Property Oriented Test Case Generation

Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon

Verimag, - Centre Equation - 2 avenue de Vignate - F38610 Gieres, France
{Jean-Claude.Fernandez,Laurent.Mounier,Cyril.Pachon}@imag.fr,
http://www-verimag.imag.fr/

Abstract. In this paper we propose an approach to automatically pro-
duce test cases allowing to check the satisfiability of a linear property on
a given implementation. Linear properties can be expressed by formulas
of temporal logic. An observer is built from each formula. An observer is
a finite automaton on infinite sequences. Of course, testing the satisfiabil-
ity of an infinite sequence is not possible. Thus, we introduce the notion
of bounded properties. Test cases are generated from a (possibly partial)
specification of the IUT and the property to validate is expressed by a
parameterised automaton on infinite words. This approach is formally
defined, and a practical test generation algorithm is sketched.

1 Introduction

Testing is certainly one of the most popular software validation techniques and it
is a crucial activity in many domains such as embedded systems, critical systems,
information systems, telecommunication, etc. Consequently, a lot of work was
carried out during the last decade to both formalise the testing activities and to
develop tools allowing to automate the production and execution of test suites.

The particular problem of testing if an implementation is “correct” with
respect to its specification is referred to as conformance testing. This problem
was mainly investigated inside the telecommunication area (as described in the
ISO standard 9646 [7]), and a formal approach was outlined in [19, 11, 3]. These
works gave birth to several (academic and commercial) tools[1,12,17,6] able
to automatically generate test cases from a system specification. For instance,
in [5], a technique is proposed to derive test cases from a (formal) specification
and a test purpose. This technique is based on a partial exploration of a kind
of product between the specification and the test purpose. An associated tool,
called TGv, was developed by Irisa Rennes and Verimag Grenoble.

We first explicit a bit more the concepts of black bozx testing and conformance
testing.

Black box testing. We consider here “black box” testing, meaning that the be-
haviour of the IUT (Implementation Under Test) is only visible by an external
tester, through a restricted test interface (called PCO, for Points of Control and
Observation). There exists two kinds of interactions between the tester and the
IUT: outputs of the tester are stimuli sent in order to control the TUT, whereas

inputs of the tester are observations of the IUT’s outputs. These sets of interac-
tions are described by a test architecture. In black box testing the internal state
of the IUT is not observable by the tester. Consequently:

the tester cannot observe the internal non-determinism of the IUT ;
the tester should remain deterministic since it cannot backtrack the IUT to
a given internal state.

A possible model to describe these sequences of interactions is Input-Output
Labelled Transition System (TOLTS, see definition below).

Conformance testing. Conformance testing is based on the following concepts:

IUT: Even if the internal code of the TUT is not visible from the outside,
its behaviour can be characterised by its interactions with its environment.
This external behaviour can be modeled with an IOLTS. We suppose in the
following that this IOLTS is input complete, that is, in each state the IUT
cannot refuse any input proposed by the environment.

Test architecture: Test architecture defines the set of interactions between
the IUT and an environment, distinguishing between controllable and ob-
servable events. 1SO9646 standard proposes four test methods : local test
method, distributed test method, coordinated test method, and remote test
method. All these methods are based on the black box testing principles and
describe possible environment of the IUT. Of course, test architecture is a
parameter of a test generation technique. In this paper, we consider a local
test architecture.

Specification: The specification represents the expected behaviour of the ITUT,
to be used as a reference by the tester. This expected behaviour can be also
formally modelled by an IOLTS. Note that the specification not necessarily
describes only the wvisible behaviour of the TUT, but it may also contain some
of the internal actions performed by the implementation.

Conformance relation: Defining whether an TUT is correct or not with re-
spect to a specification is achieved in this context by introducing a formal
relation between TOLTS. Several relations have been proposed so far, such
as ioco [19]. Other relations have also been proposed on other models (such
conf [3]).

Test case: Roughly speaking a test case is a set of interactions (input and
output) sequences a tester can perform on an TUT interface. When executed,
each interaction sequence delivers a verdict indicating whether the TUT was
found conform or not on this particular execution (with respect to a given
conformance relation).

Test purpose: The test purpose represents a particular functionality (or sets
of abstract scenarios) the user wants to test. It can also be modeled by an
TIOLTS, and may be used to automate the test case generation.

Although this conformance testing framework is now well established and hap-
pens to be be very useful in the telecommunication area, its use in other appli-
cation domains suffers, in our opinion, from two important limitations:

— first, it requires a rather exhaustive formal specification, since conformance is
defined with respect to this specification, and any IUT exhibiting unexpected
behaviours (from this specification point of view) would be rejected;

— second, the conformance relation is not very flexible: it is not always easy
to understand what it does exactly preserve, and, more important, it is not
possible to adapt it to the particular functionality one wants to test.

