
j-POST: a Java Toolchain for Property-Oriented
Software Testing

Yliès Falcone1, Laurent Mounier1, Jean-Claude Fernandez1, and
Jean-Luc Richier2

Firstname.Lastname@imag.fr

1 Verimag, Université Grenoble I, INPG, CNRS
2 LIG Laboratory, Université Grenoble I, INPG, CNRS

Abstract. j-POST is an integrated toolchain for property-oriented soft-
ware testing. This toolchain includes a test designer, a test generator, and
a test execution engine. The test generation is based on an original ap-
proach which consists of deriving a set of communicating test processes
obtained both from a requirement formula (expressed in a trace-based
logic) and a behavioral specification of some specific parts of the soft-
ware under test. The test execution engine is then able to coordinate
the execution of these test processes against a distributed Java program.
j-POST was applied to check the correct deployment of a security policy
for a travel management application.

1 Introduction

Testing is a validation technique aimed to find defective behaviours on a system
either during its development, or once a final version is issued. It remains one
of the most feasible methodologies to ensure the expected behaviour of a soft-
ware. This is notably due to its ability to cope with continual growth of system
complexity. However, reducing its cost and time consumption remains a very
important challenge sustained by a strong industrial demand.

In previous work [1, 2] we have presented a black-box test generation method
able to construct abstract test cases from a formal requirement (a property that
the system is expected to fulfill). This method (implemented in a prototype
tool) is based on a test calculus allowing the method to be compositionally and
formally defined. In this framework, a requirement is expressed by a logical for-
mula built upon a set of (abstract) predicates. Each predicate corresponds to a
(possibly non-atomic) operation to be performed on the system under test, and
is user-provided as a test module indicating how to perform this operation on
the actual implementation, and how to decide whether its execution succeeds or
not. The test generation step consists in building, by composition of test mod-
ules, a set of communicating test processes from this property. In this paper we
present a significant step from this previous work. First off, we present formally
how the previously generated test can be executed. Besides we present j-POST,
an integrated toolchain for property-oriented software testing. In addition to a

full implementation of the test generation tool, we present the associated test
designer and test execution engine resulting in a fully integrated toolchain. The
test designer helps the user to provide inputs to the test generator. The test
execution engine is able to coordinate the execution of the generated processes
against a possibly distributed program, leading to a satisfiability verdict with
respect to the given requirement.

Comparison with classical model-based testing. This approach offers several ad-
vantages over more classical model-based test generation techniques [3] imple-
mented in several existing tools (e.g. TGV [4], TorX [5], see [6, 7] for more
exhaustive surveys). First, j-POST is able to deal with piecewise specifications
restricted to specific functionalities. We strongly believe that this feature is really
important in practice, especially in application domains where formal modeling
of software is not a common practice. Specifying only some global requirement
and some specific implementation features in an operational way (i.e. the test
modules) seems much easier for test engineers than building a complete model
of a software. As a consequence, the test generation step will not require the
exploration of such a complete model, avoiding the well-known state explosion
problem. Furthermore, this toolchain remains open in the sense that various log-
ics can be considered to express the requirements, and new logic plugins can be
easily added. Finally, this toolchain integrates a large spectrum of the whole test
process, from the test design to the test execution.

The remainder of this paper is organized as follows. Sect. 2 describes the un-
derlying theory of j-POST and Sect. 3 describes the toolchain itself. In Sect. 4,
we depict one of the experiments conducted with j-POST on a travel agency
application. Sect. 5 exposes some conclusions and perspectives opened by this
work.

2 Underlying testing theory

This section briefly presents the background of j-POST, namely how to pro-
duce and execute test cases from a formal requirement following a syntax-driven
approach. More details can be found in the research reports available in [8].

