
SDL for Real-Time: What Is Missing?1
Marius Bozga, Susanne Graf Alain Kerbrat Daniel VincentLaurent Mounier Iulian OberVerimag, Grenoble Telelogic, Toulouse France Telecom

1 IntroductionThe ITU{T Speci�cation and Description Language (SDL, [1]) is increasingly used in the develop-ment of real-time and embedded systems. This kind of systems impose particular demands on thedevelopment language and SDL is a suitable choice in many respects: it is formal, it is supported bypowerful development environments integrating advanced facilities (like simulation, model checking,test generation, auto-coding), and it supports many phases of software development ranging fromanalysis to implementation and on-target deployment.In this paper we review the needs of a real-time systems developer that are not covered, for variousreasons, by SDL. The issues that we examine are heterogeneous, ranging from pure programmingissues, like the di�culty to specify real timeout emergency procedures in SDL, or the di�culty toprogram atomic transactions, to high-level modeling issues, like the di�culty to model time non-deterministic system components, or the impossibility to use the standard formal semantics of SDLin simulation and veri�cation. For most issues we strain to give solutions, although sometimes thisonly means that we favor one alternative among a set of incompatible, equally justi�ed choices.We propose a di�erent semantic setting for time in SDL, that allows a exible speci�cation oftiming requirements and timing knowledge about the system. With our proposal one can capture verygeneral forms of conditions on the duration of actions or the duration between two events. We disposeof analysis methods that work on top of this semantic framework, and by which we can verify generaltiming properties of a SDL system, such as the minimal/maximal time between two particular events.We show on a small example how our semantic setting may be used as the basis for other methods([9, 14]) of introducing timing properties in a SDL system, methods that are closer to the abstractionlevel of SDL. The value added by our semantic framework is clearly marked.
2 Types of Problems and General Proposals2.1 Types of ProblemsSDL has the double aim of being on one hand a high-level speci�cation formalism, which means itmust abstract from certain implementation details, and on the other hand a programming formalismfrom which direct code generation is possible. The problems that we identify in this paper refer toSDL either as a speci�cation language, or as a programming language. The problems on each side aredi�erent because the needs on each side are di�erent too.

On the speci�cation side, we further have two kinds of problems: expressivity problems and usabilityproblems.1. An expressivity problem is the impossibility of SDL to capture meaningful information about asystem (like, for example, the execution time boundaries of a piece of SDL code).2. Usability problems relate to the way an SDLmodel is used in analysis and early design: the modelermust be able to simulate the system or formally verify certain properties. An usability problemis a problem in the de�nition of the SDL semantics, which makes it practically or theoreticallydi�cult to construct the global state graph of a SDL system (graph that is used by simulation orveri�cation tools).
2.2 Semantic Pro�les for SDLThe semantics of SDL, as presented in [1], is rather crafted for code generation than for simulationand veri�cation. Z.100 maintains that each action takes an indeterminate time to execute, and thata process stays an indeterminate amount of time in a certain state before taking the next �reabletransition. This notion of a time that is external, unrelated to the SDL system, is practical forcode generation in the sense that actual implementations of the system conform to it. However, forsimulation and veri�cation, this semantics of time is utterly impractical: timer extents do not haveany signi�cance, any timer that gets in a queue may stay there for an indeterminate amount of time.Any rigorous attempt to construct the simulation graph of a SDL system (which is the startingpoint for simulation and veri�cation) must account for all possible combinations of execution times,timer expirations and timer consumptions, causing an explosion of the state space. We have here ausability problem, as characterized in section 2.In practice, simulation and veri�cation tools make simplifying assumptions on execution and idletimes. The usual convention is that actions take 0 time to execute, and that the system executesimmediately whatever it can execute. This option is justi�ed by the fact that it generates the highestdegree of determinism, thus reducing the state space by an important factor (and in fact, renderingSDL systems analyzable). This is not the only point where the SDL semantics raises usability problemsfor simulation and veri�cation, as we will see in the next sections.We face here two alternative de�nitions of the SDL semantics that are mutually exclusive andequally justi�ed (one by the needs of code generators, one by the needs of simulators and veri�cationtools).This dichotomy cannot be surpassed by a single SDL semantics. The solution we propose is toadopt multiple semantic pro�les of SDL. The idea of de�ning multiple semantic pro�les of a languageis not new: the UML community is on the way to de�ning several pro�les for UML [2], each one �tfor a particular application domain (real time, electronic commerce, etc). In the case of SDL, pro�leswould not correspond to di�erent application domains but rather to the di�erent usages of a SDLmodel: code generation, simulation, performance analysis, model checking, test generation etc.

