
IF-2.0: A Validation Environment forComponent-Based Real-Time Systems?
Marius Bozga, Susanne Graf, and Laurent MounierVERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eres

1 Introdu
tionIt is widely re
ognised that the automated validation of 
omplex systems 
annot bea
hieved without tool integration. The development of the IF-1.0 toolbox [3℄ wasinitiated several years ago, in order to provide an open validation platform for timedasyn
hronous systems (su
h as tele
ommuni
ation proto
ols or distributed appli
a-tions, in general). The toolbox was built upon an intermediate representation lan-guage based on extended timed automata. In parti
ular, this representation allowedus to study the semanti
s of real-time primitives for asyn
hronous systems. Cur-rently, the toolbox 
ontains dedi
ated tools on the intermediate language (su
h as
ompilers, stati
 analysers and model-
he
kers) as well as front-ends to various spe
-i�
ation languages and validation tools (a
ademi
 and 
ommer
ial ones). Among thededi
ated tools, we fo
used on stati
 analysis (su
h as sli
ing and abstra
tion) whi
hare mandatory for an automated validation of 
omplex systems. Finally, the toolboxwas su

essfully used on several 
ase studies, the most relevant ones being presentedin [4℄.Despite the interest of this toolbox on spe
i�
 appli
ations, it appears that someof the initial design 
hoi
es, whi
h were made to obtain a maximal eÆ
ien
y, aresometimes too restri
tive. In parti
ular they may prevent its appli
ability to a wider
ontext:{ the stati
 nature of the intermediate representation prevents the analysis of dy-nami
 systems. More exa
tly, primitive operations like obje
t (or thread) 
reationand destru
tion, whi
h are widely and naturally used both in spe
i�
ation for-malisms like UML or programming languages like Java, were not supported.{ the ar
hite
ture of the exploration engine allowed only the exploration of pureIF-1.0 spe
i�
ations. This is too restri
tive for 
omplex system spe
i�
ationswhi
h mix formal des
riptions and exe
utable 
ode (e.g, for 
omponents alreadyimplemented and tested).This situation motivated the extension of the IF-1.0 intermediate representation and,in turn, to re-
onsider the ar
hite
ture of the exploration engine. Some of the lan-guage extensions are derived from existing spe
i�
ation formalisms (UML [11℄ and? This work was supported in part by the European Commission FET proje
ts ADVANCE,
ontra
t No IST-1999-29082 and AGEDIS, 
ontra
t No IST-1999-20218



SDL-2000 [9℄) and obje
t oriented programming languages (like Java). Con
erningthe exploration engine ar
hite
ture, the approa
h we followed is in
uen
ed both bytraditional model-
he
kers su
h as Spin [8℄ or Open/Caesar [5℄ and more re
ent run-time validation tools su
h as Verisoft [6℄, Java PathFinder [7℄ or SystemC [12℄. Theoriginality of this ar
hite
ture is to preserve exhaustive exploration 
apabilities whilesupporting heterogeneous spe
i�
ations (with external 
ode invo
ations and dynami
obje
t 
reations). These extensions are des
ribed in more details in the following se
-tions, together with some running experiments and perspe
tives.
2 Dynami
 Extended AutomataThe formal basis for the IF-2.0 intermediate representation is a dynami
 version ofextended timed automata.We fo
us on systems 
omposed of several 
omponents (
alled pro
esses), running inparallel and intera
ting through message-passing, either via 
ommuni
ation 
hannels(
alled signalroutes), or by dire
t addressing. The number of pro
esses and signal-routes may 
hange over time: they may be 
reated and deleted dynami
ally, duringthe lifetime of the system.Ea
h pro
ess is des
ribed by an extended timed automaton. It has a unique pro
essidenti�er (pid) value, a lo
al memory 
onsisting of variables (in
luding 
lo
ks), 
on-trol states and a queue of pending messages (re
eived and not yet 
onsumed). Asusually, pro
esses move from one 
ontrol state to another by exe
uting transitions,whi
h are triggered by messages in the input queue and/or some (possibly timed)guards. Transition bodies are sequential programs 
onsisting of elementary a
tions(like variable or 
lo
k assignments, message sending, pro
ess 
reation/destru
tion,external 
ode invo
ation, et
) stru
tured using elementary 
ontrol-
ow statements(like if-then-else, while-do, et
). Control states may be nested (as in state
harts) inorder to fa
torize 
ommon behaviour and obtain modular automata des
riptions.Signalroutes are spe
ialised 
ommuni
ation media that transport messages betweenpro
esses. The behaviour of the signalroute is de�ned by its storing poli
y (FIFO ormultiset), its delivery poli
y (peer to peer, uni
ast or multi
ast), its delaying poli
y(\zero delay", \delay" or \rate") and �nally its reliability (reliable or lossy).The semanti
s of the extended automata model is de�ned by the graph of its ex-e
utions 1. This graph is obtained by the interleaved exe
ution of pro
esses, wherepro
ess transitions de�ne atomi
 non-interruptive exe
ution steps.The semanti
s of time is similar to the one of timed automata: time progresses instates (i.e, all running pro
esses wait in some state before sele
ting and exe
utingsome transition) and transitions take zero time to be exe
uted. In order to 
ontrolthe time progress, or equivalently, the waiting time in states, we rely on transitionurgen
ies [2℄ { expli
it deadlines eager, lazy or delayable atta
hed to transitions de�n-ing when they must be exe
uted. More pre
isely, eager transitions must be exe
utedas soon as they are enabled and waiting is not allowed; lazy transitions are never1 For pure IF-2.0 spe
i�
ations there exists also a formal operational semanti
s, however,for spe
i�
ations using external 
ode we rely on runtime exe
ution results.



