
IS
S

N
 0

24
9-

63
99

   
   

IS
R

N
 IN

R
IA

/R
R

--
29

58
--

F
R

+
E

N
G

appor t  
de recherche 
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Spécification et vérification de

l’architecture PowerScaleTM :

une expérience industrielle avec LOTOS
Résumé : Ce rapport présente les résulats d’une étude de cas industrielle sur l’utilisation de
méthodes formelles en conception de matériel. Cette étude de cas porte sur PowerScale

TM, une
architecture multi-processeurs, basée sur les processeurs PowerPC

TM, qui est utilisée dans les ser-
veurs et stations de travail de la gamme Bull Escala

TM. Le langage de spécification Lotos (norme
internationale Iso 8807) a été utilisé pour décrire formellement les principaux composants de cette
architecture (processeurs, contrôleur de mémoire et arbitre de bus). Quatre propriétés essentielles
caractérisant le fonctionnement attendu de l’algorithme d’arbitrage des bus ont été identifiées et for-
malisées en termes de relation de bisimulation entre systèmes de transitions étiquetées finis (modulo
certaines abstractions). En utilisant les techniques de vérification compositionelles et à la volée qui
sont implémentées dans la bôıte à outils Cadp (Cæsar/Aldébaran), la correction de l’algorithme
d’arbitrage a pu être établie automatiquement en quelques minutes.

Mots-clés : Méthodes formelles, Techniques de description formelle, Ingénierie des protocoles,
Conception de matériel, Lotos, Vérification, Validation, Systèmes de transitions étiquetées, Bisimu-
lations.



Specification and Verification of the PowerScale Bus Arbitration Protocol 3

1 Introduction

The design of hardware systems involves methodologies based upon hardware description languages
such as Vhdl [IEE93] or Verilog [IEE95]. These languages support various description levels,
including architectural, behavioural, register-transfer, gate and switch levels. Many tools exist for
simulating the descriptions written in these languages, synthesizing implementations automatically,
and generating test sequences.

However, if one is only interested in the high-level functional design of a hardware system, namely
the correctness of the distributed algorithms used in hardware systems (e.g., bus arbitration proto-
cols, cache coherence protocols, etc.), then hardware description languages are perhaps not the best
candidates for modelling these distributed algorithms. These languages are probably too detailed for
this specific problem. Many hardware-related details have to be described, although they are not
directly relevant to the algorithms themselves; this may result in overspecification issues. Moreover,
since the descriptions are overly complex, the simulation tools handle them often slowly. One may
therefore wonder whether the Formal Description Techniques (Fdt) defined for computer networks
and telecommunication systems could not be also applied with profit to the distributed algorithms
used in hardware systems.

In this paper, we investigate the use of Lotos1 [ISO88b] for the formal specification and verification
of the bus arbitration algorithm used in Bull’s PowerScale

TM architecture. We selected Lotos

for this case-study because its underlying semantics model is based on the rendez-vous paradigm,
which is appropriate for the description of hardware entities (processors, memory controllers, etc.)
communicating by means of electrical signals sent on wires. The possibility of using Lotos for the
description of hardware systems was already pointed out in [FL93] and [ST93]. For this reason,
we used Lotos rather than other protocol description languages such as Estelle [ISO88a] and Sdl

[IT92] based on infinite Fifo queues, which are clearly not adapted to our problem. There are several
possible specification styles in Lotos [VSS88]: for this case-study, we adopted an imperative approach
(the so-called resource-oriented style) in which Lotos is used as a concise and readable language to
describe a set of extended finite-state machines (i.e., automata with state variables) running in parallel
and communicating using rendez-vous. In this approach, each architecture component (processors,
bus arbiter, etc.) is represented by an extended finite-state machine, possibly refined into sub-
components.

To express the expected functioning properties of the bus arbiter, we identified four correct-
ness requirements, and proved them automatically using the Cadp (Cæsar/Aldébaran) toolbox
[FGM+92, FGK+96]. These requirements were expressed using Labelled Transition Systems (Ltss)
and the verification process was based on the comparison of Ltss modulo equivalence or preorder
relations. This choice was also motivated by the existence in the Cadp toolbox of a powerful tool,
Aldébaran, for checking bisimulation relations, which was available at the time of our case-study
(more recent versions of the Cadp toolbox also include evaluators for temporal logic formulas).

