On-the-fly Verification of

Finite Transition Systems !
Jean-Claude FERNANDEZ, Claude JARD,
Laurent MOUNIER Thierry JERON

IMAG/LGI, BP53X, St Martin d’'Heres IRISA, Campus de Beaulieu
F-38041 Grenoble Cedex, FRANCE. F-35042 Rennes, FRANCE.
fernand@imag.fr jard@irisa.fr

Abstract

The analysis of programs by the exhaustive inspection of reach-
able states in a finite state graph is a well-understood procedure. Tt
is straightforwardly applicable to many description languages and is
actually implemented in several industrial tools.

But one of the main limitations of today’s verification tools is the
size of the memory needed to exhaustively build the state graphs of
the programs. For numerous properties, it is not necessary to explic-
itly build this graph and an exhaustive depth-first traversal is often
sufficient. This leads to an on-line algorithms for computing Biichi ac-
ceptance (in the deterministic case) and behavioral equivalences: they
are presented in detail.

In order to avoid retraversing states, it is however important to
store some of the already visited states in memory. To keep the mem-
ory size bounded (and avoid a performance falling down), visited states
are randomly replaced. In most cases this depth—first traversal with
replacement can push back significantly the limits of verification tools.

We call “on—the—fly verification”, the use of algorithms based on a
depth—first search (with replacement) of the finite state graph associ-
ated with the program to be verified.

Keywords : verification, Finite Transition Systems, model-checking,
bisimulation, depth-first search.

!This work was partly funded by the french national project C? on parallelism.

Contents

1

Introduction

1.1 Motivation
1.2 Limits of the reachability analysis
1.3 State-of-the-art in on-the-fly verification
1.4 Paper organisation

The on-the-fly kernel: basic traversal algorithms

2.1 The algorithm

2.2 Time complexity of a simple DFS with replacement

2.3 Experiments

Product system analysis
3.1 Behavioral equivalences and preorders . .
3.2 On-line model checking

On-the-fly verification

4.1 Biichi acceptance for deterministic case .
4.2 Bisimulation00
4.3 Testing for unboundedness of fifo channels

Conclusion and prospects

10

12
12
15

17
17
18
22

23

1 Introduction

1.1 Motivation

Program verification is a branch of computer science whose purpose is “to
prove programs correctness”. Let us recall that correctness proofs are proofs
of the relative consistency between two formal specifications: those of the
program, and of the properties that the program is supposed to satisfy. Such
a formal proof tries to increase the confidence that a computer system will
make it right when executing the program under consideration.

Verification has been studied in theoretical computer science departments
for a long time but it is rarely applied to real world problems. As a matter
of fact, we must pay much more attention to practical problems such as the
amount of space and time needed to perform verification.

A considerable need for such methods appeared these last ten years in
different domains, such as design of asynchronous circuits, communication
protocols and distributed software in general. A lot of us accepted the chal-
lenge to design automated verification tools, and many different theories have
been suggested for the automated analysis of distributed systems. There ex-
ist now elaborate methods that can verify quite subtle behaviors.

A simple method for performing automated verification is symbolic exe-
cution which is the core of most existing and planned verification systems.
We refer to this technique as reachability analysis. The practical limits of this
method are the size of the state space and the time it may take to inspect all
reachable states in this state space. Those quantities can dramatically rise
with the problem size.

1.2 Limits of the reachability analysis

Reachability analysis is basically an exhaustive search yielding a rooted graph
of global states. This technique is often called perturbation [31]. Starting
from some specified initial state, successor states are generated and stored
in the computer. The process stops when no new state (i.e. one not previ-
ously stored) can be generated. Termination is guaranteed if all the program
variables (including communication channels) are bounded.

The state graph is usually very large and for example, any protocol of
practical relevance will have a state space in the order of at least one million

states. There are two major problems when handling systems of this size:
state matching (to avoid double work and to ensure termination), and state
storing. A profound study of algorithms dedicated to the reachability analysis
has been conducted by G. Holzmann at the ATT Bell Labs since 1985 [15,
16, 17]. Let us recall some complexity results.

Let R be the number of reachable states. We can suppose that states
are of constant size S. As we want to store and compare states, we can
reasonably suppose that the memory is arranged as a balanced tree. The
memory size M needed to store the state size is then at least R.S. Let C'(S)
be the time needed for the comparison of two states. When the i** state
is generated for the first time, the memory contains 7 — 1 states, thus its
insertion in the tree is carried out in time at worst C'(S).log(i). If d is the
average degree of nodes, each node is re-generated d — 1 times in average
and searched in a memory which contains at least ¢ states. The time needed
for those searches can be approximated by (d — 1).C(S).log(i). Coarsely
approximating log(R!) by R.log(R), we say that the time complexity of the
perturbation technique is

T ~d.C(S).EE log(i) ~ d.C(S).log(R!) ~ d.C(S).R.log(R)

As an example, if M = 107 bytes and S = 10? bytes, the size of the graphs
that can actually be analysed is less than R = 10° states. If d = 2, C(S) =
10~* seconds, and trees are binary trees, the time needed is in the order
T ~ 6 minutes.

In order to master the “state explosion”, different complementary works
have been conducted to reduce the size of the graph [5, 30, 3, 12, 13, 11].
Obviously, reduction must be performed during the graph generation. The
other constraint is that the validity of properties to be verified must not
be changed. For that reason, we do not consider simulation methods which
provide only partial verification [32, 27, 21, 17].

1.3 State-of-the-art in on-the-fly verification

The idea is that, for a large class of properties, storing all the reachability
graph is not mandatory. It is enough to visit all the states and/or all the
transitions. A depth-first traversal of the reachability graph performs such
an exhaustive search. Only the current path has to be stored but the time

needed to perform a verification may be catastrophic, due to the re-generation
of already visited states.

