
IF-2.0: A Validation Environment forComponent-Based Real-Time Systems?
Marius Bozga, Susanne Graf, and Laurent MounierVERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eres

1 IntrodutionIt is widely reognised that the automated validation of omplex systems annot beahieved without tool integration. The development of the IF-1.0 toolbox [3℄ wasinitiated several years ago, in order to provide an open validation platform for timedasynhronous systems (suh as teleommuniation protools or distributed applia-tions, in general). The toolbox was built upon an intermediate representation lan-guage based on extended timed automata. In partiular, this representation allowedus to study the semantis of real-time primitives for asynhronous systems. Cur-rently, the toolbox ontains dediated tools on the intermediate language (suh asompilers, stati analysers and model-hekers) as well as front-ends to various spe-i�ation languages and validation tools (aademi and ommerial ones). Among thedediated tools, we foused on stati analysis (suh as sliing and abstration) whihare mandatory for an automated validation of omplex systems. Finally, the toolboxwas suessfully used on several ase studies, the most relevant ones being presentedin [4℄.Despite the interest of this toolbox on spei� appliations, it appears that someof the initial design hoies, whih were made to obtain a maximal eÆieny, aresometimes too restritive. In partiular they may prevent its appliability to a widerontext:{ the stati nature of the intermediate representation prevents the analysis of dy-nami systems. More exatly, primitive operations like objet (or thread) reationand destrution, whih are widely and naturally used both in spei�ation for-malisms like UML or programming languages like Java, were not supported.{ the arhiteture of the exploration engine allowed only the exploration of pureIF-1.0 spei�ations. This is too restritive for omplex system spei�ationswhih mix formal desriptions and exeutable ode (e.g, for omponents alreadyimplemented and tested).This situation motivated the extension of the IF-1.0 intermediate representation and,in turn, to re-onsider the arhiteture of the exploration engine. Some of the lan-guage extensions are derived from existing spei�ation formalisms (UML [11℄ and? This work was supported in part by the European Commission FET projets ADVANCE,ontrat No IST-1999-29082 and AGEDIS, ontrat No IST-1999-20218



SDL-2000 [9℄) and objet oriented programming languages (like Java). Conerningthe exploration engine arhiteture, the approah we followed is inuened both bytraditional model-hekers suh as Spin [8℄ or Open/Caesar [5℄ and more reent run-time validation tools suh as Verisoft [6℄, Java PathFinder [7℄ or SystemC [12℄. Theoriginality of this arhiteture is to preserve exhaustive exploration apabilities whilesupporting heterogeneous spei�ations (with external ode invoations and dynamiobjet reations). These extensions are desribed in more details in the following se-tions, together with some running experiments and perspetives.
2 Dynami Extended AutomataThe formal basis for the IF-2.0 intermediate representation is a dynami version ofextended timed automata.We fous on systems omposed of several omponents (alled proesses), running inparallel and interating through message-passing, either via ommuniation hannels(alled signalroutes), or by diret addressing. The number of proesses and signal-routes may hange over time: they may be reated and deleted dynamially, duringthe lifetime of the system.Eah proess is desribed by an extended timed automaton. It has a unique proessidenti�er (pid) value, a loal memory onsisting of variables (inluding loks), on-trol states and a queue of pending messages (reeived and not yet onsumed). Asusually, proesses move from one ontrol state to another by exeuting transitions,whih are triggered by messages in the input queue and/or some (possibly timed)guards. Transition bodies are sequential programs onsisting of elementary ations(like variable or lok assignments, message sending, proess reation/destrution,external ode invoation, et) strutured using elementary ontrol-ow statements(like if-then-else, while-do, et). Control states may be nested (as in stateharts) inorder to fatorize ommon behaviour and obtain modular automata desriptions.Signalroutes are speialised ommuniation media that transport messages betweenproesses. The behaviour of the signalroute is de�ned by its storing poliy (FIFO ormultiset), its delivery poliy (peer to peer, uniast or multiast), its delaying poliy(\zero delay", \delay" or \rate") and �nally its reliability (reliable or lossy).The semantis of the extended automata model is de�ned by the graph of its ex-eutions 1. This graph is obtained by the interleaved exeution of proesses, whereproess transitions de�ne atomi non-interruptive exeution steps.The semantis of time is similar to the one of timed automata: time progresses instates (i.e, all running proesses wait in some state before seleting and exeutingsome transition) and transitions take zero time to be exeuted. In order to ontrolthe time progress, or equivalently, the waiting time in states, we rely on transitionurgenies [2℄ { expliit deadlines eager, lazy or delayable attahed to transitions de�n-ing when they must be exeuted. More preisely, eager transitions must be exeutedas soon as they are enabled and waiting is not allowed; lazy transitions are never1 For pure IF-2.0 spei�ations there exists also a formal operational semantis, however,for spei�ations using external ode we rely on runtime exeution results.



