practical pointof view, it is very useful to express such properties as liveness (i.e., in terms ofin�nite execution sequences, telling that the expected behaviour will eventuallyhappen), and then to bound their execution only at test time. The main advan-tage is that the \bounds" are not part of the test generation process, and theycan be chosen depending on the concrete test conditions. Therefore, we proposein this section to specify the properties of interest using a general model, allow-ing to express both �nite and in�nite execution sequences. This model is then\parameterised" to handle bounded liveness properties.Automata on in�nite words. Several acceptance conditions (B�uchi, Muller, Streett,Rabin, etc) have been proposed to extend �nite-state IOLTS to recognise in�nitesequences. We recall the de�nition of B�uchi and Rabin automata and illustrateon an example the di�erence between them.

De�nition 1. A B�uchi automaton Rb is a structure (B,GB) where B = (QB; AB;T B; qBinit) is an IOLTS and GB is a subset of QB. The automaton Rb accepts anin�nite execution � of AB! if there is an in�nite run � of B over � such thatinf(�) \ GB 6= ;.De�nition 2. A Rabin automaton Ra is a structure (R,T R) where R = (QR; AR;T R; qRinit) is an IOLTS and T R=h(LR1; UR1); (LR2; UR2); : : : ; (LRk; URk)i is a pairs tablewith LRi ; URi � QR for i 2 f1; 2; : : : ; kg. The automaton Ra accepts an in�niteexecution � of AR! if there is an in�nite run � of R over � such that for somei 2 f1; 2; : : : ; kg, inf(�) \ LRi 6= ; and inf(�) \ URi = ;.
1 2

d,n

d

d

Fig. 1. Non deterministic B�uchi automaton recognising (d+ n)�d!

1 2

n

d
n

d

Fig. 2. Deterministic Rabin automaton recognising (d+ n)�d!
Example. As an example, consider the following property \The system alwayscomes back to its nominal mode (action n) after entering a degraded one (actiond)". This property can be expressed by the following (!-regular) language: L =(d�n)!. The negation of this property is expressed by L = (d + n)�d! whichis not recognisable by a deterministic B�uchi automaton. The non deterministicB�uchi automaton recognising L is given by the �gure 1, with GB = f2g and theinitial state is 1.Consider now the deterministic automaton of �gure 2 as a B�uchi automaton,with GB = f2g and the initial state is 1. This automaton accepts all sequencescontaining in�nitely often many occurrences of n or many occurrences of d, whichare not in L.Now, if the automaton of �gure 2 is considered as a Rabin automaton withthe pair table ff2g; f1gg, then this automaton recognises exactly L (it acceptsan in�nite word i� it has in�nitely many occurrences of d). Thus, we consider in

this paper deterministic Rabin automata [14] since they recognise all classes of!-regular language.As another example, the �gure 3 shows a Rabin automata with pair (L,U)equals to (f3g, ;) recognising execution sequences in which a req action is atsome point followed by an error action. The �-loop on state 3 indicates that a�nite execution sequence terminating after an error action is recognised by thisautomaton. This artefact allows to deal both with �nite and in�nite executionsequences.
Lgrant

request

1

error

2 3 �

Fig. 3. Example of a safety property expressed by a Rabin automaton
Rabin automata are a natural model to express liveness properties. However,to correctly handle bounded liveness as well, we need to \parameterise" theseautomata in order to limit the size of the in�nite execution sequences they recog-nise. The (simple) solution we propose consists in associating a counter to eachstate belonging to an (Li, Ui) pair. An execution sequence � is now recognisedif and only if it visits \su�ciently often" an Li-state, and \not too often" anUi-state, according to the counters associated to these sets (those actual valuewill be instantiated at test time).De�nition 3. A Parameterised Rabin automaton is a tuple PRa = (R; T R; CR)where (R; T R) is a Rabin automaton and C = f(cl1; cu1); : : : ; (clk; cuk)g withcli; cui 2 N . An execution sequence � is accepted by PRa if and only if: there isan �nite run of PRa � on � such that for some i 2 f1; 2; : : : ; kgjfj j �(j) 2 LRi gj� cli and jfj j �(j) 2 URi gj� cuiThus, the language accepted by PRa is L(PRa), the set of sequences accepted byPRa.Observer and satis�ability relation. Test case generation with respect to a lin-ear property P is facilitated by considering an observer automaton recognisingexactly the execution sequences of :P . Since we want to deal with safety andbounded liveness properties we choose here to model these observers as deter-ministic Parameterised Rabin automaton Obs = (O; T O; CO). We are now ableto formally de�ne the satis�ability relation relation we consider between an IUTand a linear property.De�nition 4. Let IUT be an IOLTS, P a property, and Obs = (O; T O; CO) theobserver recognising the sequences of :P, where O = (QO; AO; T O; qOinit). Then,IUT satis�es P i� (L(IUT) # AO) \ L(O) = ;. That is, none of the observableexecution sequences of the IUT are recognised by the observer.