We propose in this work to extend this framework (and particularly what was
done inside the Tav tool) to the generation of property oriented test cases. The
general idea is to allow automatic test generation from a partial specification (not
necessarily expressing the overall expected behaviour of the system), and with
respect to a particular property (test case execution should indicate whether the
TUT satisfy or not this property). This approach is outlined below.

Property testing. The properties we consider are linear properties: each property
defines a language (i.e., a set of sequences), and an IUT satisfies a given property
if and only if all its execution sequences belong to its associated language. In this
context it is a common practice to distinguish between safety properties, that
can be checked by considering only finite execution sequences of the TUT, and
liveness properties that need to consider also the infinite ones. Several charac-
terisations of such properties have been proposed in the verification community,
based on various specification formalisms : automata on infinite words (recog-
nising w-regular languages), linear-time temporal logics (or p-calculus), boolean
equation systems, etc. Automata on infinite words, like Biichi automata [4], are
very interesting from an algorithmic point of view, and they are used in sev-
eral decision procedures [20] implemented in model checkers. It can be shown in
particular that any w-regular language can be characterised by a Biichi automa-
ton, or, equivalently, by a deterministic Rabin automaton, see for example [9,
16]. Since the use of a deterministic automaton is an important issue in the
test generation technique we propose in this paper, we will consider in the fol-
lowing that the property to be checked is expressed by a deterministic Rabin
automaton. Of course, testing the satisfiability of a liveness property is not pos-
sible: it would require an infinite execution time. However, automata on infinite
words can be parameterised to specify so-called bounded liveness properties: the
automaton recognises a set of infinite execution sequences and some external
parameters simply limit the “length” of the sequences to consider (this length
being expressed for instance in number of interactions, or as an overall execution
time).

More precisely, the test generation technique we propose can be sketched as
follows:

— A (possibly partial) specification S is used as a “guideline” for the test case
synthesis, and it is therefore supposed to be “closed enough” to the actual
behaviour of the TUT. Note however that we do not require at this level any
particular conformance relation between S and the TUT.

— A safety or bounded liveness property P is given through an observer Obs
recognising sequences of —P. This observer is a parameterised automaton on
infinite words.

— Test cases are automatically generated by traversing the specification in or-
der to find the “most promising” execution sequences able to show the non
satisfiability of P by the IUT. These execution sequences are the sequences
recognised by Obs that are the “closest” to the ones provided by the speci-
fication.

Related Work. Producing test cases from a formal specification to check the
satisfiability of a given property is a rather natural idea, and consequently nu-
merous works have been already carried out in this area, leading to various kinds
of tools. They mostly differ in the nature of the specification and property they
consider, and they are often based on probabilities to select the test sequences
(such in [15, 10, 8,13]). However, an original aspect of our approach is the use of
parameterized automata on infinite words to specify properties and to instanci-
ate them only at test time. In addition, test cases we produce are IOLTS (not
only sequence sets) that can be executed against non deterministic TUTs.

2 Models

This section formalises the different elements involved in the test case generation
framework we propose.

2.1 Input-Outputs labelled transition systems

The basic models we consider are based on Input-Output Labelled Transition
Systems (IOLTS), namely Labelled Transition Systems in which input and out-
put actions are differentiated (due to of the asymmetrical nature of the test-
ing activity). We consider a finite alphabet of actions A, partitioned into two
sets: input actions Ay and output actions Ap. A (finite) IOLTS is a quadruplet
M=(Q™M, AM,T™, ¢¥..) where Q" is the finite set of states, ¢}, is the initial
state, AM C A is a finite alphabet of actions, and T™ C Q™ x AM U {7} x Q™ is
the transition relation. Internal actions are denoted by the special label 7 ¢ A.
7 is assumed to be unobservable for the system’s environment whereas actions
of AM are visible actions representing the interactions either between the system
and its environment, or between its internal components.

Notations. We denote by N the set of non negative integers. For each set X, X*
(resp. X* = [X—N]) denotes the set of finite (resp. infinite) sequences on X.
Let 0 € X* ; 0; or o(i) denotes the i*" element of 0. We adopt the following
notations and conventions: Let 0 € A*, o € A, p,q € Q™. We write p Sy ¢
iff (p,a,q) € TV and p Sy, ¢ iff Joy,00---0, € A, po, -+ ,pn € Q™ such that
o =01.09...0, and py =D, P; ”$1M piv+1 for ¢ < n, p, = q. In this case, o is
called a trace or execution sequence, and pg - --p, a run over o. An infinite run

of M over an infinite execution sequence o is an infinite sequence p of Q™ such
that 1. p(0) = ¢, and 2. p(i) ULZ))M p(i+1)). inf(p) denotes the set of symbols
from QY occurring infinitely often in p: inf(p)={q | Yn. 3i. i > n. A p(i) = ¢}.
Let V a subset of the alphabet A. We define a projection operator |y : A*—V*
in the following manner: € ly=¢, (a.0) ly=0 Ly ifa € V., and (a.0) lv=a.(c lv)
if a € V. This operator can be extended to a language . (and we note L | V)
by applying it to each sequence of L. The language recognised by M is £L(M) =

{w | 3g such that ¢™. =5 q}.