We consider in the following that the behaviour of the software under test
(SUT) can be modelled using a labelled transition system (LTS), noted Sut,
namely a quadruplet (QSut, ActSut,→, q0) where Q is a set of states, ActSut

a set of actions (labels), →⊆ QSut ×ActSut ×QSut the transition relation and
q0 ∈ QSut the initial state. In black-box testing this behaviour can be accessed
only through a SUT interface, namely a set of visible actions Actvis ⊆ ActSut.
Non visible actions are supposed to be labelled by τ . We will denote by p

a−→ q

when (p, a, q) ∈→, and by p1
τ∗a=⇒ q when there exist p2, p3, . . . , pn s.t. pi

τ−→ pi+1

and pn
a−→ q. Finally, we define the execution sequences of Sut as the set of

finite sequences of visible actions that can be performed from its initial state:
Exec(Sut) = {a1.a2. · · · .an | ∃q1, . . . , qn+1 s.t. qi

τ∗ai=⇒ qi+1 ∧ q1 = q0}.

2.1 The properties to test

We assume in the following that the properties to test are expressed using a logic
L . Formulas of L are built upon a finite set of n-ary operators Fn and a finite
set of predicates {p1, p2, . . . , pn}. The abstract syntax of such a logic could be
defined as follows: formula ::= Fn(formula1, formula2, . . . , formulan) | pi.

Formulas of L are interpreted over finite execution sequences. However, this
semantics also takes into account two other important features:

– First, this semantics is defined on two levels. Predicates are not atomic, i.e.
they do not necessarily correspond to occurrences of single visible actions,
but rather of (concrete) sequences of visible actions. Operators Fn are then
interpreted over abstract execution sequences, i.e., sequences of predicates.

– Second, since our objective is to test either the validity or the non-validity of
a formula ϕ, the semantics of ϕ defines three kinds of execution sequences,
corresponding to the possible verdicts delivered by a tester: the ones that
satisfy ϕ (pass), the ones that do not satisfy ϕ (fail), and the ones for which
we cannot conclude about the satisfiability of ϕ (inconc).

More formally, a triplet of finite languages (LP
pi

, LF
pi

, LI
pi

) is associated with
each predicate pi. These three languages define respectively concrete execution
sequences that satisfy pi, that do not satisfy pi, and for which the satisfiability
of pi is unknown. The following assumptions are required:

– LP
pi

, LF
pi

and LI
pi

are defined over an alphabet Api ⊆ Actvis. Intuitively, Api

is the set of visible actions whose occurrences influence the truth value of pi.
– This set of three languages defines a partition of (Api)

∗.
– For two distinct predicates pi, pj , Api

and Apj
are disjoint.

The semantics of a non-atomic formula ϕ(p1, p2, . . . , pn) is then defined by
three sets [[ϕ]]P , [[ϕ]]F , [[ϕ]]I , inductively computed from LP

pi
, LF

pi
and LI

pi
for each

pi appearing in ϕ.
Finally, we say that an LTS S satisfies ϕ (we note S |= ϕ) iff all sequences

of Exec(S) belong to [[ϕ]]P , and we say that it does not satisfy ϕ iff there exists
a sequence of Exec(S) that belongs to [[ϕ]]F .

2.2 A set of communicating test processes

The test cases we aim to produce consist of a set of sequential communicating
test processes. Roughly speaking, each test process is built from classical pro-
gramming primitives such as variable assignment, sequential composition, (non-
deterministic) choice, and iteration. It can also perform communications with
the other test processes, and interact with the SUT. This sequential behaviour
can be modelled by an LTS extended with variables.

Test processes run asynchronously and communicate with each other either
by “rendez-vous” on dedicated communication channels or through shared vari-
ables. The semantics of a whole test process Tϕ can be expressed by an LTS STϕ .
A complete syntax and semantics of such a “test calculus” can be found in [1],
but other classical process algebra could be used as well.

2.3 Test generation

The purpose of the test generation phase [2] is to produce a test case Tϕ (i.e. a
set of communicating test processes) associated to the L -formula ϕ under test.
We distinguish two kinds of test processes (which are both LTSs):

– test modules tpi , provided by the user, and associated with the predicates pi

of ϕ. Their purpose is to produce a test verdict indicating whether a given
concrete execution sequence belongs either to LP

pi
, LF

pi
or LI

pi
. Examples of

such test modules are given on Fig. 5 in Sect. 4.
– test controllers tF n , associated with each n-ary operator Fn of the logic L .

