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Abstract. In this paper we propose some extensions necessary to enablethe speci�cation and description language SDL to become an appropriateformalism for the design of real-time and embedded systems. The extensionswe envisage concern both roles of SDL: First, in order to make SDL areal-time speci�cation language, allowing to correctly simulate and verifyreal-time speci�cations, we propose a set of annotations to express in a
exible way assumptions and assertions on timing issues such as executiondurations, communication delays, or periodicity of external inputs. Second,in order to make SDL a real-time design language, several useful real-timeprogramming concepts are missing. In particular we propose to extend thebasic SDL timer mechanism by introducing new primitives such as cyclictimers, interruptive timers, and access to timer value. All these extensionsrelies on a clear and powerful time semantics for SDL, which extends thecurrent one, and which is based on timed automata with urgencies.Keywords: SDL, time semantics, timed automata, urgencies.
1 IntroductionThe ITU{T Speci�cation and Description Language (SDL, [10]) is increasinglyused in the development of real-time and embedded systems. For example manyrecent telecommunication protocols (such as Rmtp-II [18] or Pgm [17]) integratesuch real-time features in their architecture, and these non-functional aspects areessential in the expected behaviour of the application. This kind of systems imposesparticular constraints on the development language, and SDL is a suitable choice inmany respects: it is formal, it is supported by powerful development environmentsintegrating advanced facilities (like simulation, model checking, test generation, codegeneration, etc.), and thus it can cover several phases of the software development,ranging from analysis to implementation and on-target deployment.It appears however that several important needs for a real-time systems developerare not covered by SDL. These problems range from pure programming issues, likethe lack of useful primitives commonly available in real-time operating systems, tospeci�cation issues, like the di�culty to describe in a appropriate way the assump-tions under which the system is supposed to be executed. Clearly, the needs are not? This work is supported by the Interval IST-11557 European project on timed exten-sions for sdl, msc and ttcn.



the same for both uses of the language, and, in many cases, the programming sidehas been given priority in the supporting tools to the detriment of the speci�cationside.Several proposals already exist to extend SDL with real-time features. We canmention for example the work carried out on performance evaluation [8, 13, 15, 12],on schedulability analysis [4], or on real-time requirements [11]. In this paper weare more concerned with the use of SDL as a speci�cation language for real-timesystems and its application for formal validation. In particular, one of the importantquestions we address is what kind of real-time features should be modeled in SDLand at which level of abstraction.The simplest use of time which is frequent in communication protocols, is the useof timeouts (whose value is often meaningless) in order to avoid in�nite waiting.The time semantics of SDL, together with the fact that timeouts are noti�ed viaa signal in the message queue of the process, corresponds exactly to this use: noguarantee can be given when the signal arrives and is dealt with, but it is aftersome �nite time. Nevertheless, when SDL is used as a programming language, it isoften done with much more restricted assumptions on the possible time behaviourin mind, and, if they are correct, the implemented system will behave as expected.As such assumptions are not (and cannot be) expressed explicitly, the speci�cationcannot be validated: the veri�cation using the standard SDL time progress mayinvalidate even apparently time independent safety properties.A typical workaround used for obtaining a convenient result at simulation timeconsists in using on one hand timers to force minimal waiting, and, on the otherhand, a very restricted interpretation of time progress, allowing it only when thesystem is not active. This \synchrony hypothesis" is in general as unrealistic asthe standard semantics. The right assumption would be that certain tasks will beexecuted timely, whereas for others this cannot be guaranteed and the correctnessof the system must be veri�ed even if they take longer than expected.The solution we propose to reconciliate these two extreme choices relies on a more
exible time semantics for SDL, based on timed automata with urgencies [5]. Inparticular, urgencies give a very abstract means to express assumptions on theenvironment and on the underlying execution system, such as action durations,communication delays, or time constraints on external inputs. From the user pointof view, all these \non functional" extensions are o�ered in a uniform way by meansof annotations on the SDL speci�cation.The propositions presented in this paper are the results of the Interval IST projectand preliminary work of its partners. The aim of Interval is to take into accountreal-time requirements during the whole development process of real-time systemsand to de�ne consistent extensions to the languages SDL, MSC and TTCN.The remainder of the paper is organized as follows: in section 2, we give an overviewon the problems occurring when using SDL for real-time systems, concerning bothprogramming and speci�cation aspects, in section 3 we propose extensions allowingto improve SDL as a real-time speci�cation language and in section 4 we proposenecessary programming concepts. All new concepts are illustrated by examples illus-



trating their use and proposed syntax. Finally, in section 5 we draw some conclusionsand give some perspectives.
