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Abstract

This paper deals with verification methods based on equivalence relations be-
tween labeled transition systems. More precisely, we are concerned by two practical
needs: how to efficiently minimize and compare labeled transition systems with
respect to bisimulation or simulation-based equivalence relations.

First, we recall the principle of the classical algorithms for the existing equiv-
alence relations, which are based on successive partition refinements of the state
space of the labeled transition systems under consideration. However, in spite of
their theoretical efficiency, the main drawback of these algorithms is that they re-
quire to generate and to store in memory the whole labeled transition systems to
be compared or minimized. Therefore, the size of the systems which can be han-
dled in practice remains limited. We propose here another approach, allowing to
combine the generation and the verification phases, which is based on two algo-
rithms respectively devoted to the comparison (“on the fly” comparison) and the
minimization (minimal model generation) of labeled transition systems. Then, we
present the results obtained when implementing some of these algorithms within
the tool Aldébaran.

1 Introduction

This paper deals with some methodological considerations on tools associated with verifi-
cation methods of distributed systems. More precisely, we aim to relate our experiments
with the implementation within the tool Aldébaran of various decision procedures for
behavioral equivalence relations.

By verification, we mean the comparison of a system description, i.e., a program, noted
D, with its specifications, noted S, namely the description of its expected properties. A
program semantics is defined by a congruence on a class of program models. Exam-
ples of classes of program models are Labeled Transition Systems (LTS for short), event
structures, Petri nets, etc ... In this paper, we are concerned by LTS and equivalence or
preorder relations between LTS. According to the formalism used for the specifications,
two main verification approaches can be distinguished:
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Behavioral specifications : they characterize the behavior of the system, observed
from a certain abstraction level. Such specifications can be also expressed in terms
of LTS. In this case, the verification consists in comparing the two LTS D and S with
respect to a given equivalence or preorder relation. Thus, any decision procedure
for these relations defines a verification method.

Logical specifications : they characterize the global properties of the system, such
as deadlock freedom, mutual exclusion, or fairness. Temporal logics are suitable
formalisms, since they allow to describe the whole system evolution. In this case, a
formula of S is interpreted as a set of computations on D. For example, in linear
time semantics a computation is a maximal sequence, whereas in branching times
semantics a computation is a tree. Then, verification consists in checking that all
the computations of D belong to S.

These approaches are complementary: it turns out in practice that some of the ex-
pected properties of a distributed system are easier to express using a logical formalism,
and the others by giving an abstraction of the expected behavior. Moreover, a logic
can characterize a behavioral relation: two systems are related if and only if they sat-
isfy the same set of logical formulas. As a consequence, a practical verification method
associated with such a logic consists in minimizing first the LTS D with respect to the
corresponding behavioral relation, and then checking that all the computations of this
reduced LTS belong to S. For example, branching bisimulation is characterized by a
fragment of CTL∗ [NV90], and safety equivalence is characterized by a fragment of the
µ-calculus [BFG*91].

The principle of the usual LTS-based verification methods is the following: first gen-
erate a LTS from the program description, and then apply the decision procedure asso-
ciated with the considered specification formalism. Many automated verification tools,
[dSV89,GV90,CPS90,Fer90] for behavioral specifications and [RRSV87,CES86] for logi-
cal specifications, are based on this design. However, the main drawback of this method
is that the whole LTS have to be stored in memory, and therefore the size of the graphs
which can be compared or minimized is limited. For Aldébaran, running on a worksta-
tion, the maximal size of LTS which can be treated is of the order of one million of states.
Consequently, an attractive solution would be to combine the generation and verification
phases: the verification is performed during the generation, without keeping in memory
the sets of states and transitions of the whole LTS (“on the fly” verification). Several al-
gorithms have been proposed to implement such a verification method for temporal logics
[JJ89,BFH90a,CVWY90].

Applying the “on the fly” approach to the verification of behavioral specification seems
promising. For this purpose, we study currently the implementation of suitable algorithms
for bisimulation-based equivalence and preorder relations within Aldébaran, in associ-
ation with the Lotos compiler Cæsar [GS90]. More precisely, given a Lotos program
we consider its abstract representation, which can be either a Petri net or a set of com-
municating automata. From this representation, we intend to cover the two practical
needs:

“on the fly” LTS comparison: the algorithm consists in performing the comparison
during a depth-first traversal of a product of the two transitions functions (the



one of the abstract model and the one of the specification LTS). The definition of
this product is parametrized by the behavioral relation under consideration. This
method has been successfully applyed for several relations, like strong bisimulation,
strong simulation, delay bisimulation, branching bisimulation (when the specifica-
tion is τ -free, i.e., without τ -action), safety equivalence and safety preorder.

minimal LTS generation: the principle is to refine a partition of the reachable state
space of the abstract representation of the program, and to compute its transition
relation at the same time. This method is based on symbolic computations, which
impose some restrictions on the types of the values used in the Lotos program in
order to obtain an efficient implementation.

This paper is organized as follows: first we give the definitions used in the following
sections. In section 3, we recall some definitions of equivalence and preorder relations. In
section 4, we survey the usual methods for the minimization and comparison of LTS. In
section 5, we present the principle of the “on the fly” verification methods, and we give
in section 6 the state of the experiments currently realized in Aldébaran.