Their purpose is to control the execution of the test process associated to
each of their operands by means of basic signals (start, stop, loop), and to
collect their verdicts in order to produce a resulting verdict corresponding
to this instance of operator Fn. One can find controllers for several logics in
the research reports provided in [8].

This test generation technique can be formalized by a function called
GenTestL , such that GenTestL (ϕ) = Tϕ. This function is inductively defined
on the syntax of L in the following way:

– If ϕ = pi, then GenTestL (ϕ) returns the test module tpi (associated with
the predicate pi) extended with the communication operations required to
make it controlable by another test process (see Fig. 3 in Sect. 3).

– If ϕ = Fn(ϕ1, · · · , ϕn), then GenTestL (ϕ) returns a parallel composition
between (recursively defined) test processes tϕ1 , . . . , tϕn and an instance of
the (generic) test controller tF n .

Finally, a special test process tmain is added to launch the whole test exe-
cution and collect the final verdict. According to this generation technique, the
architecture of a test case Tϕ exactly matches the abstract syntax tree corre-
sponding to formula ϕ: the root is tmain, leaves are test modules corresponding
to predicates pi of ϕ, and intermediate nodes are controllers associated with
operators of ϕ (see Fig. 6 in Sect. 4 for an example).

2.4 Test selection and execution

From a formal point of view, the test execution sequences are the execution
sequences of a parallel composition between the LTS S modelling the SUT be-
haviour and the test case STϕ , with a “rendez-vous” synchronization on the
visible actions appearing in STϕ .

However, this LTS product may still contain a bunch of possible test ex-
ecutions (due to possible non-determinism both inside the test modules and
introduced by the parallel composition). Moreover, the test generation function
only ensures that the verdicts produced by the test execution are sound with
respect to the initial formula ϕ: it does not help to select the interesting test
executions that are likely to exhibit an incorrect behaviour of the SUT. To solve

this problem we propose to use behavioural test objectives, already introduced in
several model-based testing tools (e.g. in [4, 9]). Their purpose is to inject some
execution scenario in the test cases produced by the test generation phase, either
by enforcing the execution order of some visible actions, or by introducing other
additional visible actions to lead the SUT into some particular state. Most of
the time, in specification based testing, this test selection is performed during
the test generation phase, by pruning the undesired test executions from the
whole SUT specification. In our approach, the selection is not performed dur-
ing test generation, but during the test execution (similarly to walk guidance in
TorX). This is due to the fact that we do not rely on such a specification. So,
the test selection phase is combined with the test execution: the test objective
is expressed by an LTS with accepting states, and the test sequences leading to
such states are privileged during the text execution.

This approach is formalized below. In a LTS S, for two states q, q′ we note q′ ∈
ReachS(q) the fact that q′ is accessible from q in S. Also, when q′ ∈ ReachS(q),
we note dS(q, q′) the distance between q and q′, i.e. the minimal length of the
existing paths between q and q′.

Definition 1 (Behavioural test objective). A test objective O relatively to a
test case t which semantics can be expressed by a LTS (QSt , ActSt ,→St , q

St
0) is a

deterministic LTS (QO, ActO,→O, qO
0) complete wrt. ActSt (i.e. ∀q ∈ QSt ,∀a ∈

ActSt ,∃q′ ∈ QO · q a→O q′). QO contains two sink states AcceptO and RejectO,
and ActO ⊆ Actvis.

Using a test objective, it is possible to operate “on the fly” a test selection
on the test case during the execution.