2 Real-time SDL: what is missing?SDL has the double aim of being on one hand a high-level speci�cation formalism,meaning that it must abstract from certain implementation details, and on the otherhand a programming formalism from which direct code generation is possible. Thesetwo roles of the language seem sometimes con
icting, as the needs at the di�erentlevels are not the same in general.It is important that SDL can fully play this double role of being an implementationand a speci�cation language, and all information needed for both uses of SDL mustbe expressible, but also in such a way that these two concerns are clearly separated.This feature is particularly crucial when dealing with real-time systems, in whichnon-functional elements need to be taken into account even in the early stages ofthe design.We summarize here the main di�culties currently arising when trying to use SDLfor the design and validation of real-time systems.
2.1 Real-time semanticsFirst of all, the semantics of SDL, as presented in Z.100, is very abstract in thesense that it allows to make no assumptions on time progress: actions take an inde-terminate amount of time to be executed, and a process may stay an indeterminateamount of time in the current state before taking one of the next �reable transi-tions. This notion of time that is external, unrelated to the SDL system, is realisticfor code generation, in the sense that any actual implementation of the system con-forms to this abstract semantics. However, for simulation and veri�cation, this totalabsence of controllability of time is not satisfactory: timer extents do not have anysigni�cance besides de�ning minimal bounds, any timer that gets in a queue maystay there for any amount of time, with the consequence that hardly any real-timeproperty holds on models based on this abstract semantics.A simulator that would use the semantics of time as described in Z.100, wouldnot be able to make any assumption on the way time progresses, and thereforemany unrealistic executions will be present in the resulting graph. As a result, thesimulator would not guarantee elementary properties like when a timer expires, itwill be consumed by the concerned process in a reasonable amount of time (whateverthe notion of reasonable is). Even worse, according to some previous version of Z.100,when two timers are set on the same transition (for example as two consecutiveassignments), the timer with the lower delay is not always consumed �rst.In practice, existing simulation and veri�cation tools have foreseen means for limitedcontrol over time progress. However, the control over time they propose is in generalquite limited and moreover these annotations are tool dependent whereas they aretotally part of the speci�cation in the sense that they describe assumptions on the



system environment. The fact that designers and design languages neglect a cleardescription of relevant properties of the environment in which the system should beexecuted, is a frequent source of errors.
2.2 How to note non-functional aspects?The development of a complex real-time protocol usually needs to consider severalpreliminary stages, during which some abstract or incomplete descriptions are pro-duced. In order to properly validate (and document) these early designs, generalassumptions on both the \environment" of the system and on its \non-functional"aspects have to be taken into account. For example, such assumptions concern:{ the expected duration of some internal task (which might be either informal orfully speci�ed),{ the periodicity of some inputs triggered by the environment,{ or even the expected behaviour of the communication channels used within thesystem (these channels may be reliable or not, assumptions may be made oncommunication times, etc.).Of course, some of these assumptions can already be partly included in the speci�-cation, either directly in SDL (e.g., using timers for explicit waiting) or using someseparate formalisms o�ered by the veri�cation tools (like the Goal language [2]proposed in ObjectGeode to specify external observers). However, none of these twosolutions is satisfactory: the �rst one leads to a speci�cation in which external andnon-functional assumptions do not appear as such, and this is obviously not desir-able for code generation (these timers need not to be implemented), whereas thesecond one is restricted to a particular tool. Our objective is to provide a moresuitable framework, based on standardized annotations on SDL speci�cations andcompatible with the real-time semantics we propose.
