
Model Checking Ariane-5 Flight Program�
Marius Bozga, Laurent MounierVerimagDavid LesensEads Launch VehiclesJune 28, 2001

AbstractThis paper reports a veri�cation experiment carried out on a re-engineered descriptionof a part of Ariane-5 Flight Program. This is the embedded software which solely controlsthe Ariane-5 launcher during its ight, from the ground, through the atmosphere and upto the �nal orbit.In this case study, the Sdl language was used to describe the main functional behav-ior of the ight program including the most relevant actions and their associated timingconstraints, which are necessary to ensure the correct operation of the launcher. Thisdescription abstracts away both complex functionalities such as navigation and controlalgorithms and also implementation details, such as speci�c hardware and operating sys-tem dependencies.Several properties could then be veri�ed on this speci�cation using the IF toolbox,an open validation platform developed at Verimag for real-time asynchronous systems.The results obtained con�rm that model-checking and complementary techniques (such asstatic analysis or abstraction), combined within a set of methodological guidelines, couldbe successfully applied to the validation of large real-time embedded systems.
1 IntroductionIt is now well admitted that the increasing importance of software within critical embeddedsystems will necessarily inuence the techniques used to produce such systems. In particular,embedded systems tend to become more and more complex, economic constraints alwaysimpose shorter development times, and classical testing procedures are clearly not exhaustiveenough to guarantee a su�cient level of reliability at a reasonable cost. All these factorsmotivate the introduction of new techniques within the software development process, ableto better take into account the semantic aspects of the application from the earliest designstages.Formal methods are an example of such techniques. They consist in producing some inter-mediate descriptions (or speci�cations) of the system under development using well-de�ned�Ariane-5 is an European Space Agency Project delegated to CNES (Centre National d'Etudes Spatiales)

1

and unambiguous formalisms. Then from speci�cations it becomes automatically possibleeither to verify at early stages some expected high-level properties, or to generate executablecode, or even to produce test sequences to be executed on the �nal system implementation.In fact, although limited in the past to small academic examples, formal methods seem nowmature enough to be used within an industrial context, even for large scale applications. Inparticular, this evolution is facilitated by two important factors:� the existence of well accepted speci�cation formalisms, some of them being based oninternational standards like Lotos [16], Sdl [17] or Uml [19];� the support of validation tools, either commercial (e.g, Tau [1], ObjectGeode [20] orStateMate [15]) or academic ones (e.g, Spin [14], Smv [18], Cadp [10]) able to han-dle large applications and providing many useful validation facilities (from interactivesimulation to exhaustive veri�cation and automatic test case generation).In this context, this work was initiated by Eads Launch Vehicles to better evaluate thematurity and applicability of existing formal validation techniques, both from the descriptionlanguage and from the validation tools point of view. More precisely, it consisted in formallyspecifying some parts of an existing software, on a re-engineering basis, and to try to verifysome critical properties on this speci�cation. The software that has been chosen is the Ariane-5 Flight Program. This is the embedded software which solely controls the Ariane-5 launcherduring its ight, from the ground, through the atmosphere, and up to the �nal orbit. Theexperiment was carried out using IF [7], a validation environment developed at Verimag. Thisenvironment relies on a general intermediate format for timed asynchronous systems, allowingto connect the ObjectGeode Sdl commercial toolset to several academic veri�cation tools,including Cadp and Spin. Together, these tools o�er e�cient veri�cation facilities such ason-the-y model-checking, partial order reductions, or static analysis optimizations.Nevertheless, even if recent researches have considerably improved the tool e�ciency, it is stilldi�cult to apply them on concrete case studies. For example, our Ariane-5 Flight Programspeci�cation is about 4000 lines of Sdl, which makes clearly impossible to verify it following astrict push-button approach. From this point of view, this experiment give us some hints fora veri�cation methodology of large Sdl systems, taking into account most of advanced toolsfunctionalities. The results obtained illustrate the increasing maturity of model-checkingtechniques to face industrial applications.The paper is structured as follows. First, we briey present in section 2 the IF validationenvironment. In section 3 we describe the Ariane-5 Flight Program. We begin with aninformal overview of the program, then we continue with some deeper insights about theformal Sdl speci�cation, as well as its surrounding environment and functional requirements.Finally, in section 4 we point out the concrete veri�cation results obtained, following a setof general methodological guidelines. Some concluding remarks and perspectives are given insection 5.
2 IF ToolboxThe veri�cation tools we used during this experiment are connected through the IF validationenvironment [7], which is developed at Verimag. This environment relies on a general2