Definition 2 (Selection using a behavioural test objective). Let t be a
test case which semantics can be expressed by St = (QSt , ActSt ,→St , q

St
0), and a

behavioural test objective O = (QO, ActO,→O, qO
0). The execution of t guided by

O can be defined as a synchronous product SO
t = St×O such as ActS

O
t = ActO,

QSO
t ⊆ QSt × QO ∪ Inc, and →SO

t
is defined by the following rules. Note that

control and observation actions are not distinguished.

t
a→St t′ AcceptO ∈ ReachO(o), o

a→O o′ dS(o′, AcceptO) < dS(o, AcceptO), a ∈ ActSt

(1)
(t, o)

a→
SO

t
(t′, o′)

AcceptO ∈ ReachO(o), o
a→SO

o′ dS(o′, AcceptO) < dS(o, AcceptO), a /∈ ActSt

(1′)
(t, o)

a→
SO

t
(t, o′)

t
a→St t′ AcceptO ∈ ReachO(o), o

a→O o′ dS(o′, AcceptO) ≥ dS(o, AcceptO)
(2)

(t, o)
a→

SO
t

(t′, o′)

o
a→O RejectO

(3)
(t, o)

a→
SO

t
Inc

Some priorities are associated with these rules to favour the execution of
transitions bringing closer to an Accept state. The rules (1) and (2) are of the
highest prioriy, then is rule (2), and at last the rule (3) is of the lowest priority.

Finally, the set of test execution sequences obtained from an SUT S and
a test case STϕ when taking into account a test objective O is defined as the
execution sequences of the parallel composition between the SUT S and the LTS
STϕ ×O. Note that when the Inc state is reached in this composition, the whole
test execution is stopped and an inconclusive verdict is issued. This general
framework has been instantiated for two particular logics, namely LTL-X, and
extended regular expressions (see Sect. 3.2).

3 Architecture and functionalities of j-POST

The architecture of the toolchain is depicted in Fig. 1. It is built upon three
main components, a test designer, a test generator and a test execution engine.
Two interfaces are provided: a command-line mode and a graphic interface.

Test
Designer

SUT

Informal
Requirement

Engine
Execution

Test

ATM Library

Test
Generator

Test Objective

Formal Requirement

(pass,fail,inc)

Logging informationSUT
Interface

test cases
abstract

pi ↔ ti

F(pi) ∈ ERE, LTL Verdict for F

Fig. 1. Abstract view of the j-POST testing toolchain

The purpose of j-POST is to check through black-box testing whether a
Java application fulfills a given requirement. To do so, the test designer (step 1)
helps the user both to formalize this requirement in a trace-based logic and to
elaborate a test module library. Each test module (corresponding to a predicate
used in the requirement) is obtained by combining some of the actions offered
by the SUT interface. The test modules are used by the test generator (step 2),
according to a logic plugin, to produce a test case as a set of communicating
test processes. Finally, this test case can be launched by the test engine (step 3),
taking into account a test objective to select the more promising test sequences.

3.1 Test designer

The test designer of j-POST is a user assistant that helps to elaborate the for-
mal requirements and the corresponding test modules through dedicated editors
available within the Eclipse Modeling Framework. Each test module is stored
into an XML file (their j-POST internal representation). Moreover, the test de-
signer provides a tool (based on GraphViz [10]) to vizualise them in a more
intelligible way. This avoids any error-prone manipulations of XML files from
the user.

ATM Library

Graph representation

Informal Requirement

Test ModuleTest Modules

Formal requirement

Visualizer

DesignerTest

SUT Interface

Editor
Requirement

Editor
Test Module

pi ↔ mi

(png, jpeg, . . .)