2.3 High level synchronisations and other real-time primitivesClearly, SDL has several characteristics that are attractive for real-time system de-signers: asynchronous communication is a �rst class language feature, a speci�cationis organized in a logical hierarchy that can be mapped in many ways to di�erentphysical con�gurations of software modules (and SDL code generators usually pro-vide this feature), external code may be called from SDL, making it possible to usesystem libraries directly in SDL.Several synchronisation mechanisms that are commonly employed in real-time sys-tems should be usable as concept at the SDL level. In particular, SDL timers arerather limited: the only available primitives are set and reset operations, the ac-tive function (which allows to determine if a given timer is running or not), andtimeouts are always transmitted in the form of signals in the input bu�er of theprocess.



2.4 Deployment informationZ.100 asserts that the agents composing a system are executed truly in parallel. Inthe context of the very weak time semantics of SDL (only minimal waiting time canbe enforced, and any action or message transmission takes either zero or an arbitraryamount of time), this simplifying assumption is possible, because any mapping ona set of processors and any notion of atomicity will lead to the same functionalbehaviour, and any time behaviour is included in the semantics.However, the introduction of a more precise notion of time introduces also globalconstraints, so that di�erent degrees of atomicity or di�erent mappings on processorswill lead to di�erent time behaviours, and | if the functional behaviour depends onreal-time constraints | even to di�erent functional behaviours. An obvious exampleis the fact that, if a set of processes are executed interleaved, their execution timesmust be added, whereas if they are truly parallel the global execution time will bethe maximum of the individual execution times.One must obviously be very careful by trying to make assertions on global executiontimes using no or very abstract assumptions on the architecture on which the systemis executed. However, it is not always necessary to introduce much knowledge aboutthe architecture:{ First of all, there exist time dependent properties which are not architecturedependent: for example, often the safety of a protocol may depend on the relativevalues of a set of timers, the expiration of which are used as implicit signalbetween processes. This is a common use of timers which cannot be expressedin the present SDL time semantics and still does not need any architectureindication.{ In a system where time is consumed either in communications or in requeststo external systems (like a distant data base or anywhere else in the environ-ment), the execution times will not depend on the mapping of processes onprocessors whenever the execution time of all activities consuming a negligibleamount of time can be safely simpli�ed to zero. Also in the case where time isconsumed within the system, but within a single process per processor, analysisof execution time is still possible in the same way.{ In the case where time is consumed in several parts of the system, it would besu�cient to indicate which parts of the system are executed in parallel and whichones are not. The distinction between block agents, process agents and sub-agentgives some limited possibility to indicate such an architectural information.Going one step further, scheduling policies also can in
uence the properties of thesystem in critical hard real-time systems. Moreover, there exists important advancesin the synthesis of schedulers [3], where scheduling policies are expressed mainly interms of dynamic priorities.