Let M=(QY, AM, T™, ¢}%..) an IOLTS, we recall the completeness, determinism
and quiescence notions.

Completeness. M is complete with respect to a set of actions X C A if and only if
for each state g™ of Q™ and for each action z of X, there is at least one outgoing
transition of T from ¢ labelled by = € X:

VpM € QM -Vx € X - 3g™ € Q™ such that pM 5y ™.

Determinism. M is said deterministic with respect to a set of actions X if and
only if it is a deterministic IOLTS containing only actions labelled by elements
of X:

VpM e QM -Vz € X - pM S M AP Sy M = M =g,

We introduce a determinisation operator

det (M, X)=(Qdet M) gdet (X irpdet (M) gdet (M20) t6 compute a determin-
istic IOLTS with respect to X associated to M. This IOLTS is defined as follows:
Qaer M) C QQM, Ader) — X q?:Lti(tM,X) _ {C] c QM | C]%” ﬂhv[ghw € (A\X)*}
and T = {(S, a,5,) | Ip € Sp. Ig € S,. p 'y gwitha € X Aw €
(A\ X)*}. Note that, L(M) | X = L(det (M, X)).

Quiescence. A test should be able to observe IUT quiescence [19]. Several kinds
of quiescence may happen: a state p is said quiescent in M either if it has no
outgoing transition (deadlock), or if it belongs to a cycle of internal transitions
(livelock):

quiescent (p) = (A(a,q). p S QOVp—=uD

Quiescence can be modelled at the TOLTS level by introducing an extra tran-
sition to each quiescent state labelled by a special symbol §. § is considered as an
output (observable by the environment). In practice, the quiescence is observed
by means of timers: a timeout occurs if and only if the implementation is locked
inside a quiescent state. Formally, we handle quiescence by associating to LTS M
its so-called “suspension automaton” & (M) = (QM, AM U {5}, T*M) ¢M) where
TOM) = TM U {(p,8,p) | p€ QM A quiescent (p)}

2.2 Specification and implementation

The system specification is in general expressed using a dedicated language
or notation (SDL, Lotos, UML, etc). The operational semantics of this lan-
guage can be described in terms of IOLTS. Thus, we note the specification
S=(Q°, A%, T%,q5,;,), with A5 = A U A%,

The Implementation Under Test (IUT) is assumed to be a “black box” those
behaviour is known by the environment only through a restricted interface (a
set of inputs and outputs). From a theoretical point of view, it is convenient to
consider the IUT behaviour as an IOLTS IUT=(Q"", A", T"" ¢{V1), where
AT = APTUANT is the IUT interface. We assume in addition that this IUT is
complete with respect to to A; (it never refuses an unexpected input), and that
the specification S is a partial IOLTS of the TUT:

A5 C AT and £(S) C LIUT) | (49).

Intuitively, a specification is partial if each trace of the specification may be
executed by the IUT (but the IUT may contain unspecified behaviours).

2.3 Property and satisfiability relation

The objective of this work is to generate test cases allowing to check the sat-
isfiability of some classes of properties on a given IUT. In particular we re-
strict ourselves to linear properties, those associated models are sets of IOLTS
execution sequences. Two kinds of linear properties can be considered: safety
properties, characterised by finite execution sequences, and liveness properties,
characterised by infinite ones. Thus, an TUT will satisfy a given linear property
‘P if and only if all of its execution sequences belong to the model of P.

From the test point of view, only the (non-)existence of a finite execution
sequence can be checked on a given IUT (since the test execution time has to
remain bounded). This restricts in practice the test activity to the validation of
safety properties. Nevertheless, an interesting sub-class of safety properties are
the so-called bounded liveness. Such properties allow for instance to a express
that the IUT will exhibit a particular behaviour within a given amount of time,
or before a given number of iterations has been reached. From a practical point
of view, it is very useful to express such properties as liveness (i.e., in terms of
infinite execution sequences, telling that the expected behaviour will eventually
happen), and then to bound their execution only at test time. The main advan-
tage is that the “bounds” are not part of the test generation process, and they
can be chosen depending on the concrete test conditions. Therefore, we propose
in this section to specify the properties of interest using a general model, allow-
ing to express both finite and infinite execution sequences. This model is then
“parameterised” to handle bounded liveness properties.

Automata on infinite words. Several acceptance conditions (Biichi, Muller, Streett,
Rabin, etc) have been proposed to extend finite-state IOLTS to recognise infinite
sequences. We recall the definition of Biichi and Rabin automata and illustrate
on an example the difference between them.

Definition 1. A Biichi automaton Ry, is a structure (B,G”) where B = (Q", A",
T",q%) is an IOLTS and G” is a subset of Q. The automaton R} accepts an
infinite execution o of A®Y if there is an infinite run p of B over o such that

inf(p) NG” # 0.