urgent, that is, when a lazy transition is enabled the transition may be exeuted or,alternatively, the proess may wait without any restrition; �nally, when a delayabletransition is enabled, waiting is allowed as long as time progress does not disable it.Example 1. Consider a multi-threaded server whih an handle at most N simulta-neous requests. Thus, if possible, for a request message (reeived from the envi-ronment) a thread is reated. The server keeps in the th variable the number ofrunning threads. Thread proesses are quite simple: one reated, they work, andwhen �nished they send a done message bak to the server. These messages are de-layed through a unique signalroute s (those address is passed as a parameter whenreating a thread proess).signalroute s(1) #delay[1,2℄from thread to serverwith done;proess server(1);var th integer;state idle #start ;deadline lazy;provided th < N;input request();fork thread(self, s0);task th := th + 1;nextstate idle;deadline eager;input done();

task th := th - 1;nextstate idle;endstate;endproess;proess thread(0);fpar parent pid, route pid;state init #start ;deadline lazy;informal "work";output done()via route to parent;stop;endstate;endproess;
3 State-spae explorationState-spae exploration is one of the suessful tehniques used for the analysis ofonurrent systems and also the ore omponent of any model-based validation tool(i.e, model-heker, test-generator, et). Nevertheless, exploration is far from beingtrivial for dynami systems that, in addition, use omplex data, involve various om-muniation mehanisms, mix several desription languages, and moreover, depend ontime onstraints. The solution we propose is an open, modular and extensible explo-ration platform designed to ope with the omplexity and the heterogeneity of atualonurrent systems.The IF-2.0 exploration platform relies on a lear separation between the individualbehaviour of proesses and proesses (i.e, memory update, transition �ring) and theoordination mehanisms between proesses (i.e, ommuniation, reation, destru-tion). More preisely, eah proess or signalroute is represented as an objet (in thesense of objet-oriented languages) that has an internal state and may have one ormore �reable (loal) transitions, depending on its urrent state. Time is also a spe-ialised proess dealing with the management of all (running) loks. Coordination isthen realised by a kind of proess manager: it sans the set of loal transitions, hoose



the �reable one(s) with respet to global (system) onstraints, ask the orrespondingproesses to exeute these transitions and update the global state aordingly.

test
generation

model
checking

executableformal
specifications code

instrumentationcompilation

process
behavior state−space

representationinter−process
coordination

exploration
engine

Fig. 1. Funtional view of IF-2.0 exploration platform.
This arhiteture provides the possibility to validate omplex heterogeneous systems.Exploration is not limited to IF-2.0 spei�ations: any kind of proesses may berun in parallel on the exploration platform as long as they implement the interfaerequired by the proess manager. It is indeed possible to use ode (either diretly, orinstrumented aordingly) of already implemented omponents, instead of extratingan intermediate model to be put into some global spei�ation.Another advantage of the arhiteture is the extensibility onerning oordinationprimitives and exploration strategies. Presently, the exploration platform supportsasynhronous (interleaved) exeution and asynhronous point-to-point ommunia-tion between proesses. Di�erent exeution modes, like synhronous or run-to-ompletion,or additional ommuniation mehanisms, suh as broadast or rendez-vous, simplyby extending the proess interfaes and the proess manager funtionality. Conern-ing the exploration strategies, redution heuristis suh as partial-order redutionor symmetry redution are urrently inorporated into the proess manager. Morespei� heuristis may be added depending on the appliation domain.
4 Ongoing work and perspetives
The IF-2.0 representation and the assoiated environment are urrently being used inseveral researh projets. As example, we mention AGEDIS (see http://www.agedis.de)where, in ooperation with IBM and IRISA we develop a testing environment for dis-tributed systems. In this projet, IF-2.0 plays a entral role, both as an (operational)