3 Extending speci�cation aspectsAs we mentioned above, what is missing in SDL to improve real-time systemsspeci�cation is both a 
exible time semantics together with more facilities to express



some \non functional" parts of the system or its environment. Our proposal is tosolve these two problems uniformly { from the user point of view { by o�ering thepossibility to annotate the speci�cation in a standardized way. In particular, wepropose to distinguish between two types of annotations:{ assumptions, which express a priori knowledge or hypotheses about the en-vironment or the underlying execution system (system architecture, schedulingpolicy, etc). The use of assumptions is twofold: �rst, they might be necessary forthe veri�cation of properties which do not hold otherwise. Second, they mightbe used for code generation, both to guide some implementation choices or toadd speci�c code in order to check their correctness at run-time or during thetest phase.{ assertions, which express expected (local) properties on the system components.Such properties have to be proved on the speci�cation, during the veri�cationphase, possibly taking into account some of the assumptions.The annotations we propose concern respectively, control over time progress bymeans of urgencies, durations and periodicity of actions, and 
exible channel spec-i�cations.3.1 UrgenciesA very abstract { and still very powerful { manner for making realistic assumptionson the time environment of a system is by means of transitions urgencies [5]: atransition is \urgent" if it is enabled and will be taken or disabled before timeprogresses. Three types of urgency assumptions (eager, lazy and delayable) areenough to control the progress of time with respect to the progress of the system:{ eager transitions are urgent as soon as they are enabled: they are assumed tobe executed \as soon as possible"; in a simulation state time does not progressas long as there are enabled eager transitions.{ lazy transitions are never urgent: enabled lazy transitions do not inhibit timeprogress in any simulation state.{ delayable transitions are a combination of eager and lazy transitions: theybecome urgent when time progress disables them. They are supposed to beexecuted within some interval of time in which they are enabled. A delayabletransition usually has an enabling condition depending on time, such as now �x or now� x � y (where x and y are numerical values) and time may progressin all simulation state in which this transition is enabled as long as now � x (ornow�x � y). When the extreme point of the interval is reached the transitionbecomes urgent.Notice that the attribute \delayable" is not primitive: a delayable transitionwith a guard now < x (for instance) can always been replaced by two transi-tions, a lazy one with the same guard and an eager one with guard now = x.In particular, in SDL speci�cations in which explicit time guards (others thantimeouts) are not used, explicit delayable transitions are not useful. However,whenever a task or a communication is assumed to take some time speci�ed byan interval this is expressed by a delayable transition in the semantics model.



Expressed in terms of urgencies, the semantics of time in Z-100 considers all transi-tions as lazy: time progress is not constraint at all, whatever transitions are enabled.Nevertheless, most SDL tools implement an eager semantics: transitions are �redas soon as they are enabled without letting time progress. It appears in practicethat none of these two extreme interpretations of time progress in isolation allowsto obtain satisfactory models of real-time systems. It is often appropriate to mixthese two extreme views of time progress:{ one would like to consider some of the inputs as lazy (which is the standardpoint of view). When such a transition is enabled, the system can choose to reactimmediately or to wait. In the case of an external input laziness denotes theabsence of knowledge about the possible arrival time of the input; for internalinputs laziness can be used to interpret internal action durations or internalpropagation delays as unconstraint or unknown.{ On the other hand, one would like to consider some of the inputs as eager toexpress that the system cannot ignore them when they are enabled and mustreact immediately without waiting. This can be used to guarantee an immediateresponse to critical events such as timeout expirations or other prioritary inputs.Some care must be taken here since one can easily write system speci�cations inwhich time is blocked \forever" because at least one eager transition is alwaysenabled (this is called a Zeno behaviour). This is particularly problematic whenall transitions are assumed eager.Default choices, depending on the type of the system and on the type of transitions,can be envisaged in order to provide an user-friendly way of specifying how urgenciesare associated with system transitions.
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Fig. 1. Urgency assumptions - an example.



Example 1. A generic situation is presented in Figure 1. The informal action openmust be executed in the interval de�ned by timers t early and t late, as soon as theexternal signal open is received. Thus, if the open signal arrives too early, it must besaved; if it does not arrive in time, the action is executed anyway at the expirationdate of t late. In order to obtain a realistic time behaviour of such a system, timeoutconsumptions have to be considered as eager: the action open is assumed to beexecuted at time t late at latest. In order to specify all possible behaviours, the(external) open signal input must be considered as lazy. Considering it as eagerprevents the timer t late to expire since this transition is always enabled in statewait (in absence of an environment process that sends only a limited amount ofopen signals). In the case where the open signal is sent from within the system, theconsuming transition might be considered as eager (meaning that one can assumethat it will be executed as soon as possible within its allowance interval) and onemay want to verify if the signal arrives always in the given interval depending onthe time constraints of the other parts of the system.