Definition 2. A Rabin automnaton R, is a structure (R, T") where R = (Q", A",
T" qf.) is an IOLTS and T"=((L{,U{), (L5,U3),. ... (L{, Uf)) is a pairs table
with LF,UF C Q" for i € {1,2,...,k}. The automaton R, accepts an infinite
ezecution o of A®Y if there is an infinite run p of R over o such that for some
i€{1,2,...,k}, inf(p) N LF # 0 and inf(p) N UF = 0.

e

Fig. 1. Non deterministic Bichi automaton recognising (d + n)*d”

Fig. 2. Deterministic Rabin automaton recognising (d + n)*d”

Example. As an example, consider the following property “The system always
comes back to its nominal mode (action n) after entering a degraded one (action
d)”. This property can be expressed by the following (w-regular) language: L =
(d*n)®. The negation of this property is expressed by L = (d + n)*d* which
is not recognisable by a deterministic Biichi automaton. The non deterministic
Biichi automaton recognising L is given by the figure 1, with G® = {2} and the
initial state is 1.

Consider now the deterministic automaton of figure 2 as a Biichi automaton,
with G® = {2} and the initial state is 1. This automaton accepts all sequences
containing infinitely often many occurrences of n or many occurrences of d, which
are not in L.

Now, if the automaton of figure 2 is considered as a Rabin automaton with
the pair table {{2},{1}}, then this automaton recognises exactly L (it accepts
an infinite word iff it has infinitely many occurrences of d). Thus, we consider in

this paper deterministic Rabin automata [14] since they recognise all classes of
w-regular language.

As another example, the figure 3 shows a Rabin automata with pair (L,U)
equals to ({3},) recognising execution sequences in which a req action is at
some point followed by an error action. The §-loop on state 3 indicates that a
finite execution sequence terminating after an error action is recognised by this
automaton. This artefact allows to deal both with finite and infinite execution
sequences.

request error
qQ_ 1w)
grant L

Fig. 3. Example of a safety property expressed by a Rabin automaton

Rabin automata are a natural model to express liveness properties. However,
to correctly handle bounded liveness as well, we need to “parameterise” these
automata in order to limit the size of the infinite execution sequences they recog-
nise. The (simple) solution we propose consists in associating a counter to each
state belonging to an (L;, U;) pair. An execution sequence o is now recognised
if and only if it visits “sufficiently often” an L;-state, and “not too often” an
U,-state, according to the counters associated to these sets (those actual value
will be instantiated at test time).

Definition 3. A Parameterised Rabin automaton is a tuple PR, = (R, T",C")
where (R, T") is a Rabin automaton and C = {(cly, cuy),..., (clg, cu)} with
cl;,cu; € N. An execution sequence o is accepted by PR, if and only if: there is
an finite run of PR, p on o such that for some i € {1,2,...,k}

{7 | p(G) € Li}= cli and [{j | p(j) € UF}< cu;
Thus, the language accepted by PR, is L(PR,), the set of sequences accepted by
PR,.

Observer and satisfiability relation. Test case generation with respect to a lin-
ear property P is facilitated by considering an observer automaton recognising
exactly the execution sequences of —P. Since we want to deal with safety and
bounded liveness properties we choose here to model these observers as deter-
ministic Parameterised Rabin automaton Obs = (O, T°,C?). We are now able
to formally define the satisfiability relation relation we consider between an TUT
and a linear property.

Definition 4. Let IUT be an IOLTS, P a property, and Obs = (O, T°,C°) the
observer recognising the sequences of =P, where O = (Q°, A%, T° q%.:,). Then,
TUT satisfies P iff (L(IUT) | A°) N L(O) = 0. That is, none of the observable
execution sequences of the IUT are recognised by the observer.

2.4 Test architecture and test case

Test Architecture. At the abstract level we consider, a test architecture is simply
a pair (A., A,) of actions sets, each of them being a subset of A : the set of
controllable actions A, initiated by the tester, and the set of observable actions
A, observed by the tester. A test architecture will be said compliant with an
observer Obs if it satisfies the following constraints : A7 C A, and AZ C A,,.
In other words the tester needs at least being able to control (resp. observe) all
inputs (resp. outputs) appearing in the observer.

Test Cases. For a given observer Obs, a test architecture (A., A,) compliant
with O, an (abstract) test case is a Parameterised Rabin automaton (TC,7"°,C"9)
with TC=(Q"°, AT, T7¢, ¢i'5,) and satisfying the following requirements:

1. AT = AT U AL® with A = A. and AT° C A,,. Note that A. (resp. 4,) is
the set of controllable (resp. observable) actions.

2. TC is deterministic wrt A*°, controllable (for each state of Q*° there is
at most one outgoing transition labelled by an action of A.), and input-
complete (for each state of QT for each element a of A, there exists exactly
one outgoing transition labelled by a).