urgent, that is, when a lazy transition is enabled the transition may be exe
uted or,alternatively, the pro
ess may wait without any restri
tion; �nally, when a delayabletransition is enabled, waiting is allowed as long as time progress does not disable it.Example 1. Consider a multi-threaded server whi
h 
an handle at most N simulta-neous requests. Thus, if possible, for a request message (re
eived from the envi-ronment) a thread is 
reated. The server keeps in the th
 variable the number ofrunning threads. Thread pro
esses are quite simple: on
e 
reated, they work, andwhen �nished they send a done message ba
k to the server. These messages are de-layed through a unique signalroute 
s (those address is passed as a parameter when
reating a thread pro
ess).signalroute 
s(1) #delay[1,2℄from thread to serverwith done;pro
ess server(1);var th
 integer;state idle #start ;deadline lazy;provided th
 < N;input request();fork thread(self, 
s0);task th
 := th
 + 1;nextstate idle;deadline eager;input done();

task th
 := th
 - 1;nextstate idle;endstate;endpro
ess;pro
ess thread(0);fpar parent pid, route pid;state init #start ;deadline lazy;informal "work";output done()via route to parent;stop;endstate;endpro
ess;
3 State-spa
e explorationState-spa
e exploration is one of the su

essful te
hniques used for the analysis of
on
urrent systems and also the 
ore 
omponent of any model-based validation tool(i.e, model-
he
ker, test-generator, et
). Nevertheless, exploration is far from beingtrivial for dynami
 systems that, in addition, use 
omplex data, involve various 
om-muni
ation me
hanisms, mix several des
ription languages, and moreover, depend ontime 
onstraints. The solution we propose is an open, modular and extensible explo-ration platform designed to 
ope with the 
omplexity and the heterogeneity of a
tual
on
urrent systems.The IF-2.0 exploration platform relies on a 
lear separation between the individualbehaviour of pro
esses and pro
esses (i.e, memory update, transition �ring) and the
oordination me
hanisms between pro
esses (i.e, 
ommuni
ation, 
reation, destru
-tion). More pre
isely, ea
h pro
ess or signalroute is represented as an obje
t (in thesense of obje
t-oriented languages) that has an internal state and may have one ormore �reable (lo
al) transitions, depending on its 
urrent state. Time is also a spe-
ialised pro
ess dealing with the management of all (running) 
lo
ks. Coordination isthen realised by a kind of pro
ess manager: it s
ans the set of lo
al transitions, 
hoose



the �reable one(s) with respe
t to global (system) 
onstraints, ask the 
orrespondingpro
esses to exe
ute these transitions and update the global state a

ordingly.

test
generation

model
checking

executableformal
specifications code

instrumentationcompilation

process
behavior state−space

representationinter−process
coordination

exploration
engine

Fig. 1. Fun
tional view of IF-2.0 exploration platform.
This ar
hite
ture provides the possibility to validate 
omplex heterogeneous systems.Exploration is not limited to IF-2.0 spe
i�
ations: any kind of pro
esses may berun in parallel on the exploration platform as long as they implement the interfa
erequired by the pro
ess manager. It is indeed possible to use 
ode (either dire
tly, orinstrumented a