An intermediate method offers a good compromise between time and
space requirements. It is based on a depth-first traversal but uses all the
available space in order to store not only the current path, but also the great-
est possible number of already visited states. We will prove that bounding
memory to a smaller size than the state space may not significantly increase
the time complexity. Such algorithms allow us to build efficient verifiers, able
to handle large graphs. This approach is called “verification on-the-fly”.

[t was first proposed in [15] in the context of partial verification as a pos-
sible method to restrict the state space during a “scatter” search. This idea
was rediscovered in [22] and presently applied to complete verification by
“on-line” model checking. Since then, similar ideas have been advocated in
[6] and [9]. [6] presents efficient algorithms to verify properties given by Biichi
automata and thus proposes a new solution to the verification of temporal
properties on infinite behaviors of finite state programs ; their method con-
sists of checking the emptyness of the automaton resulting from the product
of the program and the property without explicitly constructing the strongly
connected components of the automaton. [9] extends the technique to ver-
ify on-the-fly behavioral equivalences and preorders on transitions graphs.
The core of the method is to traverse (during its generation) a kind of syn-
chronous product of finite transitions systems. In [10, 23] new on-the—fly
verification algorithms have been designed, prototyped and measured. This
paper presents these algorithms in a uniform manner and will serve as a ba-
sis for integration in a verification tool (namely the CAESAR/ ALDEBARAN
tool [11]).

1.4 Paper organisation

The remainder of the paper is organized as follows. We present in detail
a class of bounded memory algorithms that traverse exhaustively the state
space of the program to be verified. Upper bounds for space and time com-
plexities are computed and different experiments show the average behavior
of our algorithms. They form the on-the-fly kernel of the verification tool.
The second part of the paper shows how different verification problems can
be solved as an exhaustive traversal of a “product” transition system. The
on—the—fly verification algorithms are given in detail using the kernel, seen

as a simulator with “holes”. We present four algorithms:

e verification of acceptance of a finite transition system by a deterministic
Biichi automaton (safety properties),

e verification of bisimulation equivalence in the deterministic and non-
deterministic cases,

e testing of the unboundedness of Fifo channels.

We conclude with some prospects.

2 The on-the-fly kernel: basic traversal algo-
rithms

We saw above that the main drawback of the perturbation technique is the
memory size needed to perform the graph generation for real life systems.
Now, there are some verification problems for which a traversal of all states
and transitions is sufficient. It is then unnecessary to store the whole graph.
An algorithm performing this exhaustive traversal is a depth-first traversal in
which we theoretically only need to detect cycles, provided that the memory
is large enough to store the longest acyclic sequence. Unfortunately, visited
states which no longer belong to the current sequence are “forgotten” and
can be visited again in many other sequences. In the best case the number
Rgen of generated states is R. But in the worst case Ry, can reach Rl.e
for a complete graph with R states (e is the basis of natural logarithms). If
the number of states in the memory is bounded by the length of the longest
acyclic sequence D,,,., the time needed to complete the traversal is in the
scale of
C(S).R.10g(Dpmaz) < T < C(S).R.e.10g(Dpaz)

However, a depth-first traversal can be significantly improved if the whole
available memory is used [19]. Actually, since D,,q,.S < M (where M is
the size of the memory), one can use the remainder of the memory to store
already visited states and consequently to avoid re-generation of some states.
We present this technique and show by means of examples that it can be
efficiently used to analyse real size graphs which are too large to fit in memory.

2.1 The algorithm

procedure DFSR (So: state; var N, V, P: set_of-states;
Act, Act_Stack, Act_ NPV, Act_Pop: procedure;
Cond_Null: function;
var res: result

)i
var
St : stack; (* —— states of the current sequence —— *)
St_Trans : stack; (* —— stack of transitions of the current sequence —— *)
St_Ens_Trans : stack; (* —— stack of sets of pending transitions —— *)
S, S : state; t : transition;
begin
St := nil; St_Trans := nil; St_Ens_Trans := nil;
push (So, St); push (firable(So), St-Ens_Trans);
while St # nil do begin

S := top (St); (¥ —— current state —— *)
if top (St_Ens_Trans) # 0 then begin
t := extract_one_of (top(St_-Ens_Trans));(* -- choose and remove —- *)

push (t, St-Trans);
S' := succ (S,t);
‘Act (S', St, St_Trans, res);

case search (S’) of
Null : begin
if memory_full then (* -- replacement —- *)
if V. = 0 then res := memory-overflow
else V :=V -{ one_of(V) };

if | Cond-Null (S')|then N := N U {S'}
else begin
push (S', St);
push (firable(S’), St-Ens_Trans);
end;

end
Stack : ‘Act_Stack (S, S, res);

Nec, Perm, Vis: ‘Act_NPV (S, S, res);
end;
pop(St_Trans);
end
else begin (* —- top(St_-Ens_Trans) =0 -- %)
pop (St); pop(St_-Ens_Trans)
V=V U{S}

Act_Pop (S, res);

end;

i

end;
end;

The algorithm performing a depth—first traversal with replacement is de-
scribed above. The algorithm is described as an exhaustive simulation with

holes. The contents of the holes depend on the kind of verification used; they
describe the conditions (Cond_Null) and actions (Act, Act_Stack, Act_NPV
and Act_Pop) that must be performed during the search.

The parameters of the algorithm are the initial state Sy of the current
DFSR, i.e. Depth First Search with Replacement, a set V of already visited
states that can be replaced, two sets N and P of states which cannot be
replaced, the four procedures Act, Act_Stack, Act_ NPV, Act_Pop, the boolean
function Cond_Null, and a result res.