F(pi) ∈ ERE, LTL

Test

Instanciation

Requirement
Parser

GeneratorTest

Test Tree
Builder

LTL
plugin plugin

ERE

Formal Requirement ATM Library

Test case

F(pi) ∈ ERE, LTL pi ↔ mi

m1 ‖ · · · ‖ mn communicating

Fig. 2. Abstract view of the j-POST test designer and test generator architecture

3.2 Test generator

The j-POST test generator consists mainly in implementing the GenTestL func-
tion. It produces a test case following the syntax-driven approach recalled in
Sect. 2.3 in two stages:

The first stage is the construction of a communication tree obtained from
the abstract syntax tree of the formula. This tree expresses the communication
architecture between the test processes that will be produced by the test gen-
erator. Its leaves are abstract test modules (ATM) corresponding to the atomic
predicates of the formula, taken from the library. Its internal nodes are (copies
of) generic test controllers, corresponding to the logical operators appearing in
the formula (they are obtained from a finite set of generic controllers provided
by the logic plugin). Finally, the root of this tree is a special test process, called
testCaseLauncher, whose purpose is to initiate the test execution and deliver
the resulting verdict.

The second stage consists of instantiating the communication tree by associ-
ating fresh channel names to each local communication between test processes.
It relies on a traversal of this communication tree in order to modify the test
modules. In particular the test modules provided by the user are automatically
extended with additional communication actions to be managed by the test con-
trollers, e.g. starting signal, verdict emission (see Fig. 3). The resulting test case
is a set of XML files, one per test process.

Generic test controllers and test generation algorithms have been defined for
different specification formalisms. So far, j-POST TestGenerator supports two
common-use formalisms, by means of logic plugins:

– Temporal logics [11] like LTL are frequently used in the verification commu-
nity to express requirements on reactive systems. We consider here fragments
of such logics whose models are set of finite execution traces. We did not in-
clude the next operator in order to be insensitive to stuttering [12]. The
complete definition of the variant of LTL-X we use is given in [2].

– Extended Regular Expressions [13] are another formalism to define behavior
patterns expressed by finite execution traces. They are commonly used and
well-understood by engineers.

?c loop()

?c loop()

tp?c start() !c ver(ver)

?c stop()

. . .?c stop() . . .

?c stop()

Fig. 3. Instantiation of an abstract test component tp

3.3 Test execution engine

The purpose of the test execution engine is to produce a verdict for the initial
requirement. It takes as inputs the test case produced by the test generator, a
test objective, and a mapping describing how to execute SUT interactions used
in the test modules.

The architecture of the engine is depicted in Fig. 4. First the test case (a set
of XML files) is loaded using the test case loader. Each test process is executed
in a separate Java thread. A centralized scheduler implements both the internal
communications between the test processes (based on “rendez-vous” and shared
variables), and solves the priority conflicts between their actions (according to a
predefined policy). Moreover, interactions to be performed on the SUT transit
through a Concretisation Wrapper. This component is in charge of transforming
these interactions into executable operations on the SUT (depending on the
communication medium used, e.g. Java RMI). This transformation may also add
some parameters omitted at the test module level (for the sake of simplicity), but
mandatory for the test execution. Finally, the test selection operation described
in Sect. 2.4 is performed by the Objective Engine. When the test execution
terminates a verdict is issued and the Logger produces some execution traces
that help the diagnostic phase.

4 j-POST at work

We describe in this section the use of j-POST on an example. Tests are designed,
generated, executed using the j-POST toolchain to check some properties on
a travel agency application [14], called Travel. We take as inputs an informal
requirement extracted from the functional specification of Travel and the ap-
plication interface. The requirement we choose for the demonstration purpose
is informally expressed as “it is impossible to create a mission in Travel before
being connected”.

ATC Engine

Scheduler

Logger

Objective
Engine

Test case
Loader

SUT

EngineTest Execution

information
execution

Execution traces

Execution graphs

Test Objective

abstract external
actions

Concretisation

pluginplugin
Mapping communication

RMI JMS

Abstract test case

(pass,fail,inc)

Wrapper

Verdict for F

m1 ‖ · · · ‖ mn communicating

Fig. 4. Abstract view of the j-POST test execution engine

Test design. We start by presenting the test design stage, that is the require-
ment formalization and the edition of test modules.

Requirement formalization. A possible understanding of our requirement could
be that a behaviour in which it is possible to create a mission before perform-
ing the identification action is not desired. In other words, we can say that we
require no mission creation until a connection is open. This informal statement
refers to two abstract operations: “create a mission”, and “open a connection”.
In the following we respectively designate these two operations by the predi-
cates missionCreation() and connection(). The requirement can be expressed
formally by an LTL formula: (¬missionCreation()) U connection().