2 Equivalences Relations

Equivalence relations for distributed systems can be defined in several ways, according
to their semantics and the description formalism upon which they are based. For ex-
ample, trace equivalence has been defined for automata, readiness and failures semantics
for CSP [BHR84], observation bisimulation [Mil80], branching bisimulation [GW89] and
strong bisimulation [Par81] for process algebra such as CCS or ACP. However, as these
description formalisms can be translated in terms of LTS, all these relations can also be
expressed as equivalence relations between LTS.

We will focus here on some bisimulation or simulation based equivalences defined on
LTS which, when ordered by the relation “finer than”, are positioned between bisimulation
equivalence and trace equivalence. We first give some notations, and then we recall the
definitions of the relations that we will consider in the following. Finally, we propose a
practical characterization of the “non-bisimilarity” between two LTS.

2.1 Labeled Transition Systems

Let States be a set of states, A a set of names (of actions), τ a particular name not in
A, which represents an internal or hidden action and Aτ = A∪ {τ}. For a set X, X∗ will
represent the set of finite sequences on X.

In the following, we consider a LTS S =(Q , Aτ , {
α

−→}
α∈Aτ

, qinit) where: Q is the
subset of States, −→⊆ Q×Aτ ×Q is a labeled transition relation, and qinit is the initial
state.

We will also consider the usual pre- and post-conditions functions from 2Q to 2Q,
where X (resp. B) is a subset of Q (resp Aτ ):

preα(X) = {q ∈ Q | ∃q′ . q
α

−→ q′ ∧ q′ ∈ X}

postα(X) = {q ∈ Q | ∃q′ . q′
α

−→ q ∧ q′ ∈ X}



preB(X) = ∪
α∈B

preα(X)

postB(X) = ∪
α∈B

postα(X)

Act(q) will denote the set of the actions which can be performed in a state q:

Act(q) = {a ∈ A | ∃q′ ∈ Q . q
a

−→ q′}.

Let λ ⊆ A∗, and let p, q ∈ Q. We write p
λ

−→ q if and only if:

∃u1 · · ·un ∈ λ ∧ ∃q1, · · · , qn−1 ∈ Q ∧ p
u1−→ q1

u2−→ q2 · · · qi

ui+1

−→ qi+1 · · · qn−1

un−→ q.

Let Λ be a family of disjoint languages on Aτ .

ActΛ(q) = {λ ∈ Λ | ∃q′ . q
λ

−→ q′}.

The set of the finite execution sequences from a state q of Q (noted Ex(q)) is defined
as follows:

Ex(q) = {σ ∈ Q∗ . σ(0) = q ∧ ∀i . 0 ≤ i < |σ| − 1, ∃ai ∈ A . σ(i)
ai−→ σ(i + 1)}.

In the following, for a LTS S, the term execution sequences of S represents the set
Ex(qinit). Furthermore, an execution sequence is said elementary if and only if all its
states are distinct. The subset of Ex(q) containing the elementary execution sequences
of a state q will be noted Exe(q).

2.2 Bisimulations and Simulations

We recall the definition of the simulation and the bisimulation relations.

Definition 2.1 (simulation) For each R ∈ Q × Q, we define:

IΛ(R) = {(p1, p2) | ∀λ ∈ Λ . ∀q1 . (p1

λ
−→ q1 ⇒ ∃q2 . (p2

λ
−→ q2 ∧ (q1, q2) ∈ R))}

The simulation preorder ⊑Λ for the language Λ is defined as the greatest fixed-point of
IΛ and the simulation equivalence is ≈Λ = ⊑Λ ∩ (⊑Λ)−1.

Definition 2.2 (bisimulation) For each R ∈ Q × Q, we define:

BΛ(R) = {(p1, p2) | ∀λ ∈ Λ . ∀q1 . (p1

λ
−→ q1 ⇒ ∃q2 . (p2

λ
−→ q2 ∧ (q1, q2) ∈ R))

∀q2 . (p2

λ
−→ q2 ⇒ ∃q1 . (p1

λ
−→ q1 ∧ (q1, q2) ∈ R))}

The bisimulation equivalence ∼Λ for the language Λ is defined as the greatest fixed-point
of BΛ.

Definition 2.3 (branching bisimulation) For each R ∈ Q × Q, we define:

BΛ
br(R) = {(p1, p2) | ∀λ ∈ Λ .

∀q1 . (p1

λ
−→ q1 ⇒ (λ = τ ∧ (q1, p2) ∈ R) ∨

(∃q2q
′
2 . (p2

τ∗

−→ q′2 ∧ q′2
λ

−→ q2 ∧ (p1, q
′
2) ∈ R ∧ (q1, q2) ∈ R)))

∀q2 . (p2

λ
−→ q2 ⇒ (λ = τ ∧ (p1, q2) ∈ R) ∨

(∃q1q
′
1 . (p1

τ∗

−→ q′1 ∧ q′1
λ

−→ q1 ∧ (q′1, p2) ∈ R ∧ (q1, q2) ∈ R)))}



The branching bisimulation equivalence ∼Λ
br for the language Λ is defined as the great-

est fixed-point of BΛ
br.

From these general definitions, several simulation and bisimulation relations can be
defined. The choice of a class Λ corresponds to the choice of an abstraction criterion on
the actions. The strong simulation and the strong bisimulation [Par81] are defined by
Λ = {{a} | a ∈ A}, the w bisimulation [FM91] is the bisimulation equivalence defined
by Λ = {τ ∗a | a ∈ A}, the safety preorder [BFG*91] is the simulation preorder defined
by Λ = {τ ∗a | a ∈ A} and the safety equivalence is the simulation equivalence where
Λ = {τ ∗a | a ∈ A}. Observation equivalence [Mil80] is the bisimulation equivalence
defined by Λ = τ ∗ ∪ {τ ∗aτ ∗ | a ∈ A}. Delay bisimulation [NMV90] is the bisimulation
equivalence defined by Λ = τ ∗ ∪ {τ ∗a | a ∈ A}. Branching bisimulation [GW89] is the
branching bisimulation where Λ = {{a} | a ∈ A}.