This article is organized as follows. Section 2 presents the PowerScale
TM architecture and gives

the main facts about its formal description in Lotos. Section 3 focuses on the bus arbitration
protocol. Section 4 sketches the four correctness properties, informally first, then formally. After a
brief overview of the Cadp toolbox, Section 5 presents the verification approach we followed and the
results we obtained. Finally, some concludig remarks are drawn in Section 6.

1Language Of Temporal Ordering Specification

RR n° 2958



4 G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, F. Zulian

2 The PowerScale architecture

PowerScale
TM [BR95] is an original, Bull-patented, symmetrical multiprocessor architecture using

Ibm’s PowerPC
TM processors. The PowerScale

TM architecture is used in Bull’s Escala
TM series

of servers and workstations. A schematic view of this architecture (reproduced from [BR95] with
minor adaptations) is shown on Figure 1.
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Figure 1: The PowerScale
TM architecture

The PowerScale
TM architecture supports up to four nodes, each node containing two PowerPC

TM

processors. There is also a fifth node specially dedicated to the control of input/output operations.

All the processors share a global memory array. In addition, each processor is equipped with a data
cache that allows to speed up accesses to the shared memory. To maintain the consistency between
the different caches of the processors, the PowerScale

TM architecture uses a Mesi (Modified, Exclu-

INRIA
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sive, Shared, Invalid) snoopy-based protocol (see, e.g., [PP84] with a slightly different terminology)
implementing the weak consistency storage model [GLL+90].

The processors access the shared memory using two 64-bit buses: an address bus and a data bus

The address bus is used for command transfer. A command is a data structure containing several
fields: the type of operation (read, write, invalidation of a data stored in a cache, etc.), the address
concerned by the operation, and various other fields such as: tags associated to the data sent as
response to a read operation, bits related to the cache coherence protocol, etc. The precise knowledge
of the command format is not required for our case-study.

The data bus is implemented as a crossbar switch (named Dcb for Data Cross Bar). It centralizes
five 64-bit data paths originating from the four nodes and the input/output dedicated node. It is
connected to the shared memory via a third 256-bit bus (named Ma-bus).

The System Memory Controller (Smc) is connected to the address bus and is in charge of controlling
the memory, the Dcb and the Ma-bus. It switches data paths in Dcb and orders transfers through
the Ma-bus.

Finally, the Arbiter (Arb) is connected to all the processors and to the Smc. It is in charge of the
arbitration of the address bus and data pathes. It takes care to avoid conflicts when granting the
address and data buses to the processors and the Smc.

After reading the relevant documents defining the PowerScale
TM architecture, we produced a

2,000 lines formal description in Lotos of the overall architecture, together with a 30-pages technical
document. Although this description could be compiled and simulated, it was not appropriate for a
formal verification, for two reasons: it was too large for being analyzed exhaustively and, at the same
time, some critical parts were not detailed enough to allow thorough analysis.

We therefore decided to focus on the bus arbitration protocol, which was a challenging target for both
researchers and industrialists because of its complexity and its essential role in the PowerScale

TM

architecture.

3 Formal description of the arbitration protocol

The purpose of this section is to show the different steps that led us to get the abstract model of the
PowerScale

TM arbiter on which we performed our verification.

In order to verify the arbiter functions, we have built a formal description in which the arbiter is
detailed, together with its surrounding devices: the processors and the Smc. Therefore, at the highest
description level, we consider three types of communicating processes: the arbiter, the processors,
and the Smc. However, the behaviour of processors and the Smc are abstracted away to modelize
only the interactions with the arbiter.

To keep verification tractable, we made some simplifying assumptions, all of which are compati-
ble with the actual PowerScale

TM architecture. Firstly, we have only modeled the arbitration
mode for PowerPC

TM 620 processors, while the actual arbiter has slightly different modes for
PowerPC

TM 601 and 604 processors.

Secondly, we decided to consider only a single node with two processors (noted P0 and P1 in the
sequel). Consequently, the arbiter which we model manages the address bus and a single data path,
whereas the actual arbiter manages the address bus and five data paths. This simplification is sound,
since the five data paths are managed by the PowerScale

TM arbiter in a completely independent
way. Only the address bus arbitration protocol is concerned by this change, because it must handle

RR n° 2958



6 G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, F. Zulian

two processors instead of ten; however, it was written in a generic way, i.e., it is parameterized by
the number of processors.