3. The pair table 77¢ = ((L7°,UT°),...,(L}°,U;°)) is defined with respect
to the observer Obs:
q"¢ € LT°(resp. Ur®) iff 3o € AT°* ¢° € L (resp. UP) such that ¢, = ¢°

O
o olA
and ¢&%, — ¢

TC

The last condition expresses that there is an execution sequence of the test case
starting from the initial state of the test case and leading to a state of LT (resp.
U) if there is a corresponding execution sequence of the observer starting from
the initial state of the observer and leading to a state of LY (resp. UP).

2.5 Test cases execution and verdicts

Let IUT=(Q™7T, A™T, T™7T ¢lUT) an implementation, (TC,77°,CT) a test case
with TC=(Q"°, A", T"°, ¢\,), and (A., Ay) a test architecture. The test exe-
cution of TC on IUT can be modelled by a parallel composition between TUT
and TC with synchronisations on action sets A, and A,. More formally this test
execution can be described by an IOLTS £=(Q%, A, T, ¢,;,), where A® = A™C
and sets Q¢ and T7¢ are defined as follows:

— QF is a set of configurations. A configuration is a triplet (p™¢, p'"", \) where
pTC e QTC,p'™T € Q7T and) is a partial function from QT¢ to N, which
counts the number of times an execution sequence visits a state belonging
to LTC or U;°.

— T¢ is the set of transitions (p™°,p'"", \) ¢ (¢7°,¢'"", \') such that

o pTc i>TC qre, p't i>IUT ¢ and

)\(ch) if g7¢ ¢ U (Lgc U UiTC>

B ie{l-,"'k}
« N@™) = Aq™) +1ifg™ e) (LI°UU)
iG{]-,"'k}

The initial configuration g5, is (gi5» @it » Ainit), where for all g, Ainit(q) = 0.

T*¢ describes the interactions between the IUT and the test case. Each counter
associated with a state of LT UU;" is incremented when an execution sequence
visits this state.

Verdicts. Test execution is supposed to deliver some verdicts to indicate whether
the TUT was found correct or not. These verdicts can be formalised as a function
on runs of £ to the set {Pass, Fail}. More precisely:

Fail The execution of a run p of £ on o gives the verdict Fail if and only if
there is an i € {1,2,...,k} and a [l € N such that
1. p(l) = (pr°, P} ", \), p© € LT and A\(p/©) > cl;, and
2. for each m € [0---1] p(m) = (-0, g™, Am) satisfies Ay, (gh°) < cu;. In

this case, the property is not satisfied.
Pass Similarly, the execution of a run p give the verdict Pass iff Vi € {1,2,...,k}
and VI € N
1. p(l) = (p;°,p}"", \r) and pf¢ € LT implies A;(p/°) < ¢l; or
2. thereisam € [0---1] p(m) = (¢5C, 5", A\) and A, (ghC) > cuy.

m

In practice the test case execution can be performed as follows:

— At each step of the execution the controllability condition may give a choice
between a controllable and an observable action. In this situation the tester
can first wait for the observable action to occur (using a local timer), and
then choose to execute the controllable one.

— Formal parameters CT° are instantiated according to the actual test envi-
ronment. Counters are then associated to each sets U® and L. These
counters, initialised to 0, are incremented (inside the test case) whenever a
corresponding state is reached during test execution. Thus, a Fail verdict is
issued as soon as an incorrect execution sequence is reached (according to
definition above), and a Pass verdict is issued either if the current execution
sequence visits “t0o many often” a state of UT® (A, (g=C) > cu;), or if a
global timer, started at the beginning of test execution, expires. This last
case occurs when an execution sequence enter a loop without state belonging
to LT or U;°.

3 Test Generation

We propose in this section an algorithm to automate the generation of “property
oriented” test cases. This algorithm takes as input a (partial) specification Sy of

a given implementation TUT, an observer (a deterministic parameterised Rabin
automaton) Obs = (0,7 9,CY) characterising the negation of a linear property
P), and a test architecture TA = (A., A,,). Test cases produced by this algorithm
are sound in the sense that, when executed against the IUT, a Fail verdict is
produced only if this IUT does not satisfy property P.

The test generation algorithm we propose is based on two steps: generation
of a so-called test graph (TG, for short) and test cases selection from this TG.
We first describe these two steps at an abstract level, and then we discuss some
implementations issues.

3.1 Test graph

The purpose of the test graph is to gather a set of execution sequences, com-
puted from the specification Sy and the observer Obs, compliant with the test
architecture T'A (i.e., executable by an external tester), and able to witness the
non satisfiability of P for a given IUT. Each controllable sub-graph of this TG
could then be turned into an executable test case for property P (as defined in
the previous section).

However, even for a simple property and with a restricted test architecture, it
appears that the number of sequences matching this definition is quite large: in
fact it could be any sequence over A.U A, recognised by O. Considering such a
“complete” test graph would be of limited practical interest in this context: most
of these sequences are likely to be very “far” from the actual IUT behaviour,
and executing them would not provide very useful information. Consequently,
the probability to extract a “relevant” controllable test case from this large set
would be rather low. Therefore we need some heuristic to restrict this test graph
to the most promising execution sequences.