2.4 Test architecture and test caseTest Architecture. At the abstract level we consider, a test architecture is simplya pair (Ac, Au) of actions sets, each of them being a subset of A : the set ofcontrollable actions Ac, initiated by the tester, and the set of observable actionsAu, observed by the tester. A test architecture will be said compliant with anobserver Obs if it satis�es the following constraints : AOI � Ac and AOO � Au.In other words the tester needs at least being able to control (resp. observe) allinputs (resp. outputs) appearing in the observer.Test Cases. For a given observer Obs, a test architecture (Ac, Au) compliantwithO, an (abstract) test case is a Parameterised Rabin automaton (TC,T TC; CTC)with TC=(QTC; ATC; TTC; qTCinit) and satisfying the following requirements:1. ATC = ATCI [ATCO with ATCO = Ac and ATCI � Au. Note that Ac (resp. Au) isthe set of controllable (resp. observable) actions.2. TC is deterministic wrt ATC, controllable (for each state of QTC there isat most one outgoing transition labelled by an action of Ac), and input-complete (for each state of QTC, for each element a of Au, there exists exactlyone outgoing transition labelled by a).3. The pair table T TC = h(LTC1 ; UTC1); : : : ; (LTCk ; UTCk)i is de�ned with respectto the observer Obs:qTC 2 LTCi (resp. UTCi) i� 9� 2 ATC�; qO 2 LOi (resp. UOi) such that qOinit �! qOand qTCinit �#A O! qTCThe last condition expresses that there is an execution sequence of the test casestarting from the initial state of the test case and leading to a state of LTCi (resp.UTCi) if there is a corresponding execution sequence of the observer starting fromthe initial state of the observer and leading to a state of LOi (resp. UOi).2.5 Test cases execution and verdictsLet IUT=(QIUT; AIUT; T IUT; qIUTinit) an implementation, (TC,T TC; CTC) a test casewith TC=(QTC; ATC; TTC; qTCinit), and (Ac, Au) a test architecture. The test exe-cution of TC on IUT can be modelled by a parallel composition between IUTand TC with synchronisations on action sets Ac and Au. More formally this testexecution can be described by an IOLTS E=(QE ; AE ; T E ; qEinit), where AE = ATC,and sets QE and TTC are de�ned as follows:{ QE is a set of con�gurations. A con�guration is a triplet (pTC; pIUT; �) wherepTC 2 QTC; pIUT 2 QIUT and � is a partial function from QTC to N , whichcounts the number of times an execution sequence visits a state belongingto LTCi or UTCi .{ T E is the set of transitions (pTC; pIUT; �) a!E (qTC; qIUT; �0) such that� pTC a!TC qTC, pIUT a!IUT qIUT and

� �0(qTC) = 8>><>>:
�(qTC) if qTC 62 [i2f1;���kg(LTCi [UTCi)�(qTC) + 1 if qTC 2 [i2f1;���kg(LTCi [UTCi)