Timer semantics Timers are the most used primitive to observe the time progress.The semantics of timer expirations has been revisited in the last version of Z.100.The behaviour of a timer, can be sketched by the automaton given in Figure 2.Basically, it switches between inactive and active states depending on the set andreset actions performed on it. When active, once the expiration time is reached, itwill expire and the timeout signal becomes available to the corresponding processinstance. Previous version of Z.100 considered this expire transition as lazy, whichmeans that one cannot make any assumption on the maximal time elapsed since itslast setting. In other words, nothing can prevent the automaton from remaining inthe running state after the expiration time.
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Fig. 2. Timer behaviour.
The current semantics introduces a more reliable timer concept ensuring the avail-ability of the timeout signals exactly at expiration time. This can be done simplyby considering the implicit expiration transition as eager. Note that this cannot becaptured by the urgency annotation described before since it relies on an implicitsemantic choice which cannot be explicited at the speci�cation level. Also, this is



not too restrictive: it still allows the situation in which the timeout is really con-sumed at a later point of time as the consumption time depends on the urgency ofthe consuming transition.Example 2. A second generic process is illustrated in Figure 3. The informal actionsaction 1, action 2, action 3must be executed precisely at moments, respectively T0-d1, T0-d2, T0-d3, where T0 is given as parameter to the process. Let us assume�rst that the informal actions correspond to external commands which need justto be initiated by the process e.g, actioning some external devices. That means itis reasonable to assume that the process is essentially idle, wiating for the timerexpiration, and reacts imediately. Unfortunately, even if the SDL description ofthe process seems intuitive and concise, based on the standard semantics of SDL,no assumption can be made about the time at which the actions will be executed.Considering the timeout transitions as lazy, the actions are executed not earlierthan the required moment. The eagerness of the timeout consumption transitionsexpresses the assumption that actions are executed at the moment at which thetimer expirations are available.
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Fig. 3. Timeout urgencies - an example.
3.2 DurationsSDL does not foresee the possibility to impose or to assume any quantitative re-striction on the duration that an action may take to be executed or how long aprocess may stay idle in a state before executing one of the enabled actions. Also,concerning the amount of time that a signal may need to travel through a channel,only two cases can be distinguished: either 0 time or an arbitrary amount of time.Nevertheless, in real-time designs, such execution times may not only in
uence theperformance, but also the functional behaviour of the system.



Currently, it is possible in SDL to describe minimal and maximal durations bymeans of explicit waiting using timeouts and a notion of \invalid state" to mark theexecutions taking more than the maximal execution time as \uninteresting". Thisis used frequently in SDL speci�cations, but it is a bad solution as it is cumbersomeand it uses a programming construct in order to indicate assumptions about theenvironment. Such a speci�cation can not be used directly for (automatic) codegeneration, since it is di�cult to detect the nature of these timeouts.We suggest to explicitly indicate such durations using prede�ned annotations. Forinstance, we propose to use either interval constraints (e.g. delay=[9.0,11.0]) ormean-values plus jitter (e.g., delay=[10.0�5%]) attached to the corresponding ac-tion or channel.Moreover, such annotations could be enriched with probability laws. This extensionis mandatory for performance evaluation, but still not su�cient, as we also need amodel of available computation resources. Note that from a functional veri�cationpoint of view probabilities are not necessary since all the behaviours have to beanalyzed independently of their probability: veri�cation wants to ensure absence oferrors and not just \low probability" of them.