Remark Note that when we consider the languages Λ1 = {τ ∗a | a ∈ A} or Λ2 =
{τ ∗aτ ∗a | a ∈ A} or Λ3 = Λ1 ∪ τ ∗ or Λ4 = Λ2 ∪ τ ∗, we obtain the same preorder against
bisimulations. 2

Each equivalence relation RΛ defined on states can be extended to an equivalence
relation comparing LTS in the following manner: let Si = (Qi, Aτ , {

α
−→}

α∈Aτ
, qi

init), for

i = 1, 2 be two LTS such that Q1 ∩ Q2 = ∅ (if it is not the case, this condition can be
easily obtained by renaming). Then we define S1 RΛ S2 if and only if (q1

init, q
2

init) ∈ RΛ

and S1 6R
Λ

S2 if and only if (q1

init, q
2

init) 6∈ RΛ.

2.3 Other Equivalences

In this section, we consider readiness semantics, failure semantics and other semantics of
CSP. We do not present these equivalences in detail.

Definition 2.4 Failure semantics:
(σ, X) ∈ A∗ × 2Aτ is a failure pair for a LTS (Q , Aτ , {

α
−→}

α∈Aτ
, qinit) if there is q ∈ Q

such that qinit
σ

−→ q and X ∩ Act(q) = ∅. Let F (q) denote the set of failure pairs of q.
Two LTS Si = (Qi, Aτ , {

α
−→}

α∈Aτ
, qi

init), for i = 1, 2 are failure equivalent if F (q1

init) =

F (q2

init).

Definition 2.5 Readiness semantics:
(σ, X) ∈ A∗ × 2Aτ is a ready pair for a LTS (Q , Aτ , {

α
−→}

α∈Aτ
, qinit) if there is q ∈ Q

such that qinit
σ

−→ q and X = Act(q). Let R(q) denote the set of ready pairs of q.
Two LTS Si = (Qi, Aτ , {

α
−→}

α∈Aτ
, qi

init), for i = 1, 2 are ready equivalent if F (q1

init) =

F (q2

init).

Other variants of these equivalences can be found in [Gla90], in which states of transitions
systems can be labeled by subset of actions.

2.4 Expressing non bisimilarity

Several formalisms have been proposed in order to express the “non bisimilarity” of two
labeled transition systems (for example Hennessy-Milner Logic in [Cle90]). We present



here a more intuitive solution, suitable either for bisimulation or simulation relations
(both denoted by RΠ).

Let Si = (Qi, Aτ , {
α

−→}
α∈Aτ

, qi
init), for i = 1, 2, be two LTS. Whenever the two labeled

transition systems S1 and S2 are not related, we define an explanation sequence as an
execution sequence σ of a synchronous product S = S1 ×RΠ

S2 (see section 4 for a precise
definition of this product) such that:

• All the states (pi, qi) belonging to σ (where pi is a state of S1 and qi is a state of
S2) are not comparable against RΠ.

• σ is terminated by a state which is not in RΠ
1 (i.e, from which it clearly appears

that S1 and S2 are not related)

Definition 2.6 An explanation sequence of S1 6R
Π

S2 is an execution sequence σ such that:

• σ = {(q01, q02) = (p1, q1), (p2, q2), ..., (pk, qk)}

• ∀i . 0 ≤ i ≤ k, (pi, qi) 6∈ RΠ
k−i+1.

• (pk, qk) /∈ RΠ
1

This definition is motivated by the following propositions, which allow to express that
S1 and S2 are not comparable against RΠ in terms of the execution sequences of S1×RΠ

S2.

Proposition 2.1 (q1

init, q
2

init) 6∈ RΠ if and only if it exists an elementary execution se-
quence σ of S (σ ∈ Exe(q01, q02)) such that:

• σ = {(q1

init, q
2

init) = (p0, q0), (p1, q1), ... (pk, qk)}.

• ∀i . 0 ≤ i ≤ k, (pi, qi) 6∈ RΠ
k−i+1.

The proof of this proposition is based on the following lemma:

Lemma 2.1 Let S = (Q, A, T, q0) be a labeled transition system. Then we have,
∀k ≥ 1, ∀p, q ∈ Q, (p, q) 6∈ RΠ

k+1 ∧ (p, q) ∈ RΠ
k ⇒

∃λ ∈ Π . ∃p′ . ∃q′ . p
λ

−→T p′ ∧ q
λ

−→T q′ ∧ (p′, q′) 6∈ RΠ
k ∧ (p′, q′) ∈ RΠ

k−1.

If one of the two labeled transition systems is deterministic, proposition 2.1 can be im-
proved. In this case, the converse of lemma 2.1 holds: (q1, q2) ∈ RΠ

k if and only if all the
successors (q′1, q

′
2) of (q1, q2) verify (q1, q2) ∈ RΠ

k−1 and (q1, q2) ∈ RΠ
1 .