3.1 The processors

Each processor has access to two buses: the address bus and a data bus. Before accessing each bus,
a processor must emit a request and obtain a grant from the arbiter. Depending upon the type of
operation to perform, the processor may ask for a single bus or both. Each processor can issue three
types of operations:� In response to an address bus request (ABR), the processor receives an address bus grant (ABG):

this is the case of address-only operations, which include read operations, cache invalidation
requests, etc. For these operations, a command is sent on the address bus.� In response to a processor data bus request (PDBR), the processor receives a processor data bus
grant (PDBG): this is the case of interventions, i.e. data-only (cache to cache) operations in
which a processor Pi provides data to another processor Pj in response to a read operation
from Pj .� In response to an address-data bus request (ADBR) the processor receives first an ABG, then a
PDBG: this is the case of address-data operations. These are write operations to the memory.
The address bus is used to send the command and the data bus is used to send the data. The
command and the data are sent asynchronously on the two buses.

In our Lotos description, we only model the bus requests and grants and forget about the actual
operations (read, write, intervention). So, each processor is refined into two communicating sub-
processes:� The process DATA SENDER is in charge of sending data on the data bus. When this process is

activated, it can either send a data and free the bus or free the bus without sending data.� The process MASTER is in charge of emitting all bus requests, obtaining bus grants, and sending
commands on the address bus. In particular, when obtaining a PDBG (for a write operation
or an intervention), it activates the DATA SENDER process and can immediately start to emit a
new ABR (even if the data bus has not been freed yet); therefore, several bus operations can be
processed in parallel.

3.2 The System Memory Controller

In the actual PowerScale
TM architecture, the Smc is connected to the address bus, the data cross

bar (Dcb), the memory, and the arbiter. But, since we only deal with a single node, we need not
model all the details of the Dcb; instead, we regard it as a simple bus: hence, we can assume that
the Smc is directly connected to the data bus.

For each data path, there are two internal registers in the Smc (called DIRs for Data In Registers). A
DIR is a one-slot buffer designed to receive data emitted by the processor. When a processor emits a
write operation, the corresponding operand (sent by the DATA SENDER process) is temporarily stored
in a DIR until it is written to the memory, which frees the DIR. A processor is not granted a PDBG

unless there is a free DIR available in the Smc.

INRIA



Specification and Verification of the PowerScale Bus Arbitration Protocol 7

When a processor wants to perform a read operation, the Smc emits a Memory Data Bus Request
(MDBR) to obtain the data bus connected to this processor and, after obtaining a Memory Data Bus
Grant (MDBG), orders the data transfer from the memory to the processor.

For the purpose of our case-study, it was not necessary to model the Smc behaviour in full detail.
We made appropriate abstractions instead and split the Smc in two communicating sub-processes:� The process SMC DI STAT maintains the number of busy DIRs in the Smc. This number is

incremented when a processor sends data. On the opposite, a copy from a DIR to the memory
decrements this number. As we have no specific Lotos process to represent the memory, we
consider that the decrementation can occur non-deterministically when the number of busy
DIRs is greater or equal to 1.� The process M DATA REQ is in charge of emitting MDBRs and receiving MDBGs. We do not model
data sending itself, since it is independent from the arbitration mechanism itself: the important
events are requests and grants for the data bus.

3.3 The arbiter

The arbiter is the core of our modelling. When trying to formalize its behaviour, a number of questions
arose, which required further technical explanations from the designer of the PowerScale

TM arbiter
[Zul95].

The arbiter communicates with the processors and the Smc. It manages the address bus and the
data bus simultaneously. The address bus is accessed by the processors; the data bus is accessed by
the processors and the Smc. The arbitration strategies for both buses are based upon the same round
robin algorithm: the arbiter maintains a circular list of devices2 and a current pointer in this list;
it continuously scans the list, starting from the current pointer and seeking for the first device with
a pending bus request. If such a device exists, it is delivered a bus grant and the current pointer is
moved to the next device in the circular list. Otherwise, the current pointer is kept unchanged.