One DFSR uses three stacks St, St_trans and St_Ens_Trans which respec-
tively contain the states, transitions and pending transitions (those which
are not yet fired) of the current sequence. We also assume the existence of
an implicit memory of size M composed of the states belonging to St, N, V,
P and we always insure that these sets are disjoint.

The DFSR algorithm uses several primitive functions and procedures such
as the classical push, pop and top which operate on stacks, firable which gives
the set of firable transitions from a state, one_of which chooses an element in
a set, extract_one_of which chooses and removes an element from a set, succ
which gives the successor of a state after firing some transition, search which
searches a state in the memory. Its result is Null if the state is not in the
memory and either Stack, Nec, Perm or Vis if it respectively belongs to St,
N, Por V.

procedure DFS_Simple;

var
So : state;
N, V, P : set_of-states;
res : result;

begin

Vi=0; N:=0; P:=0

So := initial_state;

DFSR (So, N, V, P, nop, nop, nop, nop, false, res);
end;

Let us explain the behavior of the algorithm in the case of a simple DFS,
i.e. Depth First Search, in which the actions Act, Act_Stack, Act_ NPV are
the null operation nop and Cond_Null is the constant boolean function false
(this implies that N is always empty).

Initially, St contains Sy and St_Ens_Trans contains the set of firable tran-
sitions from Sy. The algorithm is then a loop which stops as soon as the
stack Stis empty i.e. when all states which are accessible from Sy have been
visited. or when a memory overflow is detected. It differs from a classical
depth first search by the replacement which possibly happens when a newly
generated state S’ does not belong to the memory. In this case, we must
push S’ in St. But the memory (composed of St, N= (), P= () and V) may
be full. In this case, either V is empty and the algorithm fails be memory
overflow or we can remove one state from V and then push S’ in St.

The simple DFS algorithm with replacement can be used on any graph
such that D,,...S < M. But, contrarily to a classical traversal, this is not a
necessary condition for the termination because states of the longest acyclic
sequences may be reached by shorter sequences. A necessary condition is
Gmaz-S < M where G,,,; is the maximal length of a geodesic with initial
state Sy (a geodesic from S to S’ is an acyclic sequence from S to S’ with
minimum length). We have G4z < Diar but if Gpuge.S < M < Dypgy.S
the algorithm may or may not terminate, depending on the order of the
evaluation of the transitions.

2.2 Time complexity of a simple DFS with replace-
ment

Note that we always have (|St| + [V]).S < M and the boolean variable
memory_full means (|St| + |V|).S = M and is a stable property. Let R,
be the number of insertions of states in the memory i.e. StUV. The behavior
of the algorithm in the case R.S < M is almost the same as a perturbation,
except for the generation order. Each state is inserted exactly once, so R;,s =
R. The time complexity is then approximatively the same.

If R.S > M, R;,; exceeds R because an already visited state may have
been forgotten. Due to the stability of the property memory_full, we can
separate the algorithm into two phases:

e in the first phase, when —memory_full, all visited states are in StUV
and the algorithm behaves like a perturbation,

e in the second phase, when memory_full, each time a state S’ is gen-
erated and not found in St UV, we must remove some state Sy, from

V' before pushing S’ into St. The way this replacement is performed
influences the total number of generated states R,.

We also suppose that the whole memory StUV (or StUVUN if N # ()
is arranged as a balanced tree, which supports access, insertion and deletion
operations in logarithmic worst case. The number of states in that memory
is always less than M/S. Each generated state must be searched in that
memory. Thus, the total time of the traversal is approximatively

M
T ~ C(S)-Rgen- log(g)

Recall that for the perturbation, time complexity is C(S).d.R.log(R).
If M < R.S, we have Ry, ~ d.R, thus complexities are almost identi-
cal. If M > R.S, a perturbation technique is no longer possible. We have
log(M/S) < log(R) thus, if R, is in the same order of magnitude that d.R,
time complexity of the depth—first traversal is close to the complexity that a
perturbation would have with a memory of size R.S.

In practice, we hope that R;,; remains close to R.

The choice of a replacement strategy is then essential in such an algo-
rithm. Several strategies have been looked at. As already noticed in [16], the
best one seems to be random replacement, as in general nothing about the
structure of the graph can be known in advance. It is easily performed and
has no performance drop for particular graphs.

2.3 Experiments

The depth—first traversal with replacement has been used for different kinds
of graphs: accessibility graphs of communication protocols modelled by com-
municating finite state machines, and random graphs. The parameters of
these random graphs are R,,,; a bound on the number of states and d,,,;
the maximum degree of a node. They are generated in a breadth—first way.
The degree of each node is chosen uniformly between 0 and d,,q,. If g is the
number of already generated states, each successor of the current state has
probability 1 — g/min(2.g, Ryue.) to be a new state. Among those random
graphs, we only considered those with R close to R,4z.

The two curves of figure 1 represent the behavior of the algorithm on a
random graph when decreasing the memory size. Starting from M,,,, = R.S,

10

Nunber

the memory size is decreased down to the minimal possible value M,,;, for
which the algorithm terminates. The two bounds M,,.,/S and M,,;,/S are
figured by the two dashed vertical lines.

The two first curves represent the evolution of the number of insertions
R;,, of states in St UV and the execution time. If M = M,,,, = R.S then
Riy,s = R. As M decreases, R;,s increases. But it increases very slowly
until M comes close to M,,;n. Rins is then less than twice R. Finally, R;,;
explodes but the memory is significantly reduced compared to pertubation
before explosion. The execution time 7" has a similar form. For this example,
with a memory size of 40% of R.S we have only 70% more states insertion,
which results in a time increase of 50%.