Lemma 2.2 Let us suppose that S1 or S2 is deterministic (S1 if the (RΠ
k )k≥0 are simula-

tions).
∀k ≥ 1, ∀p, q ∈ Q,

∃λ ∈ Π . ∃p′ . ∃q′ . p
λ

−→T p′ ∧ q
λ

−→T q′ ∧ (p′, q′) 6∈ RΠ
k ⇒ (p, q) 6∈ RΠ

k+1

From this lemma, we can deduce proposition 2.2:

Proposition 2.2 Let us suppose that S1 or S2 is deterministic (S1 if the (RΠ
k )k≥0 are

simulations). Then:

S1 6R
Π

S2 ⇔ ∃σ . σ = {(q1

init, q
2

init) = (p0, q0), (p1, q1), ... (pk, qk)} ∧ (pk, qk) 6∈ RΠ
1 .

All the proof can be found in [FM91].



3 Classical Verification Methods

The usual comparison and minimization methods of LTS with respect to an equivalence
relation are based on the structure of the LTS and are independent from the generation
techniques.

minimization: For a given bisimulation-based equivalence relation, a normal-form of a
LTS S (i.e, the smallest LTS in number of states and transitions equivalent to S)
can be obtained by applying the two following steps:

1. Compute a pre-normal form S ′ of S by transforming the transition relation of S.
This step depends on the equivalence relation under consideration. Examples of
transformations are various transitive closure computations of the τ -transition
relation (τ -saturation phase), or determinization .

2. Compute the normal-form of S ′ with respect to strong bisimulation. This is
obtained by solving the RCP problem (see 3.2) on the states of S ′ using a
partition refinement algorithm. The obtained LTS is then the normal-form of
S.

For the particular case of branching bisimulation, the first step can be avoided since
a normal-form can be straightly obtained by solving the GRCP problem (see 3.3)
on S.

comparison: Two LTS can be compared either by checking if their normal-form are
identical or by computing the normal-form or their union and checking if the initial
states of the original LTS belong or not to the same equivalence class.

In this section, we describe the classical algorithms for the computation of normal-
forms with respect to the different equivalence relations presented in the previous section.

3.1 Partitions

Let S = (Q , Aτ , {
α

−→}
α∈Aτ

, qinit). We consider partitions of Q instead of equivalence rela-

tions on Q: let ρ be a partition (a set of pairwise disjoint non-empty subsets Xi such that

∪
i

Xi = Q), then the induced equivalence is p ∼ρ q if and only if ∃Xi ∈ ρ such that p ∈

Xi ∧ q ∈ Xi.

Lattices Let P be the set of partitions of Q. We consider the refinement relation, noted
⊑ over P:

ρ ⊑ ρ′ if and only if ∀X ∈ ρ . ∃X ′ ∈ ρ′ . X ⊆ X ′.

With this order, P is a complete lattice, with the greatest lower bound operator ⊓ defined
by:

⊓
i

ρi = {T 6= ∅ | T = ∩
i

Xi and Xi ∈ ρi}

with least upper bound,

⊔
i

ρi = ⊓
∀i,ρi⊑ρ

ρ



and with the infimum {{q} | q ∈ Q} and the supremum {Q}. We denote by [q]ρ the
class of the partition ρ containing the state q. Let prea,ρ and posta,ρ denote the pre and
post-conditions functions corresponding to a partition ρ:

prea,ρ(X) = {[q]ρ | q ∈ prea(X)}

posta,ρ(X) = {[q]ρ | q ∈ posta(X)}

We also consider the lattices 2Q or 22Q

.

Fixed-points Let F be an increasing total function, either from 2Q to 2Q or from 22Q

to 22Q

and let G be an increasing total function from P to P. We denote by

• µπ.F (π) the least fixed-point of F with respect to the ordering ⊆

• νπ.G(π) the greatest fixed-point of G with respect to the ordering ⊑

3.2 Strong Bisimulation

The computation of the normal-form of a LTS with respect to strong bisimulation can be
expressed in terms of a partition refinement problem, known as the Relational Coarsest
Partition (RCP) problem:

The RCP problem: it consists in finding the coarsest stable refinement of an initial
partition ρinit of Q. (A partition is stable if and only if it is an equivalence relation which
is a bisimulation). The solution of this problem corresponds to the equivalence classes of
Q for the strong bisimulation relation.

Kanellakis and Smolka studied first the connection between the RCP problem and
the minimization of LTS up to strong bisimulation [KS83]. Then, an efficient algorithm
was proposed by Paige and Tarjan [PT87] and implemented within the tool Aldébaran

[Fer90]. Its time and space complexities are respectively O(m log(n)) and O(m+n), where
n and m are the number of states and transitions of S.

Starting with an initial partition of the state space, this algorithm proceeds by refining
the current partition ρ until it becomes stable, according to the following definitions:

Splitting and refining: These functions are defined as follows:

split(X, Y ) = ⊓
a∈Aτ

{X ∩ prea(Y ), X \ prea(Y )}

Ref (ρ, Y ) = ⊓
X∈ρ

split(X, Y )

Ref (ρ, ρ′) = ∪
Y ∈ρ′

Ref (ρ, Y )

Stability: An subset X of Q is said to be stable with respect to ρ if and only if X =
Ref (ρ, X). A partition is stable if it is stable with respect to its elements.

The solution of the RCP problem consists in computing the greatest fixed-point

νρ . ρinit ⊓ Ref (ρ, ρ).

An algorithm in O(mn) time can easily be derived. To improve this complexity, the
Paige and Tarjan’s idea is to keep track how blocks of the current partition are split into
subblocks at each refinement step, in order to always process the “smaller half” subblock.