In addition to its arbitration role, the arbiter implements a mechanism to control the flow of data
sent to the Smc: when both DIRs of the Smc are busy, the arbiter does not deliver PDBGs to the
processors. Hence, the round robin algorithm implemented in the data arbiter is slightly different
from the above description. When both of the two DIRs are busy, the arbiter issues grants only for
the memory and does not move the current pointer after giving a grant. This mechanism is called
masking.

In our modelling, we refined the arbiter in four communicating sub-processes:� The process RND ADDR ARB is in charge of the address bus. It receives ABR and ADBR requests
from the processors and delivers the corresponding ABG grants to the processors on a round-
robin basis. For an ADBR request, when the corresponding ABG is delivered to the processor,
an internal data bus requests (IDBR) is put in a Fifo queue in order to be served later by the
data bus arbiter. This Fifo queue ensures that the PDBG grants generated for ADBR requests
are delivered in the same order as ABG grants.� The process INT PDBR FIFO implements a Fifo queue in which the ABG grants generated for
ADBR requests are stored, before being transmitted to the data arbiter as IDBR.� The process RND DATA ARB is in charge of the data bus (in the actual PowerScale

TM architec-
ture, there are five such processes, one per data path). It receives data bus requests originating

2i.e., the processors and, in the case of the data bus, the Smc

RR n° 2958



8 G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, F. Zulian

from the processors (PDBR), from the Smc (MDBR), or from the Fifo queue (IDBR). It delivers
grants on a round-robin basis and taking into account the number of busy DIRs in the Smc (if
the two DIRs are busy, the current pointer is not moved after an MDBG).� The process ARB DI STAT maintains the number of busy DIRs according to signals it gets from
SMC DI STAT. It informs the data arbiter whether to deliver PDBGs to the processors or not.

3.4 The LOTOS description

A Lotos description representing the arbitration protocol (arbiter, processors and Smc) was devel-
oped. This specification contains 760 lines of code (including a few comment lines), divided into
200 lines (26%) for the data part and 560 lines (74%) for the control part. The data part contains
6 type definitions (3 enumerated types, 2 tables used for the round-robin algorithm, and 1 Fifo

queue) and 14 process definitions (corresponding to the aforementioned processes and their parallel
combinations at different levels).

Figure 2 gives an overview of the arbitration protocol. Only a single, generic processor is represented;
it is noted P !pid , where pid is a parameter denoting the index of the processor (0 or 1). The
arbiter, the generic processor, and the Smc are refined in sub-processes, as explained above. Boxes
represent Lotos processes and lines between boxes represent communication gates between processes.
For instance, the processor P !pid and the arbiter communicate via the gate labelled ABR !pid , which
expresses the fact that each processor can send to the arbiter an address bus request ABR parametrized
by its index.

4 Behavioural expression of the requirements

Before performing verification, it is necessary to define which functioning properties have to be
verified. We identified four requirements related to bus arbitration and data transfer from the different
devices (processors and memory). We found more suitable and easier to describe these requirements
using behavioural specifications rather than temporal logic formulas. We adopted the following
approach: from an abstract point of view, let us assume that we can translate the whole Lotos

description of the arbitration protocol into a (large) Lts, which we will note arb in the sequel. Then,
for each requirement, we define another, much smaller Lts, which we will note req. To express that
the arbitration protocol satisfies this requirement, we state that arb and req are related modulo a
given equivalence relation or a given preorder relation.

Notice that, as the various Ltss req are generally small, they can be specified simply by listing their
states and transitions. In our case-study, we chose to specify them directly in Lotos and to use
software tools to automatically generate the corresponding Ltss. This allowed us to write generic
requirements, parameterized with a processor identifier pid , which can be easily instantiated with
either P0 or P1. However, in this paper, we show the Ltss themselves, rather than the Lotos code
from which they were produced.

When comparing arb and req, abstraction criteria have to be used, as arb contains many details
which are not relevant to the requirement being expressed. Thus, Ltss have to be abstracted when
compared, by hiding all transitions that are not to be observed. For instance, if we want to prove
properties about the address arbitration fairness, we need to hide all transitions but ABR and ABG. In
the sequel, we adopt the following convention: any action in arb that is not present in req is to be
hidden. Hence we observe only actions related to the property we want to prove.