intermediate format for timed asynchronous systems, the IF language [8], and integratesseveral components operating at di�erent levels of abstraction.
2.1 The IF languageIn IF, a system is expressed as a set of parallel processes communicating either asynchronouslythrough a set of bu�ers, or synchronously through a set of gates. Processes are based on timedautomata with urgencies [4], extended with discrete variables. Process transitions are guardedcommands, triggered by synchronous/asynchronous inputs, and performing asynchronous out-puts, variable assignments, or clock settings. Communication bu�ers have various queuingpolicies (�fo, stack, bag, etc.), they can be bounded or unbounded, reliable or lossy, anddelayed or not.An important feature of the IF language is to provide a well-de�ned real-time semantics ofasynchronous systems by means of transition urgencies. More precisely, an urgency attributeis associated to each process transition in order to de�ne its priority over time progress duringsimulation:� eager transitions are assumed to be executed as soon as possible: time does not progressas long as an eager transition is enabled;� lazy transitions are never urgent: enabled lazy transitions do not disable time progress;� delayable transitions are a combination of eager and lazy transitions: they are enabledwithin a time interval, time may progress within this interval, and the transition be-comes urgent when its upper bound is reached.By o�ering a precise control of time during system simulation, the urgency mechanism pro-vides a exible way to specify the real-time constraints associated with each action performed.In particular the use of eager transitions allows to guarantee an immediate response of thesystem to some critical events (like a timer expiration), whereas lazy and delayable transitionsallow to introduce some time non-determinism in the handling of partially constrained events.
2.2 The IF validation environmentThe IF validation environment provides a complete veri�cation chain consisting in severalcomponents organized into three levels of system representation (see �gure 1).
The speci�cation level components. This level corresponds to the initial program de-scription, expressed for instance in a high-level speci�cation language. The formalism weconsidered here is Sdl, and we used the Telelogic ObjectGeode [20] environment to editand maintain our speci�cation. This environment also provides an interactive simulator al-lowing to visualize execution scenarios by means of Msc. It o�ers some veri�cation facilitieslike deadlock detection or model-checking properties expressed by Goal observers [2].

3

CADP

SDL2IF

IF2IF

IF2C

KRONOS

TGV

specification

design static analysis

simulation
SDL IF LTS

ObjectGEODE

test generation

translation to IF

model checking

Figure 1: IF Toolbox Architecture.
The IF level components. At this intermediate level the initial speci�cation has been(automatically) translated in IF using the sdl2if translator. One of the important compo-nent available at this level is if2if, an optimisation tool based on static analysis techniquesproviding dead variable resetting [6], clock reduction and program slicing [21]. All these op-timisations transform the initial IF speci�cation into a \simpler" one (from the veri�cationpoint of view) while preserving a particular set of properties (see section 4).
The semantic level components. This level gives access to the labeled transition sys-tem (Lts) representing the exhaustive behaviour of the IF system. This Lts is obtained byrunning a simulation program, generated by the if2c component. The simulation programintegrates several advanced veri�cation techniques like partial order reduction and on-the-y model-checking. The resulting Lts can be used within Cadp [10], a veri�cation toolsetdeveloped by the Vasy team of Inria Rhône-Alpes and Verimag. In particular we inten-sively used in this experiment two components of this toolset, Aldebaran, a bisimulationbased minimisation/comparison tool, and Evaluator, an alternating-free �-calculus model-checker. Each of these tools are able to compute diagnostic sequences at the Lts level that canbe translated back into Msc to be observed at the speci�cation level. Other components likeKronos [22] (a Timed-Ctl model-checker) and Tgv [11] are also applicable at this level.
3 Ariane 5 Flight ProgramIn order to understand the functionalities of the ight program, we begin the presentationwith a short informal overview of the whole Ariane-5 ight1. Then, we present how the ightprogram was formalised using Sdl. We detail the main design choices and the abstraction ofthe environment. Meantime, we try to illustrate both the bene�ts and the limitations of usingSdl as a description language for this kind of systems. We end the section by presenting theset of safety requirements needed in order to ensure the well-functioning of the ight program.1the description was taken from the Esa - European Space Agency - web page: http://www.esa.int/