The heuristic we propose here to compute the test graph is to exploit at best
the information provided by the specification, proceeding as follows:

1. First, we transform the initial specification Sy by computing its deterministic
suspension automaton S with respect to the test architecture T'A:

S = §(det (So, Ac U Ay)). This operation preserves the observable/controllable
language of the specification: £(S) = L(Sp) | (A U A,).

2. Then, we select the longest sequences of £(S) matching with a prefix of
L(0). Such sequences are the most promising candidates to witness the
non-satisfiability of P) since they belong both to the specification (and then
are supposed to be executable on the TUT), and to a prefix of £L(O).

3. Finally, these sequences are then extended to cover complete sequences of
L(0). Note that if the specification already contains a complete sequence of
L(0O) (and not only one of its proper prefix) this means that the specification
itself does not satisfy P.

From a more formal point of view the test graph we compute is a param-
eterised Rabin automaton (TG,7 7% CT%): the IOLTS TG gathers the set of
execution sequence described above, and the pair table 77¢ and counter sets

C"C are inherited from 7€ and C©. This is described in definition 5 below,
proceeding in two steps:

1. Computation of an asymmetric product ® between S and O. The purpose of
this product is to mark each state pg of S with a corresponding state po of
O, such that pg and pp are reachable from the initial states by “matching”
execution sequences (rules R1 and R2).

2. Selection of the longest execution sequences of S ® O matching with a prefix
of £(O), and extension of these sequences to obtain a complete sequence
of £(0O). This is performed by rule R4: a transition (ps, po) — (ps,qo) is
added to the transition relation T7¢ iff such a transition exists in @ but not

inS®O.

Definition 5. Let TA = (A., A,) a test architecture, Sy a specification and
S=(Q%, A%, T%,q5,,;) its deterministic suspension automaton with respect to TA:
S =6 (det(Sy, A. U A,)). Let (0, T9,C%) be an observer with
0=(Q°,A°,T°,q%,,) and T® = ((L{,U?), (LS, US),...,(LL,UL)) such that
TA is compliant with O. We define the Parameterised Rabin automaton
(TG, TTE,CTG) where TG=(Q", A", T"¢ qr%,), such that Q" C Q° x Q°,
AT C A5, qF¢ = (q5,45), and Q™°, T are obtained as follows:

1. Let Q® and T® be the smallest sets satisfying rules R0, R1 and R2 below:

%" € Qg [RO]

(ps,po) € Q%, ps ——rs qs, Po —>r0 a0,
(gs:90) € Q%, (ps,po) ——re (¢s,90)

R1]

(ps,po) € Q%, ps ——rs qs, "o —>70 (7]
(g5, po) € Q%, (ps,po) ——=re (4s,P0)

2. Then, Q™ and T™® are the smallest sets satisfying rules R3 and R4 below:
Q% & O, T® C 17 R3]
(pS,pO) S QTG7
po —=r0 qo, 0 € (A% A9)*
Aqs- ((ps,po) =7 (4s,90)) [R4]
(p57 qo) € QTca (p57p(9)1 i>’7“TG7 (p57 qo)

3. The pair table TTC is equal to ((LT¢, UL, (L3¢, US4, ..., (LF¢,UI°)) where
LT and LT are defined as follows:
L% ={(ps,po) € Q" | qo € LY}
U ={(ps,po) € Q" | qo € U]}
4. The set of counters CTC is directly inherited from Obs:

CTG — CO

3.2 Test cases selection

The purpose of the test case selection is to generate a particular test case TC
from the test graph TG. Roughly speaking, it consists in “extracting” a sub-
graph of TG that are controllable and containing a least a sequence of £(O).

Clearly, to belong to £(O), an execution sequence of O has to reach a cycle
containing a state belonging to some distinguished set LY (for some 7) of the pair
table associated to O. Conversely, any sequence of O not leading to a strongly
connected component of O containing a state of LY cannot belong to £(O).
Therefore, we first define on TG the predicate L2L (for “leads to L”), to denote
the set of states leading to such a strongly connected component:

L2L (q) = 3(q1. g2, w1, w2, w3).(¢ =216 1 =2 pre @2 =>pre qrand Ji. gy € LO)
We can now define a subset of relation T7¢, controllable, and containing at
least a sequence of £(QO). This subset, computed by the function select below,
contains all non controllable transition of T7¢ (labelled by an element of A,),
and at most one (randomly chosen) controllable transition of 77 leading to a
state of L2LL when several such transitions exist from a given state of TG:

select (TTY) = {(p,a,q) € TT% | a € A, or
a = one-of ({a; € A, | p Lsrre ¢; and 121 (¢;)})}
Note that this function preserves the reachability of states belonging to £©.