3.3 Branching Bisimulation

In [GV90], Groote and Vaandrager present a variant of the RCP problem: the Generalized
Relational Coarsest Partition with Stuttering (GRCP) problem, which allow to compute
the normal of a LTS with respect to branching bisimulation and stuttering equivalence.
They also give an efficient algorithm, in O(n(n + m)) time and O(m + n) space.

The GRCP problem: The GRCP problem can be stated in the same terms than the
RCP problem. The difference lies in the notion of splitting.

As the Paige and Tarjan’s one, the principle of the algorithm given in [GV90] is to
refine a partition of the state space of the LTS until it becomes stable, according to the
following splitting functions:

Fa(X, Y ) = µZ.(X ∩ preτ (Z) ∪ X ∩ prea(Y ))

split(X, Y ) = ⊓
a∈Aτ

{Fa(X, Y ), X \ Fa(X, Y )} if X 6= Y

split(X, X) = ⊓
a∈A

{Fa(X, X), X \ Fa(X, X)}

As for the RCP problem, the solution of the GRCP problem consists in computing
the greatest fixed-point

νρ . ρinit ⊓ Ref (ρ, ρ).

Remark The algorithm described in [GV90] requires to suppress first the τ -cycles by
finding the strongly connected components of the τ -relation. 2

3.4 Observation Equivalence

The algorithm for computing the normal-form of a LTS S with respect to observation
equivalence is the following:

1. First, compute the transitive closure of the τ -relation of S:

let S ′ be the LTS (Q , Aτ , {
α

−→′}
α∈Aτ

, qinit) where q
a

−→
′
q′ if and only if q

τ∗aτ∗

−→ q′.

2. Then solve the RCP problem for S ′ with initial partition ρinit = {Q}.

This algorithm can be implemented in O(n3) time and O(m + n2) space.

3.5 Safety equivalence

Safety equivalence is a simulation-based equivalence which preserves Safety properties
[BFG*91]. Each equivalence class may be characterized by a formula of a fragment of a
µ-calculus and conversely. The algorithm for computing the normal-form of a LTS S with
respect to safety equivalences is the following:

1. Compute the pre-normal form S ′ = (Q′,Aτ , {
α

−→}′
α∈Aτ

, qinit) where:

• Q′ = {c(q) | q ∈ Q . c(q) = {q′ | q
τ∗

−→ q′}},



• c(p)
a

−→
′
c(q)if and only if p

τ∗a
−→ q ∧ ∀q′p

τ∗a
−→ q′ ⇒ q 6⊑ q′.

2. Solve the RCP problem for S ′ with initial partition ρinit = {Q′}.

In practice, the sets c(q) are computed by performing a depth-first search on the
LTS S. Then the greatest simulation is computed on Q′ and the redundant transitions
c(p)

a
−→

′
c(q′) such that c(p)

a
−→

′
c(q) and c(q′) ⊑ c(q) are removed.

3.6 w bisimulation

This bisimulation-based relation is stronger than safety equivalence. The normal-form of
a LTS with respect to this relation can be obtained in the two following way:

- either, compute the states c(q), as in the safety equivalence, and the relation

c(p)
a

−→
′
c(q) if p

τ∗a
−→ q, and then solve the RCP problem with initial partition

ρinit = {Q},

- or solve the RCP problem for the language Λ = {τ ∗a | a ∈ A} with initial partition
ρinit = {Q}. The function split is then:

split(X, Y ) = ⊓
a∈Aτ

{X ∩ preτ∗a(Y ), X \ preτ∗a(Y )}.

The difference between Safety equivalence and w bisimulation only lies in the removal of
redundant transitions.

3.7 Readiness and Failure Semantics

The algorithm for computing the normal-form of a LTS with respect to these equivalence
proceeds as follows:

- determinization of the LTS and labeling each state by a powerset.
Let S ′ = (Q′,Aτ , {

α
−→}′

α∈Aτ
, qinit) the LTS obtained in this way:

- {qinit} ∈ Q′,

- if X ∈ Q′ then posta(X) ∈ Q′.

- X
a

−→
′
Y if and only if Y = posta(X).

Let L : Q −→ 2A the labeling function depending of the chosen equivalence relation
(Ready, or Failure). Then, the labeling function L′ : Q′ −→ 22A

for S ′ is:

L′(X) = {L(q) | q ∈ X}.

- Then solve the RCP problem for S ′ with initial partition

ρinit = {C | X, Y ∈ Q′ . X, Y ∈ C if and only if L′(X) = L′(Y )}.



4 The “on the fly” approach

In spite of their theoretical efficiency, the classical verification methods described in the
previous section suffers from a practical limitation: they require to generate and to store
in main memory the whole LTS of the program to be verified (i.e, its sets of states and
transitions). Moreover, apart from branching and strong bisimulation, another serious
drawback of these methods is the need for a “preprocessing phase” of the LTS (i.e, the
computation of a pre-normal form) which turns out to be very time expensive and to
increase the size of the original LTS.