4

E
P
C

E
P
S

E
A
P

E
A
P

Figure 2: Ariane-5 launcher.
3.1 OverviewAn Ariane-5 launch begins with ignition of the main stage engine (epc - Etage PrincipalCryotechnique). Upon con�rmation that it is operating properly, the two solid booster stages(eap - Etage Acc�el�erateur �a Poudre) are ignited to achieve lift-o�.After burn-out, the two solid boosters (eap) are jettisoned and Ariane-5 continues its ightthrough the upper atmosphere propelled only by the cryogenic main stage (epc). The fairingis jettisoned too, as soon as the atmosphere is thin enough for the satellites not to needprotection. The main stage is rendered inert immediately upon shut-down. The launchtrajectory is designed to ensure that the stages fall back safely into the ocean.The storable propellant stage (eps - Etage �a Propergol Stockable) takes over to place thegeostationary satellites in orbit. Payload separation and attitudinal positioning begin as soonas the launcher's upper section reaches the corresponding orbit. Ariane-5's missions ends 40minutes after the �rst ignition command.A �nal task remains to be performed - that of passivation. This essentially involves emptyingthe tanks completely to prevent an explosion that would break the propellant stage intopieces.The ight program entirely controls the launcher, without any human interaction, beginning 6minutes 30 seconds before lift-o�, and ending 40 minutes later, when the launcher terminatesits mission.
3.2 Formal speci�cationIn order to build a formal speci�cation, the Sdl [17] language was preferred for this case studyamong other formalisms for several reasons. First of all, it is based on asynchronous commu-nicating �nite-state machines. Thus, it is particularly adequate to describe, at some level ofabstraction, the whole ight program as a collection of processes asynchronously interactingeach other. In addition, Sdl provides an explicit notion of time and some corresponding

5

real-time primitives. Since there exists an automatic translation from Sdl to IF, it becomespossible to enforce the Sdl time semantics using urgencies in order to express all the requiredtiming constraints associated with the ight program components. Finally, Sdl is currentlysupported by several integrated environments such as ObjectGeode [20] and Tau [1], whichmakes it very attractive from a development point of view.

Ground

Regulation

Configuration

Control

OBC
OBC

[Redundant]

Figure 3: Flight program architecture.
As explained in the informal description, the main functionalities of the ight program arethe following:� ight control, which consists in navigation, guidance and control algorithms,� ight regulation, which consists in observation and control of various components of thepropulsion stages (engines ignition and extinction, boosters ignition, etc),� ight con�guration, which consists in managing changes of launcher components (stageseparation, payload separation, etc).The speci�cation we treated in this case study focuses on regulation and con�guration parts.
The ight regulation part is modeled by six Sdl processes. With few exceptions, wehave two loosely coupled Sdl processes for each stage: one describing the �ring and theother the extinction of the stage. In general, they work as follows. Both the �ring and theextinction process receive as input the �ring date, provided by the ight control part. Then,the �ring process executes the �ring sequence i.e, the set of actions to be done, with theright deadlines, in order to properly �re the stage at the given date. If some malfunctioningis detected during this sequence, the extinction process takes over and attempts to stop the�ring, using an adequate stop sequence. Otherwise, the extinction will occur later, eventuallyprior to the moment when the stage is dropped out.Example 3.1 An over-simpli�ed �ring process is illustrated in �gure 4. The informal actionsaction 1, ... action n must be executed precisely at time T0-d1, ... T0-dn respectively, whereT0 is a parameter received by the process and d1, ... dn are constant values. The informalactions abstract external commands which have to be initiated by the process (external sensorsreading, opening or closing engine valves, etc.) at the right moments in time.6

process Firing

 timer t_next;

init

Fire(T0)