INRIA
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ADBR !pid
RND_ADDR_ARB

(abrTable,adbrTable,pointer)

MASTER
(pid)

DSBEG !pid

INT_PDBR_FIFO

(dbrifo,firstIsSent)

RND_DATA_ARB

(dbrTable,pointer)

ARB_DI_STAT

(nbBusy)

M_DATA_REQ

SMC_DI_STAT

(nbBusy,ds)

ABG !pid

ADDRSEND !pid

ABR !pid

MDBG

MDFREE

MDBR

DI_STAT_REC

PDBG !pid

PDBR !pid

(pid)
PROCESSOR ARBITER

SMC

(pid)

DATA_SENDER

FREEDIR

PDFREE !pid

DATASEND !pid

ABGtoDBR !chosen

INT_PDBR !First(dbrFifo)

DI_STATUS !mask

DI_NOCHANGE

DI_CHANGE

DI_RESET

Figure 2: The LOTOS program structure
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We now present the four requirements and their expression in terms of equivalence or preorder rela-
tions:

Proper response to bus requests: When a processor Pi issues a bus request, it is always possible
to satisfy this request by delivering to Pi the corresponding grant(s). More precisely, each
ABR !Pi may be followed by an ABG !Pi; each PDBR !Pi may be followed by a PDBG !Pi; each
ADBG !Pi can be followed by an ABG !Pi and then a PDBG !Pi.

These response properties state that it is always possible for each bus request to be followed
by the corresponding bus grant(s); this proves the deadlock-freeness of the arbiter in addition
to proper bus granting. These properties do not state that bus grant(s) are eventually deliv-
ered, due to the presence of τ -cycles in the model caused by the non-deterministic interleaving
semantics and absence of fairness assumption.

To express this requirement for processor P0, we state that the abstracted arb should be branch-
ing equivalent [vGW89] to the graph req shown on Figure 3. We use branching equivalence
because it preserves the deadlocks.

We express the same property for processor P1 by using another req in which P0 and P1 are
interchanged.

PDBG !P0ABG !P0

PDBR !P0ABR !P0

ADBR !P0

ABG !P0

PDBG !P0

Figure 3: Property graph #1 (Proper response to bus requests)

Fairness of the arbitration: While a processor Pi has issued a bus request and is waiting for the
corresponding grant(s), at most one bus request emitted by the other processor can be granted.
For instance, if an ABR (resp. PDBR) request of P0 is waiting, at most one ABG (resp. PDBG)
grant may be delivered to P1 before an ABG (resp. PDBG) grant is delivered to P0.

To express this requirement for the address bus and processor P0 only, we state that the
abstracted arb should be included, modulo the safety preorder [BFG+91], in the graph req

shown on Figure 4. We also need to verify three similar properties, for the data bus as well,
and by interchanging processors P0 and P1.

Order of grants for address-data requests: When both processors P0 and P1 issue ADBR re-
quests, the PDBGs should be delivered in the same order than the ABGs. For instance, if ABG !P0
precedes ABG !P1, then PDBG !P0 should also precede PDBG !P1.

To express this requirement for processor P0, we state that the abstracted arb should be
included, modulo the safety preorder, in the graph req shown on Figure 5. This guarantees

INRIA
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ABG !P0

ABR !P0

ABG !P0

ABG !P1

ABG !P1

Figure 4: Property graph #2 (Fairness of the arbitration)

that all execution trees of the arbiter are covered by req. The same property should hold when
P0 and P1 are interchanged.

PDBG !P0

PDBG !P0

PDBG !P1

ABG !P1

PDBG !P1 ABG !P0

PDBG !P0PDBG !P1

PDBG !P0
PDBG !P1

ABG !P0 ABG !P1

Figure 5: Property graph #3 (Order of grants for address-data requests)

Correctness of the DBG flow control: When both processors are granted the data bus, they
can send data that will be stored in the two DIRs of the Smc (see Section 3.2 above). The
correctness of the flow control mechanism is expressed by two properties: (a) it is not possible
to send a data when the two DIRs are busy (which implies that no PDBG is delivered when the
two DIRs are busy); (b) it is always possible to free a DIR so that data sending becomes possible.

To express these two properties at once, we state that the abstracted arb should be branching
equivalent to the graph req shown on Figure 6, which is nothing but a two-slot buffer.