A semantic pro�le would de�ne a semantics that is particularly suitable for a certain type ofmanipulation of a SDL model. A semantic pro�le for code generation, for example, would supportreal parallelism between the agents composing a system, while a semantic pro�le for simulation andveri�cation would propose quasi-parallel execution of agents, that is, interleaving of transitions ortransition actions.If we accept the need for di�erent semantic pro�les, it follows that the de�nition of pro�les should beparameterized. Parametric semantic pro�les allow to reuse the common part of two di�erent semantics,and outline only the di�erences. For example, a semantic pro�le for simulation and veri�cation couldhave a parameter which determines whether whole transitions are atomic, or whether only the SDLstatements (output, task, set, reset, etc) should be atomic (the fact that TAU SDL Validator[15] supports such a parameter suggests it is useful). There is no need to have two whole di�erentpro�les for these two cases, since most of the semantics is the same in the two cases. A parameterwould be a simple and clean solution.Semantic pro�les allow the SDL standard to follow the path that was already undertaken by SDLtools, which are highly parameterized. The parameters used by tools such as ObjectGEODE [16] andTAU [15] represent in fact small variations in the semantics used by the tools.Introducing pro�les in the SDL standard has the advantage that all existing pro�les would beconcentrated together, and that compliance relationships between pro�les could be de�ned formally.A theoretical basis for de�ning pro�les and inter-pro�le compliance relationships does not exist and ishard to develop, but the current practice of SDL tools, which employ the notion of pro�le implicitlyand without discipline, demands it.
3 What is Missing on the Programming Side?
SDL has several characteristics that are attractive for real-time systems designers: asynchronouscommunication is a �rst class language feature, a speci�cation is organized in a logical hierarchy thatcan be mapped in many ways to di�erent physical con�gurations of software modules (and SDL codegenerators usually provide this feature), external code may be called from SDL making it possible touse system libraries directly from SDL.There are however several mechanisms, often employed in real-time systems, which should benatively implemented in the language. We review some of them here.
3.1 Interruptive TimersSDL o�ers native mechanisms for writing time dependent code: one can consult the system clockfrom SDL (through the implicit variable now), can set timers, wait for a timer to expire or receivean asynchronous message when it expires.

SDL timer timeouts are always received as asynchronous messages. For general-purpose timedependent code this is usually �ne, but it may be di�cult to write real timeout emergency proceduresusing timers. To ensure that a piece of code is executed immediately as a consequence of a timeout,the SDL programmer must �rst make sure that the agent handling the timer is idle when the timer isreceived. If this is not the case, then the process may consume the asynchronous timer message fromthe message queue only when it �nishes its current job, which may be too late.SDL needs a notion of emergency timer, whose expiration is taken immediately into account bythe receiving agent. Emergency actions which interrupt the normal execution of an agent were alreadyintroduced in SDL'2000, with the advent of exceptions. All we need is a link between the exceptionmechanism and the system time.Our proposal goes towards the introduction of the notion of interruptive timer in the language.An interruptive timer is a timer that raises an exception instead of sending an asynchronous messagewhen it expires. With interruptive timers, one can easily set up real timeout emergency procedures.
3.2 Atomic Code Sequences and SynchronizationAtomicity and mutual exclusion may be achieved in SDL by directly inserting system calls in theSDL code. However, these are patterns that are very commonin real-time systems, and SDL couldbene�t from native constructs for expressing atomicity and mutual exclusion.Additionally, inserting system calls in SDL for achieving atomicity and mutual exclusion has asevere drawback: as we mentioned in the beginning of Section 3, one advantage of SDL is that itcan be mapped to di�erent physical software con�gurations. The system calls for obtaining mutualexclusion are di�erent when agents are mapped to threads and when they are mapped to processes.This means that the SDL code must di�er from con�guration to con�guration, which is a regression.With native SDL constructs for atomicity and mutual exclusion, a code generator could generatethe right synchronization, rollback or deadlock protection code in every possible mapping. Moreover,atomicity and mutual exclusion would be taken into account in simulation (which is not the case whenusing system calls), and deadlocks or other kind of errors that they may introduce could be detectedearlier.The same discussion stays valid for general purpose synchronization code. Some forms of synchro-nization between SDL agents may be achieved only through external system calls. There too, nativeSDL constructs would be bene�c.
4 What Is Missing on the Speci�cation Side?On the speci�cation side things are more critical. As mentioned in introduction, the role of SDL in thesystem development process is twofold: on one hand it is a speci�cation language that must be capableto abstract away certain implementation details while still capturing an accurate image of the system