representation for system's behaviour (desribed in UML at the user level) and as anexploration engine used by a model-based test generator (an extension of TGV [10℄).In the near future we plan to upgrade the (most e�etive) stati analysis tehniques,already implemented for IF-1.0, to the new intermediate representation IF-2.0. Inpartiular, sliing and abstration tehniques are mandatory to keep tratable thestate-spae exploration. However, due to the dynami features of IF-2.0, some ofthese tehniques have to be revisited.Another perspetive is the integration of the sheduling framework of [1℄ in orderto improve the standard exeution modes provided by the exploration engine (e.g,asynhronous or synhronous). Based on dynami priorities, this sheduling frame-work is exible and general enough to ensure a �ne-grained ontrol of exeution ofreal-time systems, depending on various onstraints. This framework �ts also well inour exploration engine arhiteture. For instane, it is possible to extend the pro-ess manager with sheduling apabilities, in order to evaluate dynami priorities atrun-time and to restrit the set of �reable transitions aordingly.The IF-2.0 pakage an be downloaded at http://www-verimag.imag.fr/�asyn/IF/.
Referenes1. K. Altisen, G. G�ossler, and J. Sifakis. A methodology for the onstrution of sheduledsystems. In M. Joseph, editor, Proeedings of FTRTFT 2000, volume 1926 of LNCS,pages 106{120. Springer, September 2000.2. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgeny in Timed Systems. In Interna-tional Symposium: Compositionality - The Signi�ant Di�erene (Holstein, Germany),volume 1536 of LNCS. Springer, September 1997.3. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: AValidation Environment for Timed Asynhronous Systems. In E.A. Emerson and A.P.Sistla, editors, Proeedings of CAV'00 (Chiago, USA), volume 1855 of LNCS. Springer,July 2000.4. M. Bozga, S. Graf, and L. Mounier. Automated Validation of Distributed Softwareusing the IF Environment. In Workshop on Software Model-Cheking, volume 55. TCS,July 2001.5. H. Garavel. OPEN/C�SAR: An Open Software Arhiteture for Veri�ation, Simula-tion, and Testing. In B. Ste�en, editor, Proeedings of TACAS'98 (Lisbon, Portugal),volume 1384 of LNCS, pages 68{84. Springer, Marh 1998.6. P. Godefroid. VeriSoft: A Tool for the Automati Analysis of Conurrent ReativeSoftware (short paper). In Proeedings of CAV'97 (Haifa, Israel), volume 1254 of LNCS,pages 476{479. Springer, June 1997.7. K. Havelund and T. Pressburger. Model Cheking Java Programs Using JavaPathFinder. International Journal on Software Tools for Tehnology Transfer (STTT),2(4), April 2000.8. Gerard J. Holzmann. Design and Validation of Computer Protools. Prentie HallSoftware Series, http://m.bell-labs.om/m/s/what/spin, 1991.9. ITU-T. Reommendation Z.100. Spei�ation and Desription Language (SDL). Teh-nial Report Z-100, International Teleommuniation Union { Standardization Setor,Gen�eve, November 1999.



10. T. J�eron and P. Morel. Test Generation Derived from Model Cheking. In N. Halbwahsand D. Peled, editors, Proeedings of CAV'99 (Trento, Italy), volume 1633 of LNCS,pages 108{122. Springer, July 1999.11. OMG. Uni�ed Modeling Language Spei�ation. Tehnial Report OMG UML v1.3 {ad/99-06-09, Objet Management Group, June 1999.12. Stuart Swan. An Introdution to System-Level Modeling in System 2.0. Tehnialreport, Open SystemC Initiative, 2001.