’action_0’

SET (T0-d1,
t_next)

step_1

step_1

t_next

’action_1’

SET (T0-d2,
t_next)

step_2

step_2

t_next

’action_2’

SET (T0-d3,
t_next)

step_3

step_n

t_next

’action_n’

done

Figure 4: A �ring process.
The ight con�guration part contains seven Sdl processes. Each process implementssome particular con�guration task: eap separation, epc separation, payload separation, etc.In their case too, the separation dates are provided by the control part, based on the currentight evolution.Example 3.2 A simpli�ed con�guration process is presented in �gure 5. Here, the openinginformal action must be executed on the reception of the open signal, eventually in the intervalde�ned by timers t early and t late. Thus, if the open signal arrives too early, it must be savedor, if the signal does never arrive, the action has to be executed at the end of the interval.The translation of regulation and con�guration processes into IF is straightforward. Neverthe-less, an implicit assumption about the time progress was made in all of them: timeout-driventransitions are urgent and must be executed as soon as they are enabled i.e, exactly at theexpiration time. This assumption is conicting with the standard semantics of Sdl, whichconsider that all the transitions are lazy. Fortunately, at IF level we could explicitly de�netimeout-driven transitions as eager, thus modeling exactly the intended behaviour.
3.3 EnvironmentIn order to obtain a realistic functional model of the ight program, we have to take intoaccount its surrounding environment. For example, precise human interactions are expectedto initiate the launch procedure. Furthermore, both regulation and con�guration parts weredesigned to closely interact with the control part of the program during the ight. Someminimal coordination must be ensured here e.g, that all the components received the same�ring date otherwise no meaningful veri�cation could be done.To handle all the assumptions on the system environment, the solution we adopted is to\close" our Sdl speci�cation by adding external processes abstracting the actual behaviourof the control part, the redundant program and the ground:

7

process Configure

idle

t_early

wait

open

go

’opening ...’

done

t_late

go

open

...

...

SET (t_early)

SET (t_late)

idle

Figure 5: A con�guration process.
� the ight control is over simpli�ed. It consists on several processes which describe anominal behavior: they are supposed to send, with some controlled degree of uncer-tainty, the right ight commands, with the right parameters at the right moments intime2. Nevertheless, here again the time semantics has to be considered with particularattention in order to obtain the intended behaviour (see example 3);� the redundant program: at the initialisation time, the main program requests the statusof the redundant one. Hence, the later was abstracted by a simple non-deterministicprocess, which could respond either positively or negatively to the main's request;� the ground part implements the nominal behavior of the launch protocol on groundside. Progressively, it pass the control of the launcher to the on board ight program,by providing the launch date and all the other con�rmations needed for launching.On the other hand, it remains ready to take back the control, completely, if somemalfunctioning is detected during the launch procedure.

Example 3.3 In the nominal case, the control part eventually sends the extinction commandof the vulcain engine within some given time interval [L;U]. Such behavior could be sketchedby the Sdl process from �gure 6. Nevertheless, its meaning is quite unclear: following thestandard Sdl semantics it is possible that the process stays forever at the init state. Followingthe ObjectGeode semantics, the transition is executed as soon as it becomes enabled, sowhen now equals min. Unfortunately, none of these interpretations is the intended one. Theright solution is achieved only at IF level by de�ning the transition as delayable: it will beeventually executed at some time within the interval.2The data used here correspond to the ight no. 503 of Ariane-5 launcher
8