under development, on the other hand it is a description language that must be able to express animplementation down to the last details. These two roles of the language are sometimes conicting, andin many cases the description side has been given priority, to the detriment of high-level speci�cation.
4.1 Control over Time ProgressThe problem used as an example in the beginning of Section 2.2 is an important usability problem initself. A simulator that would use the semantics of time as described in Z.100 [1], would have no controlover the way time progresses. As a result, the simulator would not guarantee elementary propertieslike:1. when a timer expires, it is treated in a reasonable amount of time.2. when two timers are set at the same time, the timer set with the lower delay will be consumed�rst.This will lead to the exploration of a number of undesirable execution paths that can never actuallyhappen in the system implementation, and eventually to state space explosion.A semantic pro�le for simulation must give the simulator some control over the progress of time.Existing simulation tools do this, by assuming that actions take 0 time to execute, and that timenever progresses while the system has something to execute.These means of controlling the time progress in simulation are limited. There are cases when theuser needs to control the simulation time in more exible ways:{ to specify that in a certain state, an unlimited amount of time may pass, even though the systemhas something to execute (make place for lazy, is it really necessary ???).{ to specify that in a state, a bounded amount of time may pass regardless of whether there issomething to execute or not. In this case, there is a number of consequent problems as to thespeci�cation of the amount of time (�xed or with lower and upper bounds; speci�ed statically ordynamically).We propose a concrete solution to this problem in Section 5.
4.2 Assumptions on Execution TimesThere is also an expressivity problem related to the usability problem of section 4.1: since the standardsemantics of SDL assumes an indeterminate amount of time may pass while the system is in a stateor while it executes an action, there are no means to specify the execution times of (a sequence of)actions.Such information may be meaningful in simulation or in veri�cation. The well functioning of thesystem may depend on the assumptions on execution times.

Currently, in order to introduce assumptions on minimal execution times, the user is forced to usetimers and to introduce explicit waiting. For maximal execution times, the user must also introducetimers and additional invalid states that will have to be considered as unreachable when the stategraph is built. So in order to express high-level speci�cations, one needs to use programming features.There exists already several approaches to introducing execution time assumptions in SDL speci-�cations. The ObjectGEODE Simulator [14] uses a syntactic extension by which one can associate anexecution time (interval) to an action. [9] uses a more elaborate approach in which execution times aredynamically calculated with the help of queuing machines, so that they are depending on the amountof work and on the charge of the system.We will not introduce here new SDL extesions for expressing execution times. Instead, we introducea semantic framework that allows a simulator to control the progress of time (Section 5) and weshow how existing approaches for expressing execution times ([14, 9]) can be adapted to our semanticframework, with bene�ts in terms of analysis power.
4.3 Atomicity of Transition ElementsThe lack of programming constructs for expressing atomicity, mutual exclusion, and synchronizationwas outlined in Section 3.2. The same problem may be characterized as an expressivity problem ofSDL as a high-level speci�cation language.Besides that, the lack of a notion of atomicity poses usability problems. Z.100 [1] asserts that theagents composing a system are executed in a real parallel environment. In order to work, a simulatorhas to assume a certain degree of atomicity. Existing SDL simulation and veri�cation tools makesimplifying assumptions: that statements are atomic, or that entire transitions are atomic, or thatsequences of statements that take 0 time to execute are atomic.The place for such assumptions would ideally be an SDL semantic pro�le for simulation andveri�cation.
4.4 Flexible Channel Speci�cationsSDL de�nes channels as reliable means for transporting messages: a channel never looses messages.Additionally, a channel may either be non-delayable (i.e. messages arrive instantaneously at the otherend) or with non-speci�ed delays (but keeping the order of the conveyed messages).These attributes are insu�cient for characterizing real communication channels. For example, SDLis used to describe ow control protocols such as the alternating bit protocol from the OSI stack. Suchprotocols are built upon the assumption that channels are unreliable, and it is their mission to makethem reliable through software. If the assumptions on channels cannot be marked in SDL, the resulteddescription of the protocol cannot be used in simulation: the simulator will never cover the parts thathandle signal loss.