ordingly) of already implemented 
omponents, instead of extra
tingan intermediate model to be put into some global spe
i�
ation.Another advantage of the ar
hite
ture is the extensibility 
on
erning 
oordinationprimitives and exploration strategies. Presently, the exploration platform supportsasyn
hronous (interleaved) exe
ution and asyn
hronous point-to-point 
ommuni
a-tion between pro
esses. Di�erent exe
ution modes, like syn
hronous or run-to-
ompletion,or additional 
ommuni
ation me
hanisms, su
h as broad
ast or rendez-vous, simplyby extending the pro
ess interfa
es and the pro
ess manager fun
tionality. Con
ern-ing the exploration strategies, redu
tion heuristi
s su
h as partial-order redu
tionor symmetry redu
tion are 
urrently in
orporated into the pro
ess manager. Morespe
i�
 heuristi
s may be added depending on the appli
ation domain.
4 Ongoing work and perspe
tives
The IF-2.0 representation and the asso
iated environment are 
urrently being used inseveral resear
h proje
ts. As example, we mention AGEDIS (see http://www.agedis.de)where, in 
ooperation with IBM and IRISA we develop a testing environment for dis-tributed systems. In this proje
t, IF-2.0 plays a 
entral role, both as an (operational)



representation for system's behaviour (des
ribed in UML at the user level) and as anexploration engine used by a model-based test generator (an extension of TGV [10℄).In the near future we plan to upgrade the (most e�e
tive) stati
 analysis te
hniques,already implemented for IF-1.0, to the new intermediate representation IF-2.0. Inparti
ular, sli
ing and abstra
tion te
hniques are mandatory to keep tra
table thestate-spa
e exploration. However, due to the dynami
 features of IF-2.0, some ofthese te
hniques have to be revisited.Another perspe
tive is the integration of the s
heduling framework of [1℄ in orderto improve the standard exe
ution modes provided by the exploration engine (e.g,asyn
hronous or syn
hronous). Based on dynami
 priorities, this s
heduling frame-work is 
exible and general enough to ensure a �ne-grained 
ontrol of exe
ution ofreal-time systems, depending on various 
onstraints. This framework �ts also well inour exploration engine ar
hite
ture. For instan
e, it is possible to extend the pro-
ess manager with s
heduling 
apabilities, in order to evaluate dynami
 priorities atrun-time and to restri
t the set of �reable transitions a

ordingly.The IF-2.0 pa
kage 
an be downloaded at http://www-verimag.imag.fr/�asyn
/IF/.
Referen
es1. K. Altisen, G. G�ossler, and J. Sifakis. A methodology for the 
onstru
tion of s
heduledsystems. In M. Joseph, editor, Pro
eedings of FTRTFT 2000, volume 1926 of LNCS,pages 106{120. Springer, September 2000.2. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgen
y in Timed Systems. In Interna-tional Symposium: Compositionality - The Signi�
ant Di�eren
e (Holstein, Germany),volume 1536 of LNCS. Springer, September 1997.3. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: AValidation Environment for Timed Asyn
hronous Systems. In E.A. Emerson and A.P.Sistla, editors, Pro
eedings of CAV'00 (Chi
ago, USA), volume 1855 of LNCS. Springer,July 2000.4. M. Bozga, S. Graf, and L. Mounier. Automated Validation of Distributed Softwareusing the IF Environment. In Workshop on Software Model-Che
king, volume 55. TCS,July 2001.5. H. Garavel. OPEN/C�SAR: An Open Software Ar
hite
ture for Veri�
ation, Simula-tion, and Testing. In B. Ste�en, editor, Pro
eedings of TACAS'98 (Lisbon, Portugal),volume 1384 of LNCS, pages 68{84. Springer, Mar
h 1998.6. P. Godefroid. VeriSoft: A Tool for the Automati
 Analysis of Con
urrent Rea
tiveSoftware (short paper). In Pro
eedings of CAV'97 (Haifa, Israel), volume 1254 of LNCS,pages 476{479. Springer, June 1997.7. K. Havelund and T. Pressburger. Model Che
king Java Programs Using JavaPathFinder. International Journal on Software Tools for Te
hnology Transfer (STTT),2(4), April 2000.8. Gerard J. Holzmann. Design and Validation of Computer Proto
ols. Prenti
e HallSoftware Series, http://
m.bell-labs.
om/
m/
s/what/spin, 1991.9. ITU-T. Re
ommendation Z.100. Spe
i�
ation and Des
ription Language (SDL). Te
h-ni
al Report Z-100, International Tele
ommuni
ation Union { Standardization Se
tor,Gen�eve, November 1999.



10. T. J�eron and P. Morel. Test Generation Derived from Model Che
king. In N. Halbwa
hsand D. Peled, editors, Pro
eedings of CAV'99 (Trento, Italy), volume 1633 of LNCS,pages 108{122. Springer, July 1999.11. OMG. Uni�ed Modeling Language Spe
i�
ation. Te
hni
al Report OMG UML v1.3 {ad/99-06-09, Obje
t Management Group, June 1999.12. Stuart Swan. An Introdu
tion to System-Level Modeling in System
 2.0. Te
hni
alreport, Open SystemC Initiative, 2001.