However, most of the equivalence relations presented in section 2 can be dealt with
using another approach. In this section, starting from an abstract representation of the
program to be verified (i.e., a Petri net, a term of a process algebra, or a net of commu-
nicating LTS) we describe two aspects of an “on the fly” verification method:

On the fly comparison: We compare the abstract representation of the program and
its behavioral specification (i.e, a LTS which characterize its expected behavior).
Rather than translating the abstract representation into a LTS and comparing it
to the specification, we construct a synchronous product between this partially
translated LTS and the specification LTS. The comparison is performed during this
construction, and we only need to store the states of this product.

minimal LTS generation We consider partitions of the whole state space of the ab-
stract representation of the program (the reachable and unreachable states). For
example, if P is a program with two variables x1, x2 ∈ IN, we will consider partitions
of IN × IN. Then, starting from the universal partition, we progressively refine the
reachable classes of the current partition until stability.

4.1 “On the fly” comparison

In this section, we describe the principle of a decision procedure which allows to check if
two LTS S1 and S2 are similar or bisimilar without explicitly constructing the two graphs.

In the following, we consider two LTS Si = (Qi, Aτ , {
α

−→}
α∈Aτ

, qi
init), for i = 1, 2. We

use pi, qi, p
′
i, q

′
i to range over Qi. RΠ and RΠ

k will denote either simulations or bisimulations
(RΠ = ∩∞

k=0R
Π
k ).

A synchronous product

We define the synchronous product S1 ×RΠ
S2 between the two LTS S1 and S2 in the

following manner:

• a state (q1, q2) of S1 ×RΠ
S2 can perform a transition labeled by an action λ if and

only if the state q1 (belonging to S1) and the state q2 (belonging to S2) can perform
a transition labeled by λ.

• in the case of a simulation, if only the state q1 can perform a transition labeled by
λ, then the product has a transition from (q1, q2) to the sink state noted fail.



• in the case of a bisimulation, if only one of the two states (q1 or q2) can perform a
transition labeled by λ, then the product has a transition from (q1, q2) to the sink
state fail.

Definition 4.1 We define the labeled transition system S = S1 ×RΠ
S2 by:

S = (Q, A, T, (q1

init, q
2

init)), with Q ⊆ (Q1 × Q2) ∪ {fail}, A = (A1 ∩ A2) ∪ {φ}, and
T ⊆ Q × A × Q, where φ 6∈ (A1 ∪ A2) and fail 6∈ (Q1 ∪ Q2).
T and Q are defined as the smallest sets obtained by the applications of the following
rules: R0, R1 and R2 in the case of a simulation, R0, R1, R2 and R3 in the case of a
bisimulation.

(q1

init, q
2

init) ∈ Q [R0]

(q1, q2) ∈ Q, ActΠ(q1) = ActΠ(q2), q1
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′
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(q1, q2) ∈ Q, q1

λ
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λ [q] = ∅

{fail} ∈ Q, {(q1, q2)
φ

−→T fail} ∈ T
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[R3 bisimulation]

Let’s notice that (p1, p2)
φ

−→T fail if and only if (p1, p2) 6∈ RΠ
1 . According to the

propositions given in section 2.4, the S1 and S2 are not bisimilar if and only if it exists
an explanation sequence on S1 ×RΠ

S2. Similar propositions hold in case of non-similarity
(see [FM91]).

Algorithms

We have expressed the bisimulation and the simulation between two labeled transition
systems S1 and S2 in terms of the existence of a particular execution sequence of their
product S1 ×RΠ

S2. We show that this verification can be realized by performing depth-
first searches (DFS for short) on the labeled transition system S1 ×RΠ

S2. Consequently,
the algorithm does not require to previously construct the two LTS: the states of S1×RΠ

S2

are generated during the DFS (“on the fly” verification), but not necessarily all stored.
And the most important is that transitions do not have to be stored. Moreover, in the
case where S1 and S2 are not related, explanation sequences are straightly obtained.

We note n1 (resp. n2) the number of states of S1 (resp. S2), and n the number of
states of S1×RΠ

S2 (n ≤ n1×n2). We describe the algorithm considering the two following
cases:

Deterministic case: if RΠ represents a simulation (resp. a bisimulation) and if S2 (resp.
either S1 or S2) is deterministic, then, according to proposition 2.2, it is sufficient
to check whether or not the state fail belongs to S1 ×RΠ

S2, which can be easily
done by performing a usual DFS of S1 ×RΠ

S2. The verification is then reduced to a
simple reachability problem in this graph. Consequently, if we store all the visited
states during the DFS, the time and memory complexities of this decision procedure
are O(n). Several memory efficient solutions exist to manage such a DFS ([JJ91]).



General case: in the general case, according to the proposition 2.1, we have to check
for the existence of an execution sequence σ of S1 ×RΠ

S2 which contains the state
fail and which is such that for all states (q1, q2) of σ, (q1, q2) /∈ RΠ

k for a certain k.
According to the definition of RΠ

k , this verification can be done during a DFS as
well if:

• the relation RΠ
1 can be checked.

• for each visited state (q1, q2), the result (q1, q2) ∈ RΠ
k is synthesized for its

predecessors in the current sequence (the states are then analyzed during the
back tracking phase).

More precisely, the principle of the general case algorithm is the following: if RΠ is
a simulation (resp. a bisimulation) we associate with each state (q1, q2) a bit array M
of size |T1[q1]| (resp. |T1[q1]| + |T2[q2]|). During the analysis of each successor (q′1, q

′
2) of

(q1, q2), whenever it happens that (q′1, q
′
2) ∈ RΠ then M [q′1] (resp. M [q′1] and M [q′2]) is set

to 1. Thus, when all the successors of (q1, q2) have been analyzed, (q1, q2) ∈ RΠ if and
only if all the elements of M have been set to 1.