In practice, when one needs to model a channel which losses messages, or which delays messagesby a rule, he has to explicitly describe the behavior of the channel in SDL(with an SDL process, forinstance). This approach has several drawbacks:{ once the behavior of the channel is speci�ed, all messages will arrive at destination with a wrongsender PID.{ the channel description must be replicated over and over again for every lossy channel in the system(note that a generic Process Type cannot be used, because the channel description depends onthe types of the conveyed signals, which di�er from channel to channel).{ dynamic creation of timers is needed in order to transport an inde�nite number of messages atonce on a delayable channel.A simple solution to this problem is to allow the user to specify in SDL:1. whether a channel looses messages or not, and the loss probability2. upper and lower time bounds for the delays applied to the message conveyed by a channel, as wellas the probability law followed by delaysMore complicated solutions which take into account the type and size of a message can be imagined.Again, the ideal place for such extensions would be an SDL pro�le for simulation, veri�cation andperformance analysis.
5 Timed SDL Semantics Based on Transition UrgenciesIn this section we introduce a semantic framework that can be used in connection with SDL to solvethe problems of controlling time progress in simulation, problems described in Section 4.1. Basically, weintroduce a set of constructs for controlling simulation time progress, for which we dispose of powerfulanalysis methods that allow to derive interesting timing information (such as the minimal/maximaltime span between two events) and to verify timing properties of SDL systems.The framework presented here is not a direct solution to the problems described in Sections 3 and4. Instead, it may constitute the underlying semantics for other temporized extensions of SDL (suchas [9, 14]), which solve the abouve mentioned problems, and which are closer to the abstraction levelof SDL. Therefore, the constructs we introduce below are not meant to be used directly by SDLmodelers.The constructs identi�ed here are inspired from Timed Automata with urgencies, a high-levelformalism for modeling temporal properties of reactive systems. For a thorough understanding of thesemantics behind these constructs, the reader is referred to [3, 4] (timed automata), and [5] (timedautomata with urgencies).As stated in Section 4.1, in order for a semantics to be usable in simulation and veri�cation,the simulator has to have control over the system time. In SDL, the system time is represented by

the value of the implicit variable now. Our idea is the following: we consider that time may onlyprogress while the system stays in a simulation state, and time does not progress while the simulatorexecutes a system transition (that is, now is not modi�ed during a transition). Note that we talkabout simulation states and simulation transitions, which may di�er from SDL states and transitions:for example, if transitions are not atomic but SDL statements are, there will be a simulator statebetween each of the SDL statements on a SDL transition, and there will be a simulator transitionfor each individual SDL statement.Moreover, the progress of time in a simulator state is controlled (bounded) by the transitions thatmay be triggered next. We identify three categories of transition urgencies :1. eager transitions, which have priority over time progress. If in a simulator state there is an eagertransition enabled, time cannot progress until the transition (or another enabled transition) istaken.2. lazy transitions, which do not have priority over time. An enabled lazy transition does not inhibitthe progress of time in the simulation state. Therefore, time may progress with an inde�niteamount, if the other enabled transitions allow it too.3. delayable transitions, which have priority over time progress only when time progress woulddisable them. Time progress may disable a transition if the transition has an enabling conditiondepending on time (i.e. on the value of now). Therefore, a delayable transition will usually havean enabling condition depending on now, such as now � x or now � x � y (where x and y maybe integer variables or constants). Then, time may progress in the simulation state until now = x(or now � x = y).With this semantics, the simulator can control the progress of the system time by identifying theurgency of the simulator transitions enabled in a certain state.The source of this information on urgencies di�er from case to case, depending on the concreteSDL timed extensions introduced at user level. We can imagine an extension of SDL in which the userputs the urgency information directly in the SDL model, like in the example in Section 6. Urgencyinformation may also be derived from other kinds of timed annotations, as we will see in Section 7.Transition urgencies were implemented in IF [6, 7], a speci�cation language developed at VER-IMAG for prototyping semantic variations of the constructs of a SDL-like language. We have alsoimplemented the extensions in the ObjectGEODE Simulator [13], with good results in terms of bothwhat we can express with them and what analyses we can perform on annotated models.However, such extensions are not very close to the level of abstraction of SDL, and modelers may�nd it di�cult to produce the urgency annotations and the related information. As we mentionedalready, our extensions are rather thought to be the semantic basis for more user-level constructs,such as those introduced in [9, 14]. Section 7 is dedicated to showing how such user-level extensionsare projected on our semantic framework, and what advantages we acquire by using this framework.