Test module edition. Test modules have to be created by the user for the predi-
cates missionCreation() and connection(). Each of this module should describe:

– how to perform the abstract operation using the Travel interface;
– what is the test verdict obtained (depending on how Travel reacts).

Possible test modules are proposed in Fig. 5, produced with the j-POST test
designer. The connection test module (left-hand side) contains three possible
execution sequences: a correct call to the connection method identify (the user
is “Falcone”, the correct password is “azerty”, which corresponds to a registered
user of Travel), an incorrect one (the password is “qwerty”, it is not valid),
and an execution where the connection procedure is never called. Note that the
call to the identify() method returns an identification number which is stored
in a shared variable (between test components) called id. The createMission
test module (right-hand side) consists of calling the missionRequest() method,

Fig. 5. Test modules for predicates connection and createMission

supplying the shared variable id as an identification number. Depending on the
return value (createOk), it delivers the corresponding verdict.

Inside the toolchain these modules are represented using an XML format,
but, from a practical point of view, they can be written and viewed using the
j-POST test designer.

Test generation. The requirement stated, and the test modules designed
(Fig. 5), we are now able to perform the test generation. In order to illustrate
such a process, we give an insight of the generated test case on Fig. 6. The
structure of this test case follows the structure of the formula. It contains a
test controller for each operator appearing in the formula (Until and Not), and
a test module for each predicate (missionCreation() and Connection()). The
testCaseLauncher is in charge of managing the execution of the testcase and
emitting the final verdict. The c start (resp. c stop, c loop, c ver) channels are
used by the processes to perform starting (resp. stopping, rebooting, verdict
transmission) operations.

rootTestCase

Controller

until

Controller

not

connection

missionCreation

c start1, c stop1,
c loop1, c ver1

c start0, c stop,
c loop0, c ver

c start2, c stop2,
c loop2, c ver2,

c start3, c stop3,
c loop3, c ver3

Fig. 6. Test case produced from ¬(missionCreation)U connection

Test execution. The next operation to perform is to choose a test objective in
order to restrict the set of potential test executions. Regarding the requirement
we consider (“no mission creation until a connection is open”), an interesting
objective is to try to falsify this requirement in order to exhibit an incorrect
behaviour of the software under test. Falsifying such a requirement means for
instance producing an execution sequence where :

– the verdict delivered by missionCreation() is pass (possibly after several
previous fail results) ;

– in the meantime, the verdict delivered by connection() remains always fail.

Such a test objective can be obtained from the test modules given on Fig. 5.
However, obtaining a fail verdict for a connection operation can be fully con-
trolled by the test execution engine (e.g., by supplying an incorrect password),
whereas the verdict returned by a mission creation cannot be controlled (it only
depends on the SUT behaviour).

Three versions of the Travel application have been tested:

– Experiment 1. In the first (erroneous) version of Travel a mission creation
request is always accepted, therefore our requirement is false (a mission can
be created by a non connected user). The test execution engine detects this
error (it delivers a fail verdict) and produces the test execution traces and
graphs for the test case and each module.

– Experiment 2. In the second (erroneous) version of Travel a mission creation
request is accepted either if the identification number supplied is correct
(it corresponds to a return value of a connection request), or if it is the
third attempt to create this mission. Therefore our requirement is still false:
if a non connected user tries repeatedly to create a mission, it eventually
succeeds. This error is detected by the test engine, which delivers a fail
verdict.

– Experiment 3. Finally, the third version of Travel always refuses a mission
request as long as the identification number supplied is invalid. Thus, the
only way for a non connected user to create a mission is to “guess” a correct
identification number. This cannot be achieved by our test execution engine,
which delivers here a pass verdict.