The initial con�guration qTCinit is (qTCinit; qIUTinit ; �init), where for all q, �init(q) = 0.T E describes the interactions between the IUT and the test case. Each counterassociated with a state of LTCi [UTCi is incremented when an execution sequencevisits this state.Verdicts. Test execution is supposed to deliver some verdicts to indicate whetherthe IUT was found correct or not. These verdicts can be formalised as a functionon runs of E to the set fPass;Failg. More precisely:Fail The execution of a run � of E on � gives the verdict Fail if and only ifthere is an i 2 f1; 2; : : : ; kg and a l 2 N such that1. �(l) = (pTCl ; pIUTl ; �l), pTCl 2 LTCi and �l(pTCl) � cli, and2. for each m 2 [0 � � � l] �(m) = (qTCm ; qIUTm ; �m) satis�es �m(qTCm) � cui. Inthis case, the property is not satis�ed.Pass Similarly, the execution of a run � give the verdictPass i� 8i 2 f1; 2; : : : ; kgand 8l 2 N1. �(l) = (pTCl ; pIUTl ; �l) and pTCl 2 LTCi implies �l(pTCl) < cli or2. there is a m 2 [0 � � � l] �(m) = (qTCm ; qIUTm ; �m) and �m(qTCm) > cui.In practice the test case execution can be performed as follows:{ At each step of the execution the controllability condition may give a choicebetween a controllable and an observable action. In this situation the testercan �rst wait for the observable action to occur (using a local timer), andthen choose to execute the controllable one.{ Formal parameters CTC are instantiated according to the actual test envi-ronment. Counters are then associated to each sets UTCi and LTCi . Thesecounters, initialised to 0, are incremented (inside the test case) whenever acorresponding state is reached during test execution. Thus, a Fail verdict isissued as soon as an incorrect execution sequence is reached (according tode�nition above), and a Pass verdict is issued either if the current executionsequence visits \too many often" a state of UTCi (�m(qTCm) > cui), or if aglobal timer, started at the beginning of test execution, expires. This lastcase occurs when an execution sequence enter a loop without state belongingto LTCi or UTCi .
3 Test GenerationWe propose in this section an algorithm to automate the generation of \propertyoriented" test cases. This algorithm takes as input a (partial) speci�cation S0 of

a given implementation IUT, an observer (a deterministic parameterised Rabinautomaton) Obs = (O; T O; CO) characterising the negation of a linear propertyP), and a test architecture TA = (Ac; Au). Test cases produced by this algorithmare sound in the sense that, when executed against the IUT, a Fail verdict isproduced only if this IUT does not satisfy property P .The test generation algorithm we propose is based on two steps: generationof a so-called test graph (TG, for short) and test cases selection from this TG.We �rst describe these two steps at an abstract level, and then we discuss someimplementations issues.
3.1 Test graphThe purpose of the test graph is to gather a set of execution sequences, com-puted from the speci�cation S0 and the observer Obs, compliant with the testarchitecture TA (i.e., executable by an external tester), and able to witness thenon satis�ability of P for a given IUT. Each controllable sub-graph of this TGcould then be turned into an executable test case for property P (as de�ned inthe previous section).However, even for a simple property and with a restricted test architecture, itappears that the number of sequences matching this de�nition is quite large: infact it could be any sequence over Ac [Au recognised by O. Considering such a\complete" test graph would be of limited practical interest in this context: mostof these sequences are likely to be very \far" from the actual IUT behaviour,and executing them would not provide very useful information. Consequently,the probability to extract a \relevant" controllable test case from this large setwould be rather low. Therefore we need some heuristic to restrict this test graphto the most promising execution sequences.The heuristic we propose here to compute the test graph is to exploit at bestthe information provided by the speci�cation, proceeding as follows:1. First, we transform the initial speci�cation S0 by computing its deterministicsuspension automaton S with respect to the test architecture TA:S = � (det (S0; Ac [Au)). This operation preserves the observable/controllablelanguage of the speci�cation: L(S) = L(S0) # (Ac [Au).2. Then, we select the longest sequences of L(S) matching with a pre�x ofL(O). Such sequences are the most promising candidates to witness thenon-satis�ability of P) since they belong both to the speci�cation (and thenare supposed to be executable on the IUT), and to a pre�x of L(O).3. Finally, these sequences are then extended to cover complete sequences ofL(O). Note that if the speci�cation already contains a complete sequence ofL(O) (and not only one of its proper pre�x) this means that the speci�cationitself does not satisfy P .From a more formal point of view the test graph we compute is a param-eterised Rabin automaton (TG; T TG; CTG): the IOLTS TG gathers the set ofexecution sequence described above, and the pair table T TG and counter sets