10000 r r r — 100000

8000 - 1 B 80000

I |
6000 [| 1 60000
I |

I |
I |
I |
4000 } } B 40000
| |
| |
| |
| |
| |
| |

2000 | 1 1 20000
| |

Time (ms)

. . L . I . . L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Merory size / state size Memory size / state size

Figure 1: Number of generated states and execution time

Many examples have been tested with this traversal. They almost always
gave the same type of curves. But we can only decrease the memory size
down to a value between D,,,..S and G,,,,.S. Thus when D,,,, is small
with respect to R, one can reduce M significantly, and the increase of R,
and T are very slow. In the left example of figure 2, M, = Myyq./10, and
we have an increase of only 1% of R;,s and 11% of T (see the left hand curve
of figure 2). However, for graphs with D,,,, close to R as in the right hand
curve of figure 2, that is when graphs are very connected (a complete graph
is the worst case), results are not so good. The domain in which M/S can
vary is very small and R;,s and T increase very quickly.

11

Time (ms

40000 - r r r r r — 100000
I I
I I -
I I -
35000 [| ! R
i |
1 1 80000
30000 - ! ! g
i i
i i
25000 |
60000 |-

20000

Time (ms)

40000
15000

10000 [
20000

5000 | | B | |
I L I L I I

L L L L L
2000 2500 3000 3500 0 500 1000 1500 2000
state size ze .

. .
0 500 1000 1500
Merory i z Merory size | state size

e/

Figure 2: Execution time in extremal cases

3 Product system analysis

3.1 Behavioral equivalences and preorders

One of the successful approaches used for the verification of communicating
processes consists in comparing different specifications of a given system by
means of behavioral equivalence and preorder relations. More precisely, if
Specy denote the more abstract specification of the system and Specy the
more detailed one, it is possible to check whether Spec, agrees with Spec;:
Let R be an appropriate equivalence relation or preorder relation. Then
Specy agrees with Spec; if and only if Spec; R Specs. With Spec; a labeled
transition system S; (LTS for short) is associated and R is an equivalence
relation or preorder relation on LTS.

Bisimulation equivalences and simulations equivalences or preorders play
a central role in the verification of communicating systems. Many efficient
algorithms for computing various bisimulation equivalences (strong, weak,
branching) were proposed [24, 2, 28, 8, 25, 29, 14, 10, 3]. According to the
definition of an equivalence relation which is either a set of state classes or a
binary relation on the state space, the methods consists of refining a current
partition until each class is stable or checking if a pair of states belonging to
the current relation are bisimilar. In [10], we have shown that it is sufficient
to define a particular synchronous product between two LTS, parametrized
by a simulation or a bisimulation.

Recall that a LTS S is a rooted state graph with a labelling function

12

< Q,A,T, gy > where () is a finite set of states, A a finite set of actions,
T C @ x Ax (@ the transition relation, and g, the initial state. We use also
the notation p —7 ¢ for (p,a,q) € T.

Let S; =< Q;, A, T}, qo, > be two LTS. We recall the definition of simula-

tion and bisimulation. Let A C A*, and let p,q € (). We write p 4>T q iff:
Jur-un € Aand g, g0 € Q and p Hr @ “Hp goeog —hr

Qiv1 Q-1 —7 q. Let TI be a family of disjoint languages on A.
Actn(g,T) ={\ €[3¢' . ¢ =7 ¢'}.

Definition 3.1 (simulation) Let 1 be a family of disjoint languages on A.
We define inductively a family of simulations R by:

RUH = Q1 X Qs
Rl = {(pips) |[VA€ET.
Vo (0 =5 @ = 3¢ (02 =1 @2 A (@1,¢2) € RY))}

o
The simulation preorder for IT is CM'= ﬂ RE, the simulation equivalence is
k=0
~M= (R N R,?il).
k=0
Definition 3.2 (bisimulation) Let 1 be a family of disjoint languages on A.
We define inductively a family of bisimulations R by:

RUH = (1 x Q2
R1?+1 = {(p1,p2) | VA €TI.

A A
Vg . (0 =2 @ = g . (p2 =1 2 A (@1, ¢2) € RY))
Vqa . (p2 L>T2 @ = Jq . (n L>T1 o A (¢1,¢) € RY))}

From these general definitions, several simulation and bisimulation relations
can be defined. The choice of a class II corresponds to the choice of an
abstraction criterion on the actions. The strong simulation and the strong
bisimulation are defined by II = {{a} | a € A}, the w-bisimulation is the
bisimulation equivalence defined by Il = {7*a | a € A A a # 7}, the safety
preorder is the simulation preorder defined by Il = {7*a |a € A N a # T}
and the safety equivalence is the simulation equivalence where IT = {7*a |
a€ANa#T}

13

We define the product S; X pu Sy between the two LTS Sy and Ss, and then
we show how the fact that S; and S, are related by R" can be expressed
as a simple criterion on the execution sequences of this product. We use
Pi, Gi, P, g, to range over ;. We use R and R} to denote either simulations

or bisimulations (R" = (| R}).

The LTS &1 X pu Sy]ics 0deﬁned as a synchronous product of §; and S,: a
state (q1, g2) of S X gn Sy can perform a transition labeled by A if and only if
the state ¢; (belonging to S;) and the state ¢, (belonging to Sy) can perform
a transition labeled by A. Otherwise,

e in the case of a simulation, if only the state ¢; can perform a transition
labeled by A, then the product has a transition from (qi, ¢2) to the sink
state noted fail.

e in the case of a bisimulation, if only one of the two states (¢; or ¢2)
can perform a transition labeled by A, then the product has a transition
from (¢, ¢q2) to the sink state fail.

Definition 3.3 We define the LTS § = &1 X gu Sy by:

S =(Q, A, T, (q1,q02)), with Q C (Q1 x Q) U{fail}, A = (A NAy)U{s},
and T C Q x A X Q, where ¢ & (A1 U Ay) and fail ¢ (Q1 U Q3).