RR n° 2958
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DATASENDDATASEND

FREEDIRFREEDIR

Figure 6: Property graph #4 (Correctness of the DBG flow control)

Instead of branching equivalence, other equivalences, such as the well-known observation equivalence
[Mil89]) could have been used. We preferred branching equivalence because there exist efficient
algorithms for it [GV90, Mou92], some of which are implemented in Aldébaran. Although branching
equivalence is stronger than observational equivalence in the general case, both equivalences coincide
if the property graph does not contain τ -transitions [Mou92], which is the case here.

Similarly, trace inclusion could have been used instead of safety preorder. We preferred the latter since
it is efficiently implemented in Aldébaran. Moreover, both relations coincide when the property
graphs are deterministic, which is the case here.

5 Verification

In this section, we briefly present the approach used to verify the Lotos description of the arbitration
protocol. For this case-study, we used only a subset of Cadp toolbox, namely the Cæsar.adt

[Gar89, GT93], Cæsar [GS90], Xsimulator, and Aldébaran [Fer90, FKM93] tools. Cæsar.adt

and Cæsar are Lotos-to-C compilers; additionally, Cæsar can generate an Lts corresponding to a
Lotos description. Xsimulator is an interactive, X-windows-based simulator, offering unlimited
backtracking facilities. Aldébaran compares two Ltss with respect to equivalence or preorder
relations; an important feature of Aldébaran is on-the-fly verification: it can also compare a system
defined by a parallel composition of Ltss against another Lts.

Once the Lotos description was written, we performed a first debugging by compiling its data
part (using the Cæsar.adt compiler), compiling its control part (using the Cæsar compiler), and
analyzing a subset of its behaviour (using Xsimulator). Xsimulator revealed some deadlocks,
which have been fixed.

As regards performances, all our experiments were carried out on a low-end Sparc machine, with
40 Mbytes of main memory. From the Lotos description (720 lines, 32 kbytes), Cæsar.adt gen-
erated a C file for the data types (1,044 lines, 42 kbytes) and Cæsar generated a C file for the
behaviour part (2,241 lines, 92 kbytes). Linking and compiling these C files together produced a
small executable program (49 kbytes). Performing the whole translation and starting the simulation
takes less than one minute.

However, interactive simulation is not sufficient to ensure the correctness, as it only gives a very
limited coverage of all possible execution sequences. To perform full verification, we tried to generate
exhaustively arb (the Lts of the arbitration protocol) using Cæsar. This “brute-force” approach
failed due to memory limitations, after generating 580,000 states and 1,540,000 transitions approxi-
mately.

We therefore switched to another compositional approach, based on a divide and conquer paradigm.
We split the arbitration protocol into three parallel components noted ARB COMP 1, ARB COMP 2, and

INRIA
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ARB COMP 3. This decomposition is shown on Figure 7. It is worth noticing that the splitting is
not done according to the hardware components (the arbiter, the processors and the Smc), but in
a transversal way, by grouping together sub-processes belonging to different hardware components.
There are many possible decompositions; we present here the one we found to give satisfactory results.
A rule of thumb is to put together the processes which constraint each other, i.e., which have many
interactions together: this reduces the size of the generated Lts.

ARB_COMP1

ARB_COMP2

ARB_COMP3

ADBR !pid RND_ADDR_ARB
(abrTable,adbrTable,pointer)

MASTER
(pid)

INT_PDBR_FIFO

(dbrifo,firstIsSent)

RND_DATA_ARB

(dbrTable,pointer)

ARB_DI_STAT

(nbBusy)

M_DATA_REQ

SMC_DI_STAT

(nbBusy,ds)

ABG !pid

ABR !pid

MDBG

MDFREE

MDBR

DI_STAT_REC

DI_RESET

PDBG !pid

PDBR !pid

DATA_SENDER

(pid)

DI_NOCHANGE

DI_CHANGE

ADDRSEND !pid

DSBEG !pid

PDFREE !pid

DATASEND !pid

DI_STATUS !mask

ABGtoDBR !chosen

INT_PDBR !First(dbrFifo)