CTG are inherited from T O and CO. This is described in de�nition 5 below,proceeding in two steps:1. Computation of an asymmetric product
 between S and O. The purpose ofthis product is to mark each state pS of S with a corresponding state pO ofO, such that pS and pO are reachable from the initial states by \matching"execution sequences (rules R1 and R2).2. Selection of the longest execution sequences of S
O matching with a pre�xof L(O), and extension of these sequences to obtain a complete sequenceof L(O). This is performed by rule R4: a transition (pS ; pO) a�! (pS; qO) isadded to the transition relation TTG i� such a transition exists in O but notin S
O.De�nition 5. Let TA = (Ac, Au) a test architecture, S0 a speci�cation andS=(QS; AS; T S; qSinit) its deterministic suspension automaton with respect to TA:S = � (det (S0; Ac [Au)). Let (O; T O; CO) be an observer withO=(QO; AO; TO; qOinit) and T O = h(LO1 ; UO1); (LO2 ; UO2); : : : ; (LOk; UOk)i such thatTA is compliant with O. We de�ne the Parameterised Rabin automaton(TG; T TG; CTG) where TG=(QTG; ATG; T TG; qTGinit), such that QTG � QS �QO,ATG � AS, qTG0 = (qS0 ; qO0), and QTG, T TG are obtained as follows:1. Let Q
 and T
 be the smallest sets satisfying rules R0, R1 and R2 below:
qTG0 2 Q
 [R0](pS; pO) 2 Q
; pS a�!TS qS ; pO a�!TO qO(qS ; qO) 2 Q
; (pS; pO) a�!T
 (qS ; qO) [R1]

(pS; pO) 2 Q
; pS a�!TS qS ; :pO a�!TO(qS ; pO) 2 Q
; (pS; pO) a�!T
 (qS ; pO) [R2]2. Then, QTG and T TG are the smallest sets satisfying rules R3 and R4 below:Q
 � QTG; T
 � T TG [R3](pS; pO) 2 QTG;pO a�!TO qO; � 2 (AS nAO)�6 9qS : ((pS; pO) �:a=)T
 (qS ; qO))(pS; qO) 2 QTG; (pS ; pO); a�!TTG ; (pS ; qO)
9>>>>=>>>>; [R4]

3. The pair table T TG is equal to h(LTG1 ; UTG1); (LTG2 ; UTG2); : : : ; (LTGk ; UTGk)i whereLTGi and LTGi are de�ned as follows:LTGi = f(pS ; pO) 2 QTG j qO 2 LOi gUTGi = f(pS ; pO) 2 QTG j qO 2 UOi g4. The set of counters CTG is directly inherited from Obs:CTG = CO

3.2 Test cases selectionThe purpose of the test case selection is to generate a particular test case TCfrom the test graph TG. Roughly speaking, it consists in \extracting" a sub-graph of TG that are controllable and containing a least a sequence of L(O).Clearly, to belong to L(O), an execution sequence of O has to reach a cyclecontaining a state belonging to some distinguished set LOi (for some i) of the pairtable associated to O. Conversely, any sequence of O not leading to a stronglyconnected component of O containing a state of LOi cannot belong to L(O).Therefore, we �rst de�ne on TG the predicate L2L (for \leads to L"), to denotethe set of states leading to such a strongly connected component:L2L (q) � 9(q1; q2; !1; !2; !3):(q !1=)TTG q1 !2=)TTG q2 !3=)TTG q1and 9i: q2 2 LOi)We can now de�ne a subset of relation TTG, controllable, and containing atleast a sequence of L(O). This subset, computed by the function select below,contains all non controllable transition of TTG (labelled by an element of Au),and at most one (randomly chosen) controllable transition of TTG leading to astate of L2L when several such transitions exist from a given state of TG:select (TTG) = f(p; a; q) 2 TTG j a 2 Au ora = one-of (fai 2 Ac j p ai�!TTG qi and L2L (qi)g)gNote that this function preserves the reachability of states belonging to LO.Finally, this subset of TTG remains to be extended with all (non controllable)action of au not explicitly appearing in TTG, to ensure that the test case execu-tion will never be stopped by reception of an unexpected event. The de�nitionof a test case TC is then the following:De�nition 6. let (TG; T TG; CTG) a test graph with TG=(QTG; ATG; T TG; qTGinit)and TA = (Ac, Au) a test architecture. A test case (TC; T TC ; CTC) is a Param-eterised Rabin automaton with TC=(QTC; ATC; T TC; qTCinit) such that qTC0 = qTG0 ,ATC = ATG [Au, QTC is the subset of QTG reachable by TTC from qTC0 , T TCis the restriction of T TG over QTC , and TTC is de�ned as follows:TTC = select (TTG) [f(p; a; p) j a 2 Au and6 9q: (p; a; q) 2 TTGg
3.3 Implementation issuesWe briey sketch the concrete algorithms that could be used to implement thetest case generation method proposed in this section. The objective here is not toprovide a detailed implementation description (beyond the scope of this paper),but rather to give some indications on its algorithmic complexity. A possible(and simple) approach to compute a test case TC from a speci�cation S, anobserver Obs and a test architecture TA is to proceed as follows:

1. computation of S (determinisation and suspension of S0) and computationof sets Q
 and T
 introduced in de�nition 5. These operations can be doneduring a joint traversal of S and O.2. computation of the test graph TG (sets QTG and TTG) from the previousresult. This can be done through a single traversal of Q
 and T
.3. computation of the strongly connected components of TG containing a dis-tinguished state of LOi , using for instance Tarjan's algorithm [18]. This op-eration also gives the L2L predicate.4. test case selection (computation of function select) using a backward traver-sal of TG.Apart the determinisation phase, all these operations remain linear in the num-ber of transitions of the LTS considered, but the test graph has to be explicitlystored. However, some of the algorithms proposed in the TGV tool could cer-tainly be used to perform most of these operations on an on-the-y basis. Thispoint has not been investigated at this time.
4 Example4.1 System description.We consider a control system for an automatic door, speci�ed by the IOLTSgiven in �gure 4. The behaviour of the controller is the following: it can receivea request for opening the door (REQOPEN), the door is then successively open(OPEN) and closed (CLOSE). It can also receive a LOCK request, those e�ect is tode�nitely lock the door, or any other requests OTHER, that are silently ignored.All these actions are supposed to belong to the test architecture. A possiblespeci�cation of the controller is the IOLTS shown at the �gure 4.

1

2

input(Other)

input(ReqOpen)

output(open)
(close)output4

3

input (Lock)

Fig. 4. Speci�cation
The property we want to test on this system is: whenever the door is open, then itshould be closed before a given amount of time (to be precised at test time). Thenegation of this property (the observer) is modelled by the Parameterised Rabinautomaton of �gure 5, where the � label denotes any observable action otherthan CLOSE (including �). We now assume that the IUT is not quite conformto the speci�cation. In particular it may spontaneously output an ABORT actionand re-enter the initial state. The corresponding IOLTS is pictured on �gure 8.

Cu1

L Cl 2

output(close) output(open)

1U

2

�Fig. 5. Observer
4.2 Test Graph generation.The �rst step consists in generating a test graph from the speci�cation and theobserver. The corresponding deterministic parameterised Rabin automaton isshown on �gure 6. Note that the sets L and U are inherited from the observer.On this test graph, the execution sequences belonging to the language of theobserver are the ones ending by �! (namely in states 32 and 42).

11

14

42

input(Lock)

21

23

output(open)

U
L

U
output(close)

input(ReqOpen)

U

input(Other)

output(open)

output(close)
L�

� �

Fig. 6. Test Graph
4.3 Test Selection and test execution.From the test graph we can then extract some particular test cases, for instancethe one pictured on �gure 7.

11
21

23

output(open)

L
U

output(close)

input(ReqOpen)

U

input(Other)

� �

Fig. 7. Test Case
Transitions labelled with � indicate that the test case is output complete.Executing this test case may exhibit a possible incorrect behaviour of the IUT(�gure 8), in which an occurrence of the ABORT action in state 32 leads to a Failverdict (since the IUT is deadlocked in this state).

1

2
input(ReqOpen)

output(open)
(close)output

output

output

3input
(Other)input

4

(abort)

(abort)

(Lock)

Fig. 8. IUT
More precisely, each time states 32, 11 or 21 are reached their respectivecounter are incremented. So during the test execution, the counter associatedwith the state 32 can overow if an ABORT action occurred. Of course, this sce-nario is not guaranteed to appear since this incorrect behaviour is not fullycontrollable by the tester.

5 ConclusionIn this paper, we have proposed an approach to automatically produce test casesallowing to check the satis�ability of a linear property on a given implementation.Parameterised test cases are generated from a (possibly partial) speci�cation ofthe IUT, the (bounded liveness) property being expressed itself by a Parame-terised Rabin automaton. The resulting test case can then be instantiated onlyat test time, depending on the test environment considered (for instance thetarget architecture, or the actual communication structure between the testerand the IUT, etc.). This approach has been formally de�ned, and a practicaltest generation algorithm has been sketched.The objective of this work is to extend to other contexts or application do-mains the framework of conformance testing, already well established in thetelecommunication area. We believe that a prerequisite was to make this frame-work more exible, for instance allowing the use partial speci�cations, or allowingthe validation of explicit properties. This is a �rst step in this direction.This work can now be extended in several directions. First we need to pro-totype the algorithms we have proposed to better estimate their performances,and possible optimisations. Then, their application on various case studies willcertainly allow to improve the test selection strategy (possibly using TGV-liketest purposes in combination with a property). Finally, the use of static analysistechniques (for instance as presented in [2]) could also certainly improve thee�ciency of the test generation algorithm by focusing on most promising partsof the speci�cation.Acknowledgement. We would like to thank the people of a French group work-ing on robustness testing , inside a French action supported by the Cnrs andgathering members of Irisa, Laas, Labri, Lri and Verimag laboratories(http://www.laas.fr/TSF/AS23/). We would like also to thank the anony-mous referees.