T and @) are defined as the smallest sets obtained by the applications of the
following rules: RO, R'1 and R'2 in the case of a simulation, RO, R1 and R2
in the case of a bisimulation.

(qo1,q02) € Q [RO]
(q1,q2) € Q, Actn(q1) = Actn(ga), A €11, ¢ i>T1 q G2 L>T2 ¢

S [11]
(1, q2) € Q, Actn(q1) C Actrr(qz), A €11, ¢ L>T1 q ¢ A>T2 0 [R'1]
(q1,92) € Q, Actn(q1) # Actn(ga), [R?)

{fail} € Q,{(q1, q2) 1 fail} € T

14

(QIan) € Q: ACtH(QI) Z ACtH(QQ),
{fail} € Q,{(q1, ¢) s fail} €T

[R'2]

Note that (py, ps) L. fail if and only if (py, ps) & R}

The following proposition gives the promised cartesian product on the
execution sequences of S, allowing to decide that &; and S, are not related
by RU in terms of the execution sequences of S; X pn So.

Proposition 3.1 (qo;, qo,) & R™ if and only if it exists an elementary exe-
cution sequence o of S such that:

e J — {(qu,QOg) = (p(];q{]); (pIJQI): (kaQk)’fa’il}'
o Vi . 0<i<k, (pig) € RY ;.

If one of the two LTS is deterministic, proposition 3.1 can be improved. For
a state (q1,q2) of S; X gpu Sa, (q1,q2) € RY if and only if fail is not a successor
of (g1, q2) and all the successors (¢}, ¢4) of (¢, q2) verify (q1,) € R} ;.

Proposition 3.2 Let us suppose that Sy is deterministic (or Sy if the (R} x>0
are bisimulations). Then:

51 %HSQ & do € El‘(qu,qUQ) .dk > 0. O'(k) = fail.

According to this proposition, if at least one of the two LTS S; or Sy (resp.
Sy) is deterministic then S; and Sy are not bisimilar (resp. similar) if and
only if it exists an execution sequence of &7 X pn Sy containing the state faul.

3.2 On-line model checking

Let & =< @1, A, T, qo; > be the labeled transition system associated with
the specification Spec.

Suppose that a property P can be expressed by a deterministic Biichi
automaton B =< @9, A, T3, qoy, Fo > where)y is its finite set of states, A
its set of actions, Ty, C Qs X A X @)y its transition relation, gy, the initial
state and F5 a set of designated states. An infinite word ay...a,... € A¥
is recognized by B if and only if there exists an infinite run of B: qp, 27,
Q- Qo1 37, qp ... such that ¢ € F, for infinitely many i’s.

We say that Spec satisfies P written Spec = P if and only if every infinite
word labelling an infinite transition sequence of &; is recognized by B.

15

In the case that the Biichi automaton may be non deterministic, the usual
way to verify that Spec = P is to consider S; as a Biichi automaton (its set
of designated states is 1), make the product of S; with the complement
automaton B of B and check if S; x B is empty (accepts no word). This can
be done by computing the strongly connected components.

In the case of a deterministic Biichi automaton, we show that there is a
very simple algorithm which performs this verification without complemen-
tation and without computation of strongly connected components.

We consider §; as a Biichi automaton with () as its set of designated
states. We suppose that B is complete. This can always be done by adding
a new state.

Definition 3.4 The synchronous product S =< Q, A, T,qo, F > of & and
B is defined by:

o) =Q1 xQq,
® (o — (QO1aQO2);
g F:Ql XF?)

T CQxAXxQ is defined by

G, ¢) € Qi ¢y € Qa, ¢ L>T1 a1, @ L>T2 a5
(QhC]Q) L>T (qluﬁfg)

Since B is complete, the infinite sequences of executable actions of S
are exactly the words labelling the infinite runs of S. And according to
the definition of S, Spec |= P if and only if every infinite run of S contains
infinitely many states of F'. Considering S as a directed graph, it is equivalent
to say that every reachable cycle of the graph contains a vertex in F. But
this is equivalent to say that the sub-graph &' obtained from S by removing
all vertices of F' (and the corresponding edges) is acyclic. And &’ is acyclic
if and only if a depth-first traversal of &’ doesn’t detect any cycle.

16

4 On-the-fly verification

4.1 Biichi acceptance for deterministic case

As we saw above, the problem is to detect whether the subgraph &’ is acyclic.
But we don’t want to first build & and then remove vertices of F'. We would
like to check whether & is acyclic during a traversal of S. The subgraph &'
is not necessarily weakly connected. But each weakly connected component
of §' is reachable in S from a state in F' or from ¢;,;;. And states in F' are
reachable in S from ¢;,;;.

The algorithm that we propose is a particular traversal of S consisting in
several partial DFS. Each partial DFS is rooted by a state in F' or ¢;,;; and
explores every state accessible in 8’ from the actual root. Thus we cannot go
beyond states of F' but we discover all of them during the partial traversals.

If the memory is large enough to store the whole state graph S, the
algorithm terminates and detects a loop in &' if and only if one exists. A
loop in &' is detected if search(S’) gives the result Stack and S’ ¢ F' (see
the action Act_Stack). Furthermore, the algorithm is linear in the size of S
as every edge of S is traversed once and only once. It is then more efficient
than a classical Tarjan’s algorithm which calculates the strongly connected
components of S and detects if one of them contains a state in F.

Now if the memory is too small, we can use the replacement strategy.
The algorithm is ensured to terminate correctly if loops are detected in S’
and every state from F'U{q} initiates one and only one partial DFSR. Thus
we can remove every state from V' which does not belong to F'U {go}.

In order to perform the algorithm on the basis of our partial DFS, we
need to fill some of the holes. We first need a set N which contains the roots
of the depth-first traversals not yet performed i.e. the states of ' which have
already been discovered but not used. And we need a set P containing the
roots of preceding partial DFSR.