3.3 PeriodicityMany telecommunication applications are expected to cope with large streams ofdata arriving with high and continuous rates (e.g, multimedia services). In practice,components of such applications are designed to �t in particular environments, ableto deliver multiple inputs at given frequencies.Therefore, periodicity of inputs tends to be an important feature that has to beexpressed at the speci�cation level. Similar to duration, we propose to annotateexternal inputs with interval constraints (or mean-values plus jitter) describing theexpected period (where applicable). Such annotations are not only mandatory forveri�cation but they also clearly improve the readability of the speci�cation sincethey allow to describe in a synthetic manner the relevant characteristics of theassumed environment.Example 3. A typical producer/consumer system is illustrated in Figure 4. Theproducer reacts to external request signals and sends data signals to the consumer.When the consumer receives data, it sends an acknowledgment back to the producer.Several annotations are used here. First, we assume that request signals come fromthe environment at the given rate of one signal every 10 or 11 time units. Also,both data production and consumption times are supposed to be not negligible, theformer being between 5 and 7 and the second between 4 and 5 time units.Notice that, on the contrary to any description using timers or the global time now,here it is obvious to see that a production cycle can be greater than the period ofrequest signals. This may be considered as problematic, as there exist scenarios inwhich the request signals accumulate inde�nitely in the input queue of the producer.At this point, the use of probabilities may become important to decide if the designis acceptable or not.
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Fig. 4. Delay and periodicity assumptions.
3.4 Flexible channel speci�cationsIn SDL, only reliable FIFO channels exist as primitive concept. In its use as aspeci�cation language, however, a channel is often considered to be part of theenvironment of the implemented system and may represent an abstraction of awhole network. Many protocols are supposed to implement reliable communicationthrough unreliable channels or networks. For veri�cation it is therefore necessary toconsider the situations where channels lose or reorder messages.Thus, by 
exible channel speci�cation we mean typically that messages can be lost,reordered or delayed to some extent, leading to a well-de�ned set of channel types.It is possible to describe any of these channel types by means of additional SDLprocesses, but it is not necessarily desirable to do so, for several reasons. First of all,these processes serve only for simulation and not for implementation. Also, in some(rare) cases it may be problematic as the transported signals do not carry the pidof the original sender anymore. Finally, the fact to have a prede�ned set of channelattributes is an advantage for simulation and veri�cation tools as this knowledge canbe directly exploited by appropriate techniques and lead to more e�cient algorithms(notice for example that an interesting set of properties is decidable for �nite statemachines communicating through lossy channels whereas they are undecidable incase of communication through reliable channels [1]).We propose annotations on channels allowing to specify a propagation delay in asimilar way as execution times and distinguish between fully reliable (which neverlose messages) and unreliable channels (where arbitrary losses are possible), andbetween ordered and unordered ones. Here again, for performance evaluation pur-poses, it is possible to extend these annotations to include a probability law whichspeci�es a distribution of message losses or a degree of reordering.Example 4. Figure 5 gives an example of use of annotations to denote propagationdelays and reliability of channels. Notice that the default option for a channel is tobe ordered and reliable in conformance to the standard SDL semantics.
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4 Extending programming aspectsWe make here two concrete proposals to improve SDL as a programming languagefor real-time systems. These proposals concern respectively the extension of thetimer concept and the introduction of standardized packages to provide at the SDLlevel useful synchronization and atomicity primitives.