Finally, this subset of 77 remains to be extended with all (non controllable)
action of a, not explicitly appearing in T7¢, to ensure that the test case execu-
tion will never be stopped by reception of an unexpected event. The definition
of a test case TC is then the following:

Definition 6. let (TG, TTY,CTY) a test graph with TG=(Q™®, A™ T ¢I%)
and TA = (A., A,) a test architecture. A test case (TC,TT¢,CT) is a Param-
eterised Rabin automaton with TC=(Q"°, A", T", q1<,) such that ¢l ¢ = ¢l ¢,
ATC = ATG U A, QTC is the subset of QT reachable by TTC from ¢l'¢, TTC
is the restriction of TTC over QTC, and TTC is defined as follows:

TTC = select (TT) U {(p,a,p) | a € A, andAq. (p,a,q) € TTC}

3.3 Implementation issues

We briefly sketch the concrete algorithms that could be used to implement the
test case generation method proposed in this section. The objective here is not to
provide a detailed implementation description (beyond the scope of this paper),
but rather to give some indications on its algorithmic complexity. A possible
(and simple) approach to compute a test case TC from a specification S, an
observer Obs and a test architecture TA is to proceed as follows:

1. computation of S (determinisation and suspension of Sy) and computation
of sets @® and T'® introduced in definition 5. These operations can be done
during a joint traversal of S and O.

2. computation of the test graph TG (sets Q7% and T7¢) from the previous
result. This can be done through a single traversal of Q¥ and T.

3. computation of the strongly connected components of TG containing a dis-
tinguished state of L9, using for instance Tarjan’s algorithm [18]. This op-
eration also gives the L2L predicate.

4. test case selection (computation of function select) using a backward traver-
sal of TG.

Apart the determinisation phase, all these operations remain linear in the num-
ber of transitions of the LTS considered, but the test graph has to be explicitly
stored. However, some of the algorithms proposed in the TGV tool could cer-
tainly be used to perform most of these operations on an on-the-fly basis. This
point has not been investigated at this time.

4 Example

4.1 System description.

We consider a control system for an automatic door, specified by the IOLTS
given in figure 4. The behaviour of the controller is the following: it can receive
a request for opening the door (REQOPEN), the door is then successively open
(OPEN) and closed (CLOSE). It can also receive a LOCK request, those effect is to
definitely lock the door, or any other requests OTHER, that are silently ignored.
All these actions are supposed to belong to the test architecture. A possible
specification of the controller is the IOLTS shown at the figure 4.

Q2 input(Other)
nput(Lodk) input (ReqOpen)
4

output (open)

output (close)

wW=—N

Fig. 4. Specification

The property we want to test on this system is: whenever the door is open, then it
should be closed before a given amount of time (to be precised at test time). The
negation of this property (the observer) is modelled by the Parameterised Rabin
automaton of figure 5, where the a label denotes any observable action other
than CLOSE (including ¢). We now assume that the ITUT is not quite conform
to the specification. In particular it may spontaneously output an ABORT action
and re-enter the initial state. The corresponding TOLTS is pictured on figure 8.

U1l Cul
output (close) H output (open)
L i\ Cly

o

Fig. 5. Observer

4.2 Test Graph generation.

The first step consists in generating a test graph from the specification and the
observer. The corresponding deterministic parameterised Rabin automaton is
shown on figure 6. Note that the sets L. and U are inherited from the observer.
On this test graph, the execution sequences belonging to the language of the
observer are the ones ending by o (namely in states 32 and 42).

_LTput(Other)
input(L ock) Oinpm(Reqopm)
/ Q:T U \21 output(open)

U a
output(close) L Y 2&

41
output(open) | A
v Eutput(cl 0se)

o

Fig. 6. Test Graph

4.3 Test Selection and test execution.

From the test graph we can then extract some particular test cases, for instance
the one pictured on figure 7.

_Li:put(other)
(]fi nput(ReqOpen)

Q‘ﬁn output(open)

U
° output(close) L 32&‘

Fig. 7. Test Case

Transitions labelled with a indicate that the test case is output complete.
Executing this test case may exhibit a possible incorrect behaviour of the IUT
(figure 8), in which an occurrence of the ABORT action in state 32 leads to a Fail
verdict (since the TUT is deadlocked in this state).

input (Other)
G imutok) g

1
output (abort) D input (ReqOpen)

2 output (close)
output (abort) } output (open)

4

Fig. 8. IUT

More precisely, each time states 32, 11 or 21 are reached their respective
counter are incremented. So during the test execution, the counter associated
with the state 32 can overflow if an ABORT action occurred. Of course, this sce-
nario is not guaranteed to appear since this incorrect behaviour is not fully
controllable by the tester.