process Control

init

L <= now and
now <= U

extinction
to vulcain

done

Figure 6: Control process.
3.4 RequirementsWith the help of Eads experts, we identi�ed a set of about twenty safety functional require-ments ensuring the right service of the ight program. The requirements were classi�ed intothree classes, as follows:� general requirements, which are not necessarily speci�c to the ight program but ingeneral, to all critical real-time systems. They include basic untimed properties such asthe absence of deadlocks, livelocks or signal looses, and basic timed properties such asthe absence of timelocks, Zeno behaviors or deadlines missed;� overall system requirements, which are speci�c to the ight program and concern itswhole behavior. For example, we mention here the global order for the ight phases(e.g, ground, vulcain ignition, booster ignition, etc...), or the vulcain engine extinctionin the presence of anomalies;� local component requirements, are also speci�c to the ight program and concern thefunctionality of some of its parts. In this category, we consider for example checking theoccurrence of some actions in some component (e.g, payload separation occurs eventuallyduring an attitudinal positioning phase, or the stop sequence no. 3 could happens onlyafter lift-o�, or the state of engine valves conforms to the ight phase, etc.)Initially, all these requirements were described using Goal observers [2]. Then, in order tobe handled with IF tools, they were translated manually into temporal logic formulae or�nite-state automata.
4 Veri�cationFormal veri�cation is certainly the most challenging phase in a formal development process.It is the only way to provide an earlier and e�ective feedback about the behavior of thesystem, regarding its environment and its requirements. In order to master the complexity of9

the veri�cation we propose to split it into �ve independent steps, ranging from the simpleststatic analysis to the most powerful model-checking techniques (see �gure 7). This sectionpresents the concrete veri�cation results obtained on the Ariane-5 speci�cation, following thismethodological guidelines.
Requirements

Basic Static Analysis

Model Exploration

Advanced Static Analysis

Model Generation

Model Checking

Environment

Specification

Figure 7: Veri�cation methodology.
4.1 Basic static analysisDuring this �rst step, simple analysis are applied on the speci�cation. They include bothsanity tests and some simple static analysis.In the �rst category, we mention basic tests on variables and signals. For instance, the userdetects variables or timers never assigned nor used. Furthermore, variables which might beused without being initialised are computed. Moreover, signals which are never sent norreceived are also indicated to the user. In the second category, we mention techniques such aslive variables analysis or constant propagation. They give us much more accurate informationabout the use of the variables in the program while detecting various kinds of redundancy,such as unused variable de�nitions or any other form of dead-code.
4.2 Model explorationThe validation process continues with a debugging stage. With no sake for exhaustivity,the user begins to explore the model of the speci�cation, in a guided or random manner.Simulation states do not need to be stored as the complete model might not be explicitlyconstructed at this moment.The aims at this stage are multiples. Firstly, the user could inspect and validate knownscenarios about the functioning of the speci�cation. Secondly, the user can test simple safetyproperties, which might hold on all execution paths. Such properties might range from genericones, such as deadlocks, signal loss or wrong timer setting detection, to more speci�c ones,

10

application dependent. In general, they are tested either using speci�c code instrumentation,or using external observers. When an error is found, a diagnostic scenario can be producedat this step by the ObjectGeode simulator.Example 4.1 By inspecting a diagnostic scenario leading to a timed exception (e.g, unex-pected timeout signal) we found an inconsistence between several constants used to control the�ring of the epc. A simpli�ed Msc corresponding to this scenario is presented in �gure 4.2.On one hand, the sending of the desactivation signal is conditioned by the reception of thestatus signal. On the other hand, status is sent at time H0+t1 while desactivation must besent at time H0+t2. The error occurred here because t1 and t2 were de�ned such that t1 wasgreater than t2.
EAP

H0+t2
desactivation

status

Control

H0+t1

Figure 8: Diagnostic trace.
4.3 Advanced static analysisThe aim at this step is to prepare the speci�cation to an exhaustive simulation. Optimisationbased on static analysis results are intensively applied in order to reduce both the state vectorand the state space, while completely preserving its behavior.Di�erent kinds of optimisations are currently available. The �rst one is variable and timersrecovery, which consists in diminishing the number of variables and timers respectively usedinside the speci�cation. This optimisation exploits results obtained by live and dependencyanalysis:� a variable (respectively clock) is live in a control state if it will be used before beingassigned on some path starting on that state;� two variables (respectively clocks) are dependent in a control state if their di�erence isconstant and can be statically computed at that state;The theoretical result used here is that any program can be rewritten using at most n variables,where n is the maximal number of live and functionally independent variables at some pointin the program.Example 4.2 The initial Sdl version of the ight program used no less than 130 timers.Using our static analysis tool we were able to reduce them to only 55 timers, functionally11