6 Example: the Bounded Retransmission ProtocolWe illustrate here on a simple example some of the speci�cation problems of SDL that have beenidenti�ed in this paper, and we show how they can be solved using our semantic framework.
6.1 Speci�cation of the protocolThe example we propose is the so-called \Bounded Retransmission Protocol" (BRP), which providesa �le transfer service through an unreliable medium between two entities, a Transmitter and aReceiver. More precisely, each �le is splitted into several packets and each packet is transmitted insequence using the well-known alternating bit protocol. However, in case of packet loss, only a boundednumber of retransmission are performed, and thus the �le delivery is not guaranteed. In this situation,both entities should abort the current transfer, and proceed to the next �le. This protocol has beenused as a running example for several veri�cation tools[12, 8, 11], and we consider here a simple versionmainly focussed on its timing behaviour.The SDL speci�cation of this protocol (�gure 1) is composed of a Transmitter and a Receiverprocess, briey described below:The Transmitter �rst waits for a transfer request issued by the environment (Put(p), where p isthe number of packets). When a transfer request is issued, it starts sending each packet (m,b) oneby one, where m indicates whether the packet is a first, middle or last element of the �le, and b isthe alternating bit. After each sent of a packet, the Transmitter starts a timer s repeat and waitseither from an acknowledgement issued by the receiver, or for the expiration of s repeat. If a correctacknowledgement is received, it resets s repeat and proceeds to the next packet, unless it was thelast one, in which case the entire �le is delivered to the upper layer (Get(p)). However, if s repeatexpires, the same packet is resent up to max retry attempts (s repeat being restarted after eachresent). If none of these resent succeeds, then the Transmitter aborts the current �le transfer andreports the failure to its upper layer. This is done either using an Abort message when the currentpacket was a middle one, or using a Dont know message when the current packet is a first or a lastone (since in this case the Receiver may have either correctly received the entire �le, or no receivedany packet at all). Finally, after a transfer abortion the Transmitter starts a timer s abort and waitsfor its expiration before processing the next �le.The Receiver continuously waits for packet receptions. When a first packet is received, itinitialises its alternating bit, starts a timer r abort and sends back an acknowledgement to theTransmitter. Each subsequent packet is acknowledged (according to the \alternating bit" policy),and the timer r abort is restarted upon each reception of a new packet. When a last packet isreceived, the Receiver considers that the entire �le has been correctly transmitted: it delivers it toits upper layer (Get(p)), stops its timer, and waits for a new �le. However, if an expected packet latesto arrive, then the timer r abort expires and the Receiver can assume that the transfer has beenaborted. It informs its upper layer (Abort), and waits for a new �le.

system brp

newtype
 Data literals first, middle, last;
endnewtype;

synonym maxp = 2;
syntype
 NoOfPackets = natural constants 1:maxp
endsyntype;

synonym max_retry = 4;
synonym dt_repeat = 2.0;
synonym dt_abort = 15.0;
synonym dr_abort = 13.0;
/* max_retry*(dt_repeat + d_trans) < dr_abort < dt_abort */
signal PUT(NoOfPackets);
signal GET(NoOfPackets);
signal ABORT, DK;

centry

PUT ABORT, DK

cexit

GET, ABORT
brpblock

process receiver

dcl b, c Boolean;

dcl p Natural,
 m Data;

timer r_abort :=
 dr_abort;

p:=0

idle

idle

SDT(m,c)

b=c or m=first

true

ACK(c)

SET (r_abort)

b:=not c

m

first

p:=0

middle

p:=p+1

last

GET(p)