If a new state ¢ € F' is reached, it is added to N and successors of ¢
are not explored in the present DFSR (they will be explored in the traversal
initiated in ¢). When the DFSR starting in the root g is finished, gn;
is added to the set P in Act_Pop, in such a way that every visited terminal
state is either in N or in P. If a cycle is detected in ¢ ¢€ F' this simply signifies
that a cycle of 8 is detected.

The algorithm stops when N is empty and Spec = P if and only if no

17

cycle of & is detected. This algorithm, in which the actions in which the
actions Act, Act_NPV are the null operation nop, is described below:

procedure DFS_Buchi;
var
Qinit © State;
N, V, P: set_of_states;
res : result;
function Cond_Null (¢’ : state) : boolean;
begin Cond_Null := (¢’ € F) end;

procedure Act_Stack(q, q' : state; var res : result);
begin if (¢’ ¢ F) then res:=error; end;

procedure Act_Pop(q : state; var res : result);
begin
if g = qinit then begin
(* —— initial states of each DFSR must be preserved from replacement —— *)
V=V -{q}
P :=P U {q};
end;
end

begin
=0; N :=0;
Qinit := initial_state; (* —— initial_state is go = (go0,,90,) —— *)
repeat
DFSR (qinit, N, V, P, nop, Act_Stack, nop, Act_Pop, Cond_Null, res);
if N #0 then
Qinit ‘= extract_one_of(N);
until (N = 0 or res = error or res = memory_overflow);
end;

4.2 Bisimulation

In the previous section, we have expressed the bisimulation and the simu-
lation between two LTS S; and Sy in terms of the existence of a particular
execution sequence of their product S; X gn S;. Now we show that this ver-
ification can be realized by performing depth-first searches (DFS for short)
on the LTS §; xzn Sy, Consequently, the algorithm does not require to con-
struct the two LTS previously : the states of S; X gn S, are generated during
the DFS (“on the fly” verification), but not necessarily all stored. And the
most important is that the transitions do not have to be stored.

18

We note n; (resp. ng) the number of states of S; (resp. Ss), and n the
number of states of 8§ Xpn Sy (n < ny X ny). We describe the algorithm
considering the two following cases:

Deterministic case: if R represents a simulation (resp. a bisimulation)
and if Sy (resp. either S; or Sy) is deterministic, then, according to
proposition 3.2, it is sufficient to check whether or not the state fail be-
longs to 81 X pn Sz, which can be easily done by performing a usual DFS
of & X gn &;. The verification is then reduced to a simple reachability
problem in this graph. Consequently, if we store all the visited states
during the DFS, the time and memory complexities of this decision
procedure are O(n).

General case: in the general case, according to the proposition 3.1, we have
to check the existence of an execution sequence o of & X pn S which
contains the state fail and which is such that for all states (¢i, ¢2) of o,
(q1,q2) ¢ R} for a certain k. According to the definition of RY, this
verification can be done during a DFS as well if:

e the relation R} can be checked.

e for each visited state (g1, g2), the result (q;, q2) € RY is synthesized
for its predecessors in the current sequence (the states are then
analyzed during the back tracking phase).

More precisely, the principle of the general case algorithm is the following: if
R" is a simulation (resp. a bisimulation) we associate with each state (g, g2)
a set Equiv_List(qi,q) of size |Ti[q1]| (resp. |Ti[q1]| + |T[go]|). During
the analysis of each successor (g}, q5) of (¢1,¢2), whenever it happens that
(¢1,¢5) € RY then ¢} is inserted into Equiv_List(qi, q2) (resp. ¢; and ¢} are
inserted into Fquiv_List(q;,q2)). Thus, when all the successors of (g1, ¢2)
have been analyzed, (qi,q:) € R" if and only if Equiv_List(q,q) = Ti[q]
if R"™ is a simulation (resp. Equiv_List(q1,q2) = Ti[q1] U Tolge] if R is a
bisimulation).

As in the deterministic case algorithm, to reduce the time complexity
of the DFS the usual method would consist in storing all the visited states
(including those which do not belong to the current sequence) together with
the result of their analysis (i.e, if they belong or not to R"). Unfortunately,
this solution cannot be straightly applied:

19

During the DFS, the states are analyzed in a postfixed order. Conse-
quently, it is possible to reach a state which has already been visited, but
not yet analyzed (since the visits are performed in a prefixed order). There-
fore, the result of the analysis of such a state is unknown (it is not available
yet). We propose the following solution for this problem: The result returned
by the function DFSR may be TRUE, FALSE or UNRELIABLE. The algo-
rithm then consists in a sequence of calls of DF'SR (each call increasing the
set Non_equiv_States), until the result belongs to {TRUE, FALSE}.

We call the status of a state the result of the analysis of this state by
the function DFSR. The status of (qi, q) is “~” if (q1,¢2) € R", and is “%”
otherwise.

If R" is a simulation then

Equiv_List(p,q) = {p'|3¢" . (',q¢') € firable(p.q) A status(p’,q') =~}

If RY is a bisimulation then

Equiv_List(p,q) = {p'|3¢ . (', qd) € firable(p,q) N status(p’,q") =~}
U {d |3 .0,) e firable(p,q) N status(p',q') =~}

Whenever a state already visited but not yet analyzed (i.e, which belongs
to the stack) is reached, then we assume its status to be “~”. If, when the
analysis of this state completes (i.e, when it is popped), the obtained status is
“t” then a TRUE answer from the DFSR is not reliable, the result returned
is UNRELIABLE (a wrong assumption was used), and another DFS has to
be performed. On the other hand, a FALSE answer is always reliable.

We need a set Scc_Roots in order to store the roots of the strongly con-
nected components encountered during the exploration.