independent ones. Afterward, the whole speci�cation was rewritten taking into account theredundancies discovered by the analyzer.A second optimisation attempts to identify live equivalent states by introducing systematicresets for dead variables in the speci�cation. In this way, it prevents to distinguish betweensimulation states which di�er only by values of dead variables. This technique is very e�ectivegiven that it can be applied locally at control-state level (contrarily to variable recovery whichapplies only if some condition holds on all control states of the program).Example 4.3 For this case study, the live reduction was not so impressive due to the reducednumber of variables (others than clocks) used in the speci�cation. Anyway, our initial attemptsto generate the model without live reduction failed. Finally, using live reduction we were ableto build the model but still, it was of unmanageable size, about 2 � 106 states and 18 � 106transitions.Finally, the last optimisation we mention here is slicing [21]. This technique consists instatically extracting the part of the speci�cation which is relevant to a slicing criterion i.e,here derived from a �xed property to be veri�ed. The sliced part might be signi�cantly smallerthan the entire speci�cation since, contrarily to previous optimisation techniques, slicing doesnot aim to preserve all the behaviors but only those which might inuence the validity of thechosen property. In particular, we used this slicing technique to automatically eliminate somesilent Sdl processes, which do not perform any \relevant" action.
4.4 Model generationThe model generation step aims to explore completely the model of the speci�cation byexhaustive simulation. By speci�cation we mean here either the complete one, or a slicedversion with respect to some �xed property.This step might be extremely di�cult given the apriori exponential size of the model. In orderto deal with, the user controls both the representation scheme for states and sets of statesand the exploration strategy. For example, the use in IF of a symbolic representation fortimers i.e, using di�erence-bound matrixes to represent zones and regions [3], is particularlyuseful when dealing with a large time horizon and irregular timing constraints. Instead ofrepresenting each single particular point in time, this kind of representation allow us to handleset of equivalent points with respect to their future behavior. In particular, such symbolicrepresentation is of real interest here because of the wide spectrum of timers values: forexample, very short ones for regulation timers (measured in milliseconds, see �gure 4) andlonger ones for control timers (measured in minutes, see �gure 6).Concerning the exploration strategy, the use of partial order techniques [12] is clearly of valuein the exploration of asynchronous communicating systems. Thus, spurious interleavings initi-ated either by internal actions or by the consumption of messages from communication bu�erscould be eliminated still preserving all the observable behavior of the speci�cation. Never-theless, special care must be taken with respect to time: since time is global and clocks aresynchronised there exists implicit dependencies induced by time progress (e.g, time progressmay disable some observable, relevant actions). In order to avoid this problem, we imple-mented in IF a restricted variant of partial order reduction in which outputs and time progresstransitions are always considered as observable.

12

For example, let us consider a generic situation which occurs frequently in the ight program:a multicast communication which involves one sender and n receivers. As the communicationin Sdl is asynchronous bu�ered, even if all the bu�ers are empty we obtain 2n intermediatestates, due to all possible interleavings of receiver inputs. Fortunately, using partial orderreduction, the combinatorial explosion disappears: inputs are executed in some order, andonly n intermediate states are explored.Example 4.4 The use of partial order reduction was mandatory in order to construct modelsof reasonable size. Here, we reduce the size of the model with 3 orders of magnitude i.e, from2 � 106 states and 18 � 106 transitions to 1:6 � 103 states and 1:65 � 103 transitions, which couldbe easily handled by Cadp model-checkers.In practice, we consider two di�erent situations regarding the environment. The �rst one istime-deterministic, which means that all environment actions (in particular the control part)take place at precise moments in time. The second one is time-nondeterministic which meansthat environment actions take place with some degree of time uncertainty (within a prede�nedtime interval). From the environment point of view, the later situation corresponds to a wholeset of scenarios, whereas the former situation focus only on a single one. Table 1 presents ineach case the sizes of the models obtained depending on the generation strategy used.time timedeterministic non-deterministic� live reduction state state� partial order explosion explosionmodel + live reduction 2201760 st. stategeneration � partial order 18706871 tr. explosion+ live reduction 1604 st. 195718 st.+ partial order 1642 tr. 278263 tr.modelmodel minimisation � 1 sec. � 20 sec.veri�cation modelchecking � 15 sec. � 120 sec.
Table 1: Veri�cation Results.