5 Conclusion and perspectives

This paper presents an original approach for property-oriented software test-
ing (POST). Starting from a formula expressed in a trace-based logic, the user
first provides a test module (using the test designer) dedicated to each predicate
appearing in this formula. The test generation phase then consists of producing
a test case as a set of communicating test processes by combining the test mod-
ules with some test controllers associated to each logical operator. This test case
can be executed by a test engine, able to take into account a test objective to

constrain the set of test sequences to execute. This whole testing approach has
been implemented in a working tool and applied to some non-trivial case studies.
The architecture makes it open, and easily allows the toolchain to support new
logical formalisms by adding logic plugins.

The main advantage of this approach is that it does not require a “global”
behavioural specification of the software under test, as is the case in many model-
based testing approaches. In fact the user only needs to make explicit the eval-
uation of a predicate in the test modules. The test generation phase is therefore
rather straightforward and does not suffer from state explosion limitations. Of
course, the test case produced may encompass many possible test executions, but
the use of test objective allows the user to select the most interesting scenarios.
This approach seems particularly relevant to dealing with security or robustness
testing, where the functional model of the SUT can be very large (and hence
not easily available as a single formal specification), and where the requirements
to be checked only concern specific parts of this model. In fact, one of the mo-
tivations for this work was the validation of the correct deployment of security
policies within the French Politess [15] project.

The Travel case study allowed many enhancements for j-POST and opens
several research perspectives. In particular, it appears that the design of test
modules could be facilitated by the use of abstract domains (e.g., at the test
module level one only needs to distinguish between correct passwords and incor-
rect ones, without referring to a concrete value). These abstract domains could
then be concretized only at the test execution level by selecting relevant val-
ues within a concrete domain (which may depend on the SUT’s current state).
This concretisation could be performed, for instance, according to coverage cri-
teria that could be defined with respect to the requirement under test. It seems
particularly worthwile to relate this work with [16].

References

1. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A Test Calculus Frame-
work Applied to Network Security Policies. In: FATES/RV. LNCS 4262 (2006)
55–69

2. Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L.: A Compositional Testing
Framework Driven by Partial Specifications. In: TestCom/FATES. LNCS 4581
(2007) 107–122

3. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software - Concepts and Tools 17(3) (1996) 103–120

4. Jard, C., Jéron, T.: TGV: theory, principles and algorithms, A tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Software Tools for Technology Transfer (STTT) 6 (2004)

5. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing - Côte de
Resyste. In: Proceedings of the First European Conference on Model-Driven Soft-
ware Engineering. (2003) 13–25

6. Belinfante, A., Frantzen, L., Schallhart, C.: Tools for Test Case Generation. In
Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A., eds.: Model-Based
Testing of Reactive Systems. LNCS 3472 (2004) 391–438

7. Hartman, A.: Model Based Test Generation Tools Survey. Technical report,
AGEDIS Consortium (2002)

8. j-POST Reference Page: http://www-verimag.imag.fr/~async/jpost.html. (2007)
9. Schmitt, M., Ebner, M., Grabowski, J.: Test Generation with Autolink and Test-

composer. In: 2nd Workshop of the SDL Forum Society on SDL and MSC - SAM’.
(2002)

10. AT&T Research: Graph Visualization Software. http://www.graphviz.org (2007)
11. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer-

Verlag New York, Inc., New York, NY, USA (1995)
12. Clarke, E., Grumberg, O., Peled, S.: Model Checking. The MIT Press (1997)
13. Kleene, S.C.: Representation of events in nerve nets and finite automata. In

Shannon, C.E., McCarthy, J., eds.: Automata Studies. Princeton University Press,
Princeton, New Jersey (1956) 3–41

14. Falcone, Y.: A Travel Agency Application. Technical report, Vérimag (2007)
15. Project Politess: ANR-05-RNRT-01301. http://www.rnrt-politess.info (2007)
16. Lestiennes, G., Gaudel, M.C.: Testing processes from formal specifications with

inputs, outputs and data types. In: ISSRE, IEEE Computer Society (2002) 3–14