FREEDIR

Figure 7: The LOTOS program decomposition

For each of the three parallel components we generated the corresponding Lts using Cæsar and
reduced this Lts modulo strong bisimulation using Aldébaran. This happened to be tractable
since the complexity of each component remains within the amount of memory available on our
machine. The following table gives, for each component, the number of states S and the number of
transitions T of the Lts generated by Cæsar, the number of states S′ and the number of transitions
T ′ of the Lts reduced by Aldébaran, as well as the durations G and R spent for generating and
reducing these Ltss.
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component S T S′ T ′ G R

ARB COMP 1 176,810 566,270 6,746 21,191 8 mn 25 mn
ARB COMP 2 8,882 32,768 183 427 < 1 mn < 1 mn
ARB COMP 3 588 1,798 237 687 < 1 mn < 1 mn

Thanks to this decomposition, the problem is reduced to the verification of a system (noted red arb)
consisting of three communicating state machines. Notice that, even after minimizing each compo-
nent, the potential number of states of red arb is still high (6, 746 × 183 × 237 ≈ 2.9 108 states).
Notice also that a greater reduction might have been achieved by minimizing each component mod-
ulo branching bisimulation instead of strong bisimulation (such minimizations are correct because of
the nature of the four properties to be proven and due to the fact that both strong and branching
bisimulation are congruences with respect to Lotos parallel composition operators).

To perform verification, we used Aldébaran to compare on-the-fly red arb with each req graph
expressing the expected properties; by doing so, each property was verified in less than one minute.

Then, we modified our Lotos description to implement a different version of the data arbitration
algorithm, in which the current pointer is always moved to the next item in the circular list after de-
livering an MDBG, which means that this different version does not implement the masking mechanism
described in Section 3.3. This version of the algorithm was considered one moment by the design-
ers of the PowerScale

TM architecture, but it was discarded and not implemented. Aldébaran

discovered that, for this modified algorithm, the fairness property was no longer satisfied.

6 Conclusion

This paper reports the results of an industrial experimentation of formal methods. The aim of this
case-study was to investigate whether the Formal Description Technique Lotos and the protocol-
engineering toolbox Cadp were mature enough for being applied to real, industrial applications, such
as the multiprocessor systems developed by Bull.

In a first time, we have described formally, using Lotos the PowerScale
TM multiprocessor archi-

tecture used in Bull’s Escala
TM series. Then, we focused in more detail on the PowerScale

TM bus
arbitration protocol, using appropriate abstractions to cut down the complexity of the problem.

We identified four correctness requirements for the arbitration functionality, which we expressed in
terms of equivalence and preorder relations between labelled transition systems.

Verification was performed automatically using the Cæsar and Aldébaran tools. For each require-
ment, expressed in Lotos, we generated the corresponding Lts. Due to lack of memory space, we
have not been able to do the same for the arbitration protocol, since its Lts was much too large
for being generated. We used instead a compositional verification approach, by splitting the Lotos

description into three parts, the Ltss of which could be generated and minimized separately. Then,
these Ltss were combined together and compared on-the-fly against the requirements. By doing so,
we were able to prove the correctness of the arbitration protocol. This protocol was already tested
and simulated, which explains that no misconceptions were found. However, we discovered an error
in a proposed variant of the bus arbiter (which is not actually implemented in Bull products).

This case study was performed in a relatively short lapse of time. Producing the first Lotos descrip-
tion (whole PowerScale

TM architecture) took 8 man.months, including the time spent in learning
both PowerScale

TMand Lotos. Producing the second Lotos description (arbitration functional-
ity) took 1.5 man.months only, including the preliminary debugging using interactive simulation. Re-
quirement capture and verification took about 1.5 man.months. The case-study was facilitated by the
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complementary expertises brought by the different authors: F. Zulian designed the PowerScale
TM

bus arbiter, G. Chehaibar and N. Tawbi performed the modelling and verification, H. Garavel and
L. Mounier provided insights in using the Cadp tools and expressing the requirements.

The results of this experiment are encouraging. It seems that Lotos is appropriate for the description
of hardware protocols and that the compositional and on-the-fly verification techniques implemented
in the Cadp tools allow to deal with mid-size industrial cases involving a fair degree of parallelism.

In this experiment, formal description and verification took place after the arbiter was already de-
signed. In the near future, we intend to apply this approach to a cache coherency protocol for a new
Bull architecture under development. We take aim at a complete technology transfer, by progressively
integrating formal methods in the existing development process.
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