5 Conclusion

In this paper, we have proposed an approach to automatically produce test cases
allowing to check the satisfiability of a linear property on a given implementation.
Parameterised test cases are generated from a (possibly partial) specification of
the IUT, the (bounded liveness) property being expressed itself by a Parame-
terised Rabin automaton. The resulting test case can then be instantiated only
at test time, depending on the test environment considered (for instance the
target architecture, or the actual communication structure between the tester
and the TUT, etc.). This approach has been formally defined, and a practical
test generation algorithm has been sketched.

The objective of this work is to extend to other contexts or application do-
mains the framework of conformance testing, already well established in the
telecommunication area. We believe that a prerequisite was to make this frame-
work more flexible, for instance allowing the use partial specifications, or allowing
the validation of explicit properties. This is a first step in this direction.

This work can now be extended in several directions. First we need to pro-
totype the algorithms we have proposed to better estimate their performances,
and possible optimisations. Then, their application on various case studies will
certainly allow to improve the test selection strategy (possibly using TGV-like
test purposes in combination with a property). Finally, the use of static analysis
techniques (for instance as presented in [2]) could also certainly improve the
efficiency of the test generation algorithm by focusing on most promising parts
of the specification.

Acknowledgement. We would like to thank the people of a French group work-
ing on robustness testing, inside a French action supported by the CNRS and
gathering members of TRISA, LLAAS, LABRI, LRI and VERIMAG laboratories

(http://www.laas.fr/TSF/AS23/). We would like also to thank the anony-
mous referees.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

A. Belinfante, J. Feenstra, R. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal Test Automation : a Simple Experiment. In 12th Inter-
national Workshop on Testing of Communicating Systems, G. Csopaki et S. Dibuz
et K. Tarnay, 1999. Kluwer Academic Publishers.

M. Bozga, J.-C. Fernandez, and L. Ghirvu. Using static analysis to improve auto-
matic test generation. In Tools and Algorithms for Construction and Analysis of
Systems, pages 235 250, 2000.

E. Brinksma. A theory for the derivation of tests. In S. Aggarval and K. Sabnani,
editors, Protocol Specification, Testing and Verification VIII, IFIP, pages 63 T74.
Elsevier Science Publishers, B.V., North-Holland, 1988.

J. Biichi. On a decision method in restricted second order arithmetic. In N. et al.,
editor, Logic, Methodology and Philosophy of Sciences. Stantford Univ. Press, 1962.
J.-. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification tech-
niques for the generation of test suites. In CAV’96. LNCS 1102 Springer Verlag,
1996.

R. Groz, T. Jeron, and A. Kerbrat. Automated test generation from SDL spec-
ifications. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors, SDL’99 The
Next Millenium, 9th SDL Forum, Montreal, Quebec, pages 135-152, Elsevier, Juin
1999.

OSI-Open Systems Interconnection, Information Technology - Open Systems Inter-
connection Conformance Testing Methodology and Framework - Part 1 : General
Concept - part 2 : Abstract Test Suite Specification - part 3 : The Tree and Tab-
ular Combined Notation (T'TCN). International Standard ISO/IEC 9646-1/2/3,
1992.

B. Marre and A. Arnould. Test sequences generation from lustre descriptions:
Gatel. In In Fifteenth IEEE Int. Conf. on Automated Software Engineering (ASE
2000),IEEE Computer Society Press, pages 229237, Grenoble, septembre 2000.
M. Mukund. Finite-state automata on infinite input. Technical report, 1996.

I. Parissis and J. Vassy. Test des proprietes de surete. In In Actes du colloque
Modelisation de Systemes Reactifs (MSR’01), pages 563-578, Hermes, 2001.

M. Phalippou. Relations d’implantations et Hypothéses de Test sur des automates
a entrées et sorties. These de doctorat, Université de Bordeaux, France, 1994.

M. Phalippou. Test sequence using Estelle or SDL structure information. In
FORTE’9, Berne, Oct. 1994.

P.Thevenod-Fosse. Unit and integration testing of lustre programs: a case study
from the nuclear industry. In 9th European Workshop on Dependable Computing
(EWDC-9), pages 121 124, Gdansk, Pologne, 14-16 Mai 1998.

M. Rabin. Automata o, Infinite Object and Church’ Problem. Number 13 in
Regional Conference series in mathematics. American Mathematical Society, 1972.
P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of
reactive systems. In 19th IEEE Real-Time Systems Symposium, Madrid, Spain,
dec 1998.

S. Safra. On the complexity of w-automata, checking. pages 319-327, 1988.

M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink - A Tool for Au-
tomatic and Semi-Automatic Test Generation from SDL Specifications. Technical
Report A-98-05, Medical University of Liibeck, 1998.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computation,
2(1), june 1972.

19.

20.

J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In T. Mar-
garia and B. Steffen, editors, Second Int. Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’96), volume 1055 of Lecture
Notes in Computer Science, pages 127-146. Springer-Verlag, 1996.

P. Wolper, M. Vardi, and A. Sistla. Reasoning about infinite computation paths.
In 24th IEEE Symposium of Foundations of Computer Science, 1983.