The algorithm, in which the action Act is the null operation nop, dealing
with the bisimulation relation is the following:

20

procedure DFS_Bisimu
var
So : state;
Non_equiv-States, P, Visited, Scc_Roots : set_of-states;
Equiv_List : set of set of states;
res : result;
function Cond_Null (S’ : state);
begin Cond_Null:= (fail € successors(S')); end;

procedure Act_Stack (S, S' : state; var res : result)
begin
Scc_Roots := Scc_Roots U {S'};
Equiv_List(S) := Equiv_List(S) U {¢}}U{dy} (* —— 5" =(d},d5) —-*); (1)
end;

procedure Act_-NPV (S, S’ : state; var res : result)
begin
if S ¢ Non_equiv_States then
Equiv_List(S) := Equiv_List(S) U {S'}; (1)
end;
end;

procedure Act_Pop (S : state; var res : result)
begin
if Bquiv-List(S) = Ti[q1] U Talga] (* -— S = (q1,92) - %) then (2)
Equiv_List(top (St)) := Equiv_List(top (St)) U {S}; (3)
else begin
V:i=V-{S};
N :=NU {S};
if S € Scc_Roots then res := unreliable;
end;
end;

begin
Non_equiv_States := ();
So := (qo, , qo0,);
repeat
Sce_Roots :=0;
Visited :=0;
DFSR (So, Non_equiv_States, Visited, P, nop, Act_Stack, Act_NPV, Act_.Pop Cond_Null, res);
res := Equiv_List (So) = Ti[qo,] U To,[q2];(4)
until result € {true, false, memory_overflow}
return result
end;

The algorithm dealing with the simulation is straightly obtained by re-
placing:

(1) Equiv_List((q1, ¢2)) := Equiv_List((q1,¢2)) U {q;}

(2) Equiv_List((¢1,¢2)) = Ti[q1]

21

(3) Equiv_List(top(St)) := Equiv_List(top(St)) U {q:}
(4) Equiv_List((go1, q02)) = Th[a1]

The algorithm terminates, and it returns TRUE if and only if the two
LTS are bisimilars.

The time requirement for the function DFSR is O(n). In the worst case,
the number of calls of this function may be n. Consequently, the theoretical
time requirement for this algorithm is O(n?). In practice, it turns out that
only 1 or 2 DFS are required to obtain a reliable result. Moreover, whenever
the LTS are not bisimilar, the time requirement is always O(n).

4.3 Testing for unboundedness of fifo channels

The depth—first traversal with replacement has also been proposed in [20, 19]
for the test of unboundedness of fifo channels in some specification models
such as communicating finite state machines [1], fifo-nets [26, 7] and even
Estelle programs [18]. Unboundedness is generally undecidable [4], but there
exists a sufficient condition for unboundedness, which can be computed on
the states of each transition sequence. Let S and S’ be two states such that
S’ is reachable from S by the sequence of actions w. Let C;(S) and C;(S")
be the contents of channel f; in those states and out;(w) the projection of
w on outputs in f;. If variables (except channel contents) in S and S’ are
identical and Vj, C;(S).out;j(w) < C;(S").out;(w), then w can be infinitely
fired from S’ and reaches an infinite sequence of increasing states for the
prefix ordering.

The reachability graphs we are working with are possibly infinite, so,
even with a depth first traversal, we can only analyse finite sub—graphs.
But the sufficient condition found on a finite sub—graph remains true on the
underlying infinite graph.

Since the condition depends on transitions sequences, it can be com-
puted during a depth-first traversal and is improved by storing and replacing
some already visited states. The algorithm, in which the actions Act_Stack,
Act_NPV, Act_pop are the null operation nop and Cond_Null is the constant
boolean function false, is described below:

22

procedure DFS_Unbound;
var
So : state;
N, V, P : set_of-states;
res : result;
procedure Act (S’ : state; St, St_Trans : stack; var res : resultat);
var
S : state;
unb : boolean;
w : transitions_sequence;
begin
unb := false;
S := top (St);
repeat
w := seq_from_to (S, S');
unb := Vj,C;(S).out; (w) < Cj(S").outj(w);
S := pred (S);
until unb or (S = Sp);
if unb then res := unbounded;

end
begin
=0; N :=0; P :=0;
So := initial_state;
DFSR (So, N, V, P, Act, nop, nop, false, res);
end;

5 Conclusion and prospects

Dealing with the state space explosion problem, we have presented an al-
ternative to the exhaustive construction of state graphs. The depth-first
traversal insures an exhaustive traversal of all states and/or transitions of a
reachability graph. It requires less memory since it theoretically only needs
a memory large enough to store the longest acyclic sequence. In order to
improve this technique, it is necessary to store some visited states. When
the memory is full, visited states are randomly replaced by new states of the
current sequence. We have shown that this method can significantly increase
the size of the state graphs that can actually be analysed without excessively
increasing the computation time.

As we saw, this method can be used for different kinds of verification. A
few application examples have pointed out that it can certainly improve the
verification tools in various domains such as bisimulation, Biichi acceptance,
on—the—fly verification of temporal properties and test for unboundedness.

23

We have explicitly given those new algorithms. After their prototyping, we
are implementing them in the verification workstation called Open-Caesar.

However, this technique does not solve all the problems. We still don’t
know the whole applicability domain of that method. For example, is it
possible to verify branching time temporal logic properties with a depth—
first traversal with replacement, and, if the answer is positive, is it efficient?
We also know that this algorithm is not quite suited for all kinds of graphs.
Perhaps an interesting problem would be to carefully study the structure of
graphs for which it is well suited. We could then infer on the convenience of
the method on some classes of transitions systems. Within a tool, the choose
of the depth—first traversal in a particular verification could then be guided
by the expected structure of graphs.