References1. A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,and L. Heerink. Formal Test Automation : a Simple Experiment. In 12th Inter-national Workshop on Testing of Communicating Systems, G. Csopaki et S. Dibuzet K. Tarnay, 1999. Kluwer Academic Publishers.2. M. Bozga, J.-C. Fernandez, and L. Ghirvu. Using static analysis to improve auto-matic test generation. In Tools and Algorithms for Construction and Analysis ofSystems, pages 235{250, 2000.3. E. Brinksma. A theory for the derivation of tests. In S. Aggarval and K. Sabnani,editors, Protocol Speci�cation, Testing and Veri�cation VIII, IFIP, pages 63{74.Elsevier Science Publishers, B.V., North-Holland, 1988.4. J. B�uchi. On a decision method in restricted second order arithmetic. In N. et al.,editor, Logic, Methodology and Philosophy of Sciences. Stantford Univ. Press, 1962.5. J.-. Fernandez, C. Jard, T. J�eron, and C. Viho. Using on-the-y veri�cation tech-niques for the generation of test suites. In CAV'96. LNCS 1102 Springer Verlag,1996.6. R. Groz, T. Jeron, and A. Kerbrat. Automated test generation from SDL spec-i�cations. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors, SDL'99 TheNext Millenium, 9th SDL Forum, Montreal, Quebec, pages 135{152, Elsevier, Juin1999.7. OSI-Open Systems Interconnection, Information Technology - Open Systems Inter-connection Conformance Testing Methodology and Framework - Part 1 : GeneralConcept - part 2 : Abstract Test Suite Speci�cation - part 3 : The Tree and Tab-ular Combined Notation (TTCN). International Standard ISO/IEC 9646-1/2/3,1992.8. B. Marre and A. Arnould. Test sequences generation from lustre descriptions:Gatel. In In Fifteenth IEEE Int. Conf. on Automated Software Engineering (ASE2000),IEEE Computer Society Press, pages 229{237, Grenoble, septembre 2000.9. M. Mukund. Finite-state automata on in�nite input. Technical report, 1996.10. I. Parissis and J. Vassy. Test des proprietes de surete. In In Actes du colloqueModelisation de Systemes Reactifs (MSR'01), pages 563{578, Hermes, 2001.11. M. Phalippou. Relations d'implantations et Hypoth�eses de Test sur des automates�a entr�ees et sorties. Th�ese de doctorat, Universit�e de Bordeaux, France, 1994.12. M. Phalippou. Test sequence using Estelle or SDL structure information. InFORTE'94, Berne, Oct. 1994.13. P.Thevenod-Fosse. Unit and integration testing of lustre programs: a case studyfrom the nuclear industry. In 9th European Workshop on Dependable Computing(EWDC-9), pages 121{124, Gdansk, Pologne, 14-16 Mai 1998.14. M. Rabin. Automata o, In�nite Object and Church' Problem. Number 13 inRegional Conference series in mathematics. American Mathematical Society, 1972.15. P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing ofreactive systems. In 19th IEEE Real-Time Systems Symposium, Madrid, Spain,dec 1998.16. S. Safra. On the complexity of !-automata, checking. pages 319{327, 1988.17. M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink - A Tool for Au-tomatic and Semi-Automatic Test Generation from SDL Speci�cations. TechnicalReport A-98-05, Medical University of L�ubeck, 1998.18. R. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Computation,2(1), june 1972.

19. J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In T. Mar-garia and B. Ste�en, editors, Second Int. Workshop on Tools and Algorithms forthe Construction and Analysis of Systems (TACAS'96), volume 1055 of LectureNotes in Computer Science, pages 127{146. Springer-Verlag, 1996.20. P. Wolper, M. Vardi, and A. Sistla. Reasoning about in�nite computation paths.In 24th IEEE Symposium of Foundations of Computer Science, 1983.