4.5 Model-checkingOnce the model being generated, several model-checking techniques can be applied to verifyexpected properties on the speci�cation. Nevertheless, on-the-y veri�cation methods i.e,which combines the model-generation and model-checking steps, might be used.Using the IF validation toolbox, two approaches can be followed to express these proper-ties. First, temporal logic formula could be veri�ed using Evaluator, the Cadp �-calculusevaluation tool.Example 4.5 The requirement expressing that the stop sequence no. 3 occurs only duringthe ight phase, and never on the ground phase can be expressed by the following temporallogic formula, veri�ed with Evaluator: 13

: �X: < EPC!Stop 3 > tt ^ < EAP !Fire > XIntuitively, it express that it is not possible to reach a state where is possible to perform thestop sequence no. 3 without executing in the past the �ring of the eap (which denotes thebeginning of the ight phase).A second approach, usually much more intuitive for a non expert end-user, consists in com-puting an abstract model (with respect to a given observation criteria) of the overall behaviorof the speci�cation. Such a model can be then visualised and possible incorrect behaviors canbe detected. These abstract models are computed by Aldebaran and, depending on the(bi)-simulation relation used, they preserve di�erent classes of properties.
0

2

EPC!Fire_1

3

EPC!Fire_2

1

EPC!Anomaly

EPC!Anomaly 4

EPC!Fire_3

5

EAP!Anomaly

EAP!Fire EPC!Anomaly

Figure 9: Minimal model.
Example 4.6 All safety properties involving the �ring actions of the two principal stages, eapand epc, and the detection of anomalies are preserved on the graph from �gure 9 generatedby Aldebaran. It is the quotient model with respect to safety equivalence [5] while keepingobservable only the actions above. For instance it is easy to check on this abstract model that,whenever an anomaly occurs before action EPC!Fire 3 (ignition of the Vulcain engine), thennor this action nor EAP!Fire action are executed and therefore the entire launch procedure isaborted.Table 1 gives the average time required for verifying each kind of property (by temporal logicmodel checking and model minimisation respectively).
5 ConclusionsIn this paper we described a practical experiment on the validation of a real-time embeddedsoftware speci�cation, the con�guration and regulation part of the Ariane-5 Flight Program.14

First, this software has been formally speci�ed in Sdl by reverse engineering. Then, followinga set of general methodological guidelines, the speci�cation has been continuously improvedand the twenty expected requirements were all veri�ed on the �nal version. In particular,the combination of di�erent optimisation techniques, operating either at the source level (likestatic analysis or slicing) or at the semantic level (like partial-order reductions) happened tobe particularly useful in order to deal with large size state spaces. Nevertheless, this workcovers only a limited part of the development process of real-time embedded systems: thespeci�cation that has been developed and validated is abstract and rather \far" from theexisting executable code. This approach is therefore well-adapted in the earlier phases ofdevelopment but applying it to more concrete designs could become problematic in practice.The main di�culty of this case-study comes from the combination of various kind of timeconstraints. On one hand, the functionality of the ight program strongly depends on anabsolute time: coordination dates are frequently exchanged between components in order tosynchronise their behaviour during the whole ight. On the other hand, this system has tobe veri�ed within a partially constrained environment, reacting with some degree of temporaluncertainty. In this experiment, this expressivity problem was solved at the IF level thanksto explicit urgency attributes. Clearly, such features should be made available at speci�cationlevel. In particular, ongoing work address the introduction of high-level time and performanceannotations in Sdl [9].Another future direction of investigation is the synchronous/asynchronous interaction. Cur-rently, with Sdl we were able to build an abstraction of the ight program, as an asyn-chronous interaction of several processes, which express the overall sequential behavior andthe most important timing constraints on it. However, this speci�cation is not complete, atleast because very important program parts, such as navigation and control, must be almostcompletely abstracted away, because they cannot be described in Sdl. Such parts describingintensive data-ow transformations have to be executed in a synchronous manner, and areusually described using synchronous languages such as Lustre [13]. Unfortunately, from thesynchronous side, inherently sequential parts with asynchronous interaction also could not beproperly expressed. Nevertheless, this kind of dual design where coexist both asynchronouscomponents and synchronous ones is not an exception and occurs very often in real-time ap-plications design practice. We plan for the future to investigate how to combine, in a soundmanner, synchronous and asynchronous descriptions, and the possible tool support for doingit, in order to exploit at best the advantages conferred by both programming paradigms.
References[1] Telelogic AB. SDT Reference Manual. http://www.telelogic.se.[2] B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL Behaviors withGEODE. In Proceedings of SDL FORUM'95. Elsevier, 1995.[3] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science,126:183{235, 1994.