As in the deterministic case algorithm, to reduce the exponential time complexity of
the DFS the usual method would consist in storing all the visited states (including those
which do not belong to the current sequence) together with the result of their analysis (i.e,
if they belong or not to RΠ). Unfortunately, this solution cannot be straightly applied:

During the DFS, the states are analyzed in a postfixed order. Consequently, it is
possible to reach a state which has already been visited, but not yet analyzed (since
the visits are performed in a prefixed order). Therefore, the result of the analysis of
such a state is unknown (it is not available yet). We propose the following solution for
this problem: we call the status of a state the result of the analysis of this state by the
algorithm. The status of (q1, q2) is “∼” if (q1, q2) ∈ RΠ, and is “ 6∼” otherwise. Whenever
a state already visited but not yet analyzed (i.e, which belongs to the stack) is reached,
then we assume its status to be “∼”. If, when the analysis of this state completes (i.e,
when it is popped), the obtained status is “ 6∼”, then a TRUE answer from the algorithm
is not reliable (a wrong assumption was used), and another DFS has to be performed. On
the other hand, a FALSE answer is always reliable.

The detailed algorithm can be found in [FM91].

4.2 Minimal LTS Generation

This approach [BFH90b] combines the construction of the graph of accessibles states with
its reduction by bisimulation equivalence. The termination of the algorithm imposes that
the quotient of the whole space of accessible and unaccessible states by bisimulation is
finite. The algorithm combines a least fixed-point (accessibility on the classes) and a
greatest fixed-point (greatest bisimulation). In the classical method, the set of accessible
states is computed and then, given an initial partition ρinit, the current partition is refined
until all the classes are stable. Another algorithm may be given, refining first the initial
partition and computing the accessible classes (which are stable). In the intermediate
method presented here, the set of accessible classes is computed and then refined until all
the accessible classes are stable.

Let S = (Q , Aτ , {
α

−→}
α∈Aτ

, qinit) be a LTS.



Splitting We modify the definition of the section 3.2. A class is split by all its
successors.

split(X, ρ) = ⊓
Y ∈ρ

⊓
a∈Aτ

{X ∩ prea(Y ), X \ prea(Y )}

Stability X is said to be stable with respect to ρ if and only if {X} = split(X, ρ).
ρ is stable if and only if it is stable with respect to itself.

Let Stable(ρ) = {X ∈ ρ | split(X, ρ) = {X}}.

Accessibility Let ρ be a partition of Q. We define the function Accρ:

Accρ(X) = [qinit] ∪ ∪
α∈Aτ

postα,ρ(X).

Given a partition ρ, the set of accessible states is the least fixed-point of Accρ in the

lattice 22Q

. However, the fact that a class belong to Accρ does not imply that it contains
an accessible state. This property becomes true when all the accessible classes are stable.

In [BFH90b], we propose an algorithm which compute the greatest fixed-point

νρ . ρinit ⊓ Ref (µπ . Accρ(π ∩ Stable(ρ)), ρ)

by taking into account the stability on accessible classes. A step of the algorithm consists
of choosing and refining a class, accessible from the stable classes.

4.2.1 Discussion

We can easily extend this algorithm to w-bisimulation and branching bisimulation, by
modifying the definition of the function split :

w bisimulation

split(X, ρ) = ⊓
Y ∈ρ

⊓
a∈Aτ

{X ∩ preτ∗a(Y ), X \ preτ∗a(Y )}.

Branching bisimulation

split(X, ρ) = ⊓
Y ∈ρ

X 6=Y

⊓
a∈Aτ

{Fa(X, Y ), X \ Fa(X, Y )}

⊓ ⊓
a∈A

{Fa(X, X), X \ Fa(X, X)}

5 Experiments using the tool Aldébaran

We summarize some of the results obtained when using the verification methods presented
in this paper within the tool Aldébaran. In particular, we compare the two distinct
approaches (i.e, classical versus “on the fly”) as well as the practical behavior of the
algorithms associated to different relations. We first briefly present the tool Aldébaran

and give its current state.



5.1 Aldébaran

Aldébaran is a tool performing the minimization and comparison of labeled transition
system with respect to several simulation and bisimulation-based equivalence relations. It
is either used as a verification tool (in association with a LTS generator) or “internally”
(for example inside another tool, as a graph minimizer). The two approaches mentioned
above have been implemented within Aldébaran, with respect to various relations:

classical approach: minimization and comparison algorithms have been implemented
for strong bisimulation, observational equivalence, w bisimulation, safety equivalence
and acceptance model equivalence, which is a variant of readiness semantics.

“on the fly approach”: comparison algorithms have been implemented for strong and
safety preorder, strong bisimulation, w-bisimulation, safety equivalence, delay bisim-
ulation, and branching bisimulation when one of the LTS is τ -free (i.e, without τ
actions). Theoretically branching bisimulation could also have been implemented in
the general case but to obtain an efficient algorithm it was better considering this
restricted case. In fact, it does not seem unrealistic in practice to consider that a
specification is τ -free, and it has been shown that in this case branching bisimulation
and observation equivalence coincides.

Remark

• The comparison algorithm which is currently implemented does not process yet
the Lotos program description “on the fly”: as in the classical method, the two
LTS are previously generated and the comparison phase consists in simultaneously
building the LTS product and checking for the existence of an explanation sequence
as described in section 4.

• The minimal model generation algorithm is still under implementation.