4.1 Extension of timer conceptsTimers play a central role in SDL to control and observe time progress. They arehowever limited with respect to what is commonly o�ered in real-time systems, andwe propose to extend them in several directions.Interruptive timers and signals SDL timeouts are always received in the form ofasynchronous signals. For general-purpose time dependent code this is usually �ne,but it is di�cult to write real emergency procedures using asynchronous timeouts.To ensure that a piece of code is executed immediately, or in a speci�ed interval,after the expiration of a timeout, the SDL designer must �rst make sure thatthe corresponding agent (process) is idle when the timeout message is received,otherwise, the agent may consume the timeout message from the input queue onlywhen it �nishes its current job, which may be too late. This obliges to arti�ciallyrestructure the system, whereas in the implementation this task can be left forimplementation where it even may be useless because of the existence of interrupts.Therefore, SDL needs a notion of emergency timer, whose expiration is taken intoaccount immediately by the receiving agent. Emergency actions which interrupt thenormal execution of an agent were already introduced in sdl-2000 with the adventof exceptions. What we need is an extension of this exception mechanism to betriggerable by system time.We propose to de�ne interruptive timers using an optional attribute (called in-terruptive). The behaviour of interruptive timers will rely on an extension of theexception mechanism already existing in SDL. More precisely, when an interruptivetimer expires, instead of sending a timeout signal via the input port of the process,it will raise a timeout-exception in the concerned process. The handling of this ex-ception is left to the user. However, special care is required to clarify what happens



if an interruptive timer wants to interrupt a transition which is required atomic.In particular, when an interruptive timer expires in a service, while another service(within the same process) is running and executes a time-consuming job.Example 5. In Figure 6 we illustrate the use of an interruptive timer. When set,it receives as parameter the maximal allowed execution time T. Then, the processenters a loop executing some time-consuming job \decode". Two cases are possible:either the entire job is �nished in time, or the maximally allowed time is reachedbefore, when the process is processing a \decode". In the second case, an interruptivetimer alarm is needed in order to break the normal execution 
ow, i.e, to abort theexecution of decode and to stop the process immediately.Note that for sake of readability we use the same notation for normal timeoutsand interruptive timeouts. Nevertheless, the meaning is quite di�erent: whereas theformer denotes a normal SDL transition from a state, the latter is a shorthandnotation for an exception handling at this state (and implicitly in all implicit statesand actions within the state scope).
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Timer consultation The second extension we propose concerns the ability to consultthe expiration time (which is of prede�ned sort Time) assigned to a timer. In orderto do so, our proposal is simply to add a prede�ned value operator on timers(similar to the existing active construct).Such a primitive reduces the current distinction made in SDL between timers andother variables. In particular, the value of the timer can be passed via communi-



cation signals from a process to another, used to compute the remaining durationuntil its expiration, or used to set another timer depending on it, etc.Obviously, the same result can be obtained using variables of sort Time instead of{ or in addition to { timers. But the use of an explicit timer concept (with a setof well de�ned primitives) makes the speci�cation more readable and the mappinginto an implementation easier.Cyclic timers Finally, the third extension concerns cyclic timers. The idea is toeliminate the current limitation in SDL, where timers are one-shot and have tobe explicitly reset in order to model a periodic behaviour. This could be doneby simply considering an optional timer attribute (called cyclic) which �xes thenature of the timer at its declaration. When a cyclic timer is explicitly set in thespeci�cation, its period is computed (by subtracting the value of now from theexpiration time). After that, at the expiration time (when the corresponding timeoutsignal is sent) this timer will be implicitly set again using the period and the valueof now at expiration. This will continue until either an explicit reset or set occurs(the later restarts the whole behaviour, possibly with a new period). Finally, notethat interruptive and cyclic attributes can be safely combined (i.e., the same timercan be both cyclic and interruptive).
4.2 AtomicityThere are no atomicity and synchronization primitives foreseen in SDL, the ideabeing that these are implementation details which should not be mentioned at SDLlevel. The fact is that in implementation oriented SDL descriptions, they are nec-essary and several SDL users have expressed the need for native SDL constructsfor synchronization [9], especially to achieve atomicity and mutual exclusion. Thereason is that such constructs are often used in the speci�cation and the implemen-tation of real-time systems such as those developed with SDL.The current practice in SDL is to use calls to external code (e.g. calls to OS primi-tives) in order to achieve these functionalities. This approach has at least the follow-ing obvious inconvenients: the SDL speci�cation, which is supposed to be high-level,becomes unnecessary con�guration and platform dependent, and the external codecannot be handled properly by simulation and veri�cation tools.The need stated above can be addressed without making �rst-order extensions toSDL. Synchronisation behaviour can be expressed in terms of existing primitivesof SDL, such as asynchronous signal exchange and remote procedures. We proposethe use of (standard) libraries for this purpose, as it is the case for other languages.Example 6. For example, a semaphore may be speci�ed in SDL as a process typeexporting two (empty) procedures P and V, implementing the usual operations onsemaphores. The speci�cation of such a semaphore type is shown in �gure 7. Theonly prerequisite for this implementation to work is that the atomicity of P and Vare preserved for a same instance of semaphore. This prerequisite is ensured by theexecution semantics of SDL. Moreover, concurrent wait operations P which arrive



after the semaphore is already blocked on a wait are implicitly sequentialized bythe save operation from the busy state.