15

[4] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In Interna-tional Symposium: Compositionality - The Signi�cant Di�erence (Holstein, Germany),volume 1536 of LNCS. Springer, September 1997.[5] A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for BranchingTime Semantics. In Proceedings of ICALP'91, volume 510 of LNCS. Springer, July 1991.[6] M. Bozga, J.Cl. Fernandez, and L. Ghirvu. State Space Reduction based on Live Vari-ables Analysis. In A. Cortesi and G. Fil�e, editors, Proceedings of SAS'99 (Venice, Italy),volume 1694 of LNCS, pages 164{178. Springer, September 1999.[7] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: AValidation Environment for Timed Asynchronous Systems. In E.A. Emerson and A.P.Sistla, editors, Proceedings of CAV'00 (Chicago, USA), volume 1855 of LNCS. Springer,July 2000.[8] M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and J. Sifakis.IF: An Intermediate Representation for SDL and its Applications. In R. Dssouli,G. Bochmann, and Y. Lahav, editors, Proceedings of SDL FORUM'99 (Montreal,Canada), pages 423{440. Elsevier, June 1999.[9] M. Bozga, S. Graf, L. Mounier, I. Ober, J.L. Roux, and D. Vincent. Timed Extensionsfor SDL. In Proceedings of SDL FORUM'01, LNCS, 2001. to appear.[10] J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.CADP: A Protocol Validation and Veri�cation Toolbox. In R. Alur and T.A. Henzinger,editors, Proceedings of CAV'96 (New Brunswick, USA), volume 1102 of LNCS, pages437{440. Springer, August 1996.[11] J.Cl. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in Automatic Gen-eration of Test Suites for Protocols with Veri�cation Technology. Science of ComputerProgramming, 29, 1997.[12] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems - AnApproach to the State Explosion Problem, volume 1032 of LNCS. Springer, January 1996.ISBN 3-540-60761-7.[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataow pro-gramming language Lustre. IEEE, 79(9), September 1991.[14] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Soft-ware Series, 1991.[15] I-Logix. StateMate. http://www.ilogix.com/.[16] ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal Order-ing of Observational Behaviour. Technical Report 8807, International Organization forStandardization | Information Processing Systems | Open Systems Interconnection,Gen�eve, 1988.
16

[17] ITU-T. Recommendation Z.100. Speci�cation and Description Language (SDL). Tech-nical Report Z-100, International Telecommunication Union { Standardization Sector,Gen�eve, November 1999.[18] K.L. McMillan. Symbolic Model Checking: an Approach to the State Explosion Problem.Kluwer Academic Publisher, 1993.[19] OMG. Uni�ed Modeling Language Speci�cation. Technical Report OMG UML v1.3 {ad/99-06-09, Object Management Group, June 1999.[20] Verilog. ObjectGEODE Reference Manual. http://www.verilogusa.com/.[21] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4),July 1984.[22] S. Yovine. KRONOS: A Veri�cation Tool for Real-Time Systems. Software Tools forTechnology Transfer, 1(1+2):123{133, December 1997.

17