2

In addition, in both approaches diagnostic features are computed by Aldébaran

when the two LTS under comparison are not related: in the classical approach the set of all
the explanation sequences is given, whereas in the “on the fly” approach one explanation
sequence is exhibited.

5.2 Experiments

Two examples are discussed here: the first one is the well known scheduler described
by Milner in [Mil80], and the second one is an alternating bit protocol called Datalink
protocol [QPF88]. For each example, we proceed as follows:

- generating the labeled transition system S1 from a Lotos description, using Cæsar.

- building the labeled transition system S2, representing the expected behavior of the
system.

- comparing S1 and S2 with respect to w-bisimulation, branching bisimulation and safety
preorder using the “on the fly” algorithm.



- minimizing S1 with respect to observational equivalence and w-bisimulation using the
classical algorithm.

The times have been obtained on a SUN 4 SparcStation using the times() UNIX
standard function. Only the verification phase is taken into account. In each table, the
first value represents the system time, whereas the second one represents the user time.

Milner’s Scheduler

The problem consists in designing a scheduler which ensures that N communicating pro-
cesses start a given task in a cyclic way. The Lotos specification considered has been
straightly obtained from Milner’s CCS solution which can be found in [Mil80]. The results
are given for different values of N .

The first table contains the sizes of the LTS obtained from the Lotos program:

N number of states number of transitions

8 3073 13825
9 6913 34561
10 15361 84481
11 33793 202753
12 73729 479233

Sizes of the LTS obtained from the Lotos programs

Using the classical minimization algorithm, due to memory shortage the LTS cannot be
processed when N > 8 for observation equivalence, and when N > 11 for w bisimulation.
For smaller LTS, the system and user times obtained are the following:

N Paige Tarjan Transitive Closure

8 0.017 4.417 1.533 134.200
9 0.250 15.333 8.417 918.917

Minimization with respect to Observation Equivalence

N Paige Tarjan Transitive Closure

8 0.000 0.533 0.067 4.367
9 0.000 1.650 0.250 20.350
10 0.050 5.333 0.617 111.517
11 0.433 7.600 2.633 581.017

Minimization with respect to w Bisimulation

Using the “on the fly” algorithm, the comparison can be carried out up to 12 cyclers:

N Branching Bisimulation w Bisimulation Safety Preorder

8 0.150 0.950 0.050 1.650 0.133 0.483
9 0.300 2.850 0.217 5.900 0.317 1.233
10 1.033 7.300 0.633 21.800 1.217 2.933
11 2.783 15.333 1.767 83.950 2.117 6.883
12 7.283 39.300 6.750 341.283 9.150 16.383

Comparison using the “on the fly” approach



Datalink Protocol

The Datalink protocol is an example of an alternating bit protocol. The Lotos specifica-
tion provided to Cæsar is described in [QPF88]. By varying the number of the different
messages (noted N), labeled transition systems of different sizes can be obtained. The
sizes of the LTS are the following:

N number of states number of transitions

40 27281 40320
50 42101 62400
70 81341 120960
80 105761 157440
90 133380 198719
100 167459 249672

Sizes of the LTS obtained from the Lotos programs

Again, for memory shortage reasons, the LTS cannot be minimized when N > 50 with
respect to observation equivalence and w bisimulation using the classical approach. For
smaller LTS, the times obtained are the following:

N Paige Tarjan Transitive Closure

40 0.150 7.417 0.080 3.317
50 2.133 13.650 1.000 2.650

Minimization with respect to Observation Equivalence

N Paige Tarjan Transitive Closure

40 0.033 4.050 0.017 1.950
50 0.117 7.667 0.033 2.983

Minimization with respect to w Bisimulation

Using the “on the fly” approach, the comparison can be carried out up to 100 messages
and more:

N Branching Bisimulation w Bisimulation Safety Preorder

40 0.717 3.350 0.117 0.250 0.600 2.000
50 1.017 5.250 0.200 2.033 1.000 3.083
70 2.233 9.950 0.483 3.850 1.817 6.050
80 4.033 5.600 0.450 6.117 2.750 9.583
90 4.933 6.600 0.633 6.700 3.433 9.817
100 5.783 28.250 0.850 8.500 1.217 2.933

Comparison using the “on the fly” approach

6 Conclusion

In this paper, we have presented an overview of the methods implemented in Aldébaran.
Aldébaran is a part of a tool set including Cæsar and Cléopâtre [Ras91]. Cæsar is a



Lotos compiler translating a Lotos description in LTS. Cléopâtre is a verification tool
for branching-time logic specifications, including a verification module and a diagnostic
module.

Initially, we have dealt with classical method in Aldébaran: computation of a nor-
mal form for LTS with respect to a given equivalence, followed by a minimization or a
comparison up to strong bisimulation. The limitation of this method is now well known.

From this limitation, we experiment now algorithms presented in 4. However, we do
not yet combine generation algorithm and verification algorithm in the current imple-
mentation, since the method is applied to LTS already constructed. We want to combine
the generation phase, (i.e., from Petri Nets to LTS), of the Lotos compiler Cæsar with
verification algorithms of Aldébaran.

For this purpose, a depth first search generation algorithm can be combined with
the algorithm constructing the partial product. Thus, larger Lotos programs could be
carried out. In particular, there is no restriction on the data types.

Minimal LTS generation can also be implemented. This method may require symbolic
computations in order to determine the pre and post functions, inclusion and intersection
of classes. Such symbolic computations are reasonably achievable in the boolean case,
(i.e., Lotos description with boolean value). We think that this method is also suitable
for other simple data types.
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