References

[1] G.V.Bochmann. Finite state description of communication protocols.
Computer Networks, 2, October 1978.

[2] T. Bolognesi and S.A. Smolka. Fundamental results for the verifica-
tion of observational equivalence. In H.Rudin and C.H. West, editors,
Protocol Specification, Testing and Verification VII, 1987.

[3] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model
generation. In Workshop on Computer Aided Verification DIMACS
90, June 1990.

[4] D. Brand and P Zafiropulo. On communicating finite-state machines.
J.A.C.M, 2:323-342, April 1983.

[5] E.M. Clarke and O. Grumberg. Avoiding the state explosion prob-
lem in temporal logic model checking algorithms. 6* ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, Vancou-
ver, Canada, 1987.

[6] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Mem-
ory efficient algorithms for the verification of temporal properties. In
Workshop on Computer Aided Verification, DIMACS 90, June 1990.

[7] A.Finkel and G. Memmi. An introduction to fifo nets — monogeneous
nets: a subclass of fifo nets. Theoretical Computer Science, 35:191—
214, 1985.

24

8]

[10]

[11]

[12]

[13]

[17]

[18]

J. C. Fernandez. An implementation of an efficient algorithm for bisim-
ulation equivalence. Science of Computer Programming, 13(2-3), May
1990.

J.-C. Fernandez and L. Mounier. Verifying bisimulation on the fly.
In Third International Conference on Formal Description Techniques
FORTE’90, Madrid, November 1990.

J.-C. Fernandez and L. Mounier. On the fly verification of behavioral
equivalences and preorders. In CAV 91: Symposium on Computer
Aided Verification, AAlborg, Denmark, June 1991.

Hubert Garavel and Joseph Sifakis. Compilation and verification of
lotos specifications. In L. Logrippo, R. L. Probert, and H. Ural, ed-
itors, Proceedings of the 10th International Symposium on Protocol
Specification, Testing and Verification (Ottawa), IFTP, North-Holland,
Amsterdam, June 1990.

S. Graf and B. Steffen. Compositional minimization of finite state
processes. In Workshop on Computer Aided Verification DIMACS 90,
June, 1990.

P. Godefroid and P. Wolper. A partial approach to model checking.
In 6'* IEEE Symposium on Logic in Computer Science, Amsterdam,
July 1991.

Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for
Branching Bisimulation and Stuttering Fquivalence. CS-R 9001, Cen-
trum voor Wiskunde en Informatica, Amsterdam, January 1990.

G. Holzmann. Tracing protocols. ATT Technical Journal,
64(10):2413-2434, 1985.

G.J. Holzmann. Automated protocol validation in ARGOS, assertion
proving and scatter searching. IEFEFE trans. on Software Engineering,
Vol 13, No 6, June 1987.

G.J. Holzmann. Algorithms for automated protocol validation. In
Proceedings of the International Workshop on Automatic Verification
Methods for Finite State Systems, Grenoble, France, June 1989.

ISO 9074. Estelle: a Formal Description Technique based on an
Eztented State Transition Model. ISO TC97/SC21/WG6.1, 1986.

25

[19]

[20]

[21]

[22]

23]

[24]

[25]

T. Jéron. Contribution & la validation des protocoles : test d’infinitude
et vérification a la volée. Theése de doctorat d’informatique de
I’Université de Rennes 1, Mai 1991.

T. Jéron. Testing for unboundedness of fifo channels. In STACS 91 :
Symposium on Theoretical Aspects of Computer Science Hamburyg,
Germany, february 1991. Springer—Verlag, LNCS #480, pages 322—
333.

C. Jard, R. Groz, and J.F. Monin. Development of VEDA: a proto-
typing tool for distributed algorithms. In IEEE Trans. on Software
Engin., March 1988.

C. Jard and T. Jéron. On-line model checking for finite linear temporal
logic specifications. In Proceedings of the International Workshop on
Automatic Verification Methods for Finite State Systems, Grenoble,
France, June 1989. Springer—Verlag, LNCS #407, pages 275-285.

C. Jard and T. Jéron. Bounded memory algorithm for verification
on-the-fly. In CAV 91: Symposium on Computer Aided Verification,
AAlborg, Denmark, June 1991. Also available as INRIA Research
Report n® 11462.

P. Kanellakis and S. Smolka. Ccs expressions, finite state processes
and three problems of equivalence. In Proceedings ACM Symp. on
Principles of Distribued Computing, 1983.

K.G. Larsen. Context—Dependent Bisimulation Between Processes.
Technical Report CST-37-86, Departement of Computer Science, Uni-
versity of Edimburgh, May 1986. Ph.D.

R. Martin and G. Memmi. Spécification et validation de systéemes
temps réel a l'aide de réseauzr de Petri a files. Technical Report 3,
Revue Tech. Thomson—CSF, Sept. 1981.

J.-M. Pageot and C. Jard. Experience in guiding simulation. Proto-
col Specification, Testing and Verification, VIII, IFIP, 207-218, June
1988.

R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM
J. Comput., No. 6, 16, 1987.

26

[29] Huajun Qin. Efficient verification of determinate proce sses. In J.C.M

Baeten and J.F. Groote, editors, Proceedings of the 2nd International

Confer ence on Concurrency Theory (CONCUR’91), pages 470-479,
North-Holland, Amsterdam, August 1991.

A. Valmari. A stubborn attack on state explosion. In Workshop on
Computer Aided Verification DIMACS 90, June, 1990.

C.H. West. General techniques for communication protocols. IBM J.
Res. Develop., 22, july 1978.

C.H. West. Protocol validation by random state exploration. In 6
IFIP International Workshop on Protocol Specification, Testing and
Verification, Montréal, Gray rock, North Holland, June 1986.

27