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Fig. 7. Semaphore example.
5 Conclusion and perspectivesWe have de�ned a number of real-time extensions of SDL in order to obtain aspeci�cation and modeling language really adequate for real-time systems basedon general ideas and re
ections we have proposed in [7]. The proposed extensionsinclude:{ a more 
exible time-progress semantics for SDL, including as particular casesboth the time progress semantics of Z100 and the time-progress semantics usedin veri�cation tools;{ powerful and 
exible annotations allowing to express non-functional aspects:both very abstract ones necessary at an early design stage, and concrete onesuseful for code generation, code annotation and performance analysis;{ some primitives which allow to make speci�cations simpler, easier to understand,and to better separate the implementation oriented and speci�cation orientedfeatures;{ implementation oriented features like emergency timeouts which are mandatoryfor the use of SDL as a real-time modeling language.These extensions have been submitted as a �rst draft to the ITU-T (Study Group10) within the framework of Question 7 Time expressiveness and performance an-notations on ITU-T modeling languages. All these extensions are based on a uni�edand sound semantic framework which can be integrated smoothly into the existingsemantics of SDL in which time progress is mainly \unconstraint". In particular,



almost all of them require only local restrictions of the current non-deterministictime semantics.We have already started to extend existing SDL tools in order to deal with theseextensions and they already proved their usefulness in real applications. We haveimplemented a translation of SDL with our proposed time extensions into com-municating timed automata with urgencies which are the input language of the IFtoolset [6]. IF has been developed at VERIMAG for the purpose of prototypingtimed extensions of SDL-like languages. In particular, it includes a model-checkerbased on the Kronos-tool [19] allowing to verify quantitative time requirements.In addition, the proposed timed extensions have been implemented also in theObjectGeode simulator [14]. For both tools we obtain good results, both in what wecan express and in what analysis we can perform on annotated models. As an ex-ample, we are currently modeling real-time multicast protocols [17, 18] using theseannotations.The main approaches which need to be compared with ours are QSDL[8, 13] andUML related real time extensions (such as UML-RT[16]). QSDL (Queuing SDL)is a performance analysis oriented extension of SDL using a resource mapping andannotations of tasks in terms of \computation power" from which execution andwaiting times are computed depending on some scheduling policy which can be userde�ned. The underlying semantics considers all non annotated transitions as takingzero time and all transitions are considered urgent, respectively delayable if theymay take variable amount of time. In so far, this framework is compatible with ours,but is exclusively performance analysis oriented.The foreseen real-time extensions of UML are all of a very syntactic nature. It is notclear if there will be a semantic time model at all. However, it is interesting to notethat non-functional annotations concerning Quality of Service (such as through-put of channels, execution times,...) are planned and can take likewise the form ofrequirements and assumptions.The proposed extensions are not completely satisfactory from the user point of view.More extensions may well appear to be useful. In particular, there is a strong needfor an expressive notion of deployment diagram, allowing to de�ne the mappingof processes to resources, scheduling policies and QoS annotations. The proposedannotations on the SDL level will then have 3 di�erent sources: some of them maybe user de�ned, especially at an early design stage; some of them will be generatedfrom information extracted from such a deployment diagram (which goes far beyondthe resource mapping of the QSDL proposal); �nally, some will be obtained fromanalysis results of other parts of the system, especially in a compositional veri�cationapproach, which is the only one able to deal with large speci�cations.
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