RESET (r_abort)

false

ACK(b)

-

r_abort

ABORT

-

block brpblock

signal SDT(Data,boolean);
signal ACK(boolean);

cexitcentry

entry
PUT

ABORT, DK
exit GET, ABORT

medium

SDT

ACK
receivertransmitter

process transmitter

dcl b,c Boolean;

dcl p Natural;
dcl i,j Natural;
dcl m Data;

timer t_repeat := dt_repeat;
timer t_abort := dt_abort;

b := false

Idle

Idle

PUT(p)

j:=0

m:=first

i:=1

Send

Send

none

SDT(m,b)

SET (t_repeat)

Wait_Ack

Wait_Abort

t_abort

Idle

Wait_Ack

ACK(c)

c=b

true

b:=not b

RESET (t_repeat)

m

first

j:=1

m:=middle

middle

j<p

true

j:=j+1

false

m:=last

last

Idle

i:=1

Send

false

-

t_repeat

i<max_retry

true

i:=i+1

Send

false

m =middle

true

ABORT

false

DK

SET (t_abort)

Wait_Abort

Fig. 1. The Bounded Retransmission Protocol in SDL

6.2 Modeling of the timed behaviourOne of the main correctness criterion of this protocol is that both the Transmitter and the Receivershould decide to abort the same �le transfers. However, this is achieved only when precise constraintsare ful�lled between timers values and action durations. In particular:{ if the timer r abort expires too early, then the Receiver will consider that the current transferis aborted whereas other packets of the same �le may still arrive;{ if the timer t abort expires too early, then the Transmitter will proceed to the next �le after anabortion before this abortion was detected by the Receiver (which will never detect it later);{ �nally, if the timer t abort is set to a value smaller than max retry times the transmission delay,then the Transmitter will always abort the current transfer . . .As stated in section 4, if this speci�cation is simulated following the Z.100 time semantics, noguaranties are ensured about the relative expiration times of the di�erent timers. Therefore, evenif the timers are set to correct values, many incorrect (and irealistic !) execution scenarios will beobserved, preventing any validation result.On the other hand, simulating this speci�cation using the default time semantics of ObjectGEODE(i.e., each transition takes 0 time and is considered eager) is also not satisfying since it excludesrealistic scenarios. For instance, using this semantics, the timer r abort can never expire before thereception of an expected packet (expiration will take place only after the packet loss). Thus, this toodeterministic time behaviour will only lead to partial validation results.These two limitations can be avoided using the notion of transition urgency introduced in section 5.More precisely, lazy and delayable transitions are used to specify some parts of the system supposedto take a certain amount of time to execute, or those occurrence is only controlled by the environment(they may occur at a speci�ed or unspeci�ed frequency). All other transitions (and in particulartimeout expirations) are supposed to be eager. In the BRP speci�cations the non eager transitionsare the following:{ The transfer requests (Put(p)) issued by the environment, which may occur at an unspeci�edrate, and which should therefore be declared as lazy;{ The packet transmission (Sdt(m,b)), which is supposed to take a non deterministic amount oftime within a given interval to model the transmission delay, and which should be declared asdelayable. (Note that the delay required to transmit the acknowledgements are omitted here, butthey could have been introduced similarly).Figure 2 gives a correct speci�cation of the Transmitter process including the urgencies annotations.
7 Transition Urgencies as Underlying MechanismAt user level, the problems described in Sections 3 and 4 should have simple and intuitive solutions.While we are still searching for adequate user-level extensions of SDL, which should come from

process transmitter

dcl b,c Boolean;
dcl p Natural;
dcl i,j Natural;
dcl m Data;
timer t_repeat :=
 dt_repeat;
timer t_abort :=
 dt_abort;
dcl x time;

b := false

Idle

Idle

PUT(p) lazy

j:=0

m:=first

i:=1

Send

Wait_Ack

ACK(c)

c=b

true

b:=not b

RESET (t_repeat)

m

first

j:=1

m:=middle

middle

j<p

true

j:=j+1

false

m:=last

last

Idle

i:=1

Send

false

-

t_repeat

i<max_retry

true

i:=i+1

Send

false

m =middle

true

ABORT

false

DK

SET (t_abort)

Wait_Abort
Wait_Abort

t_abort

Idle

Send

none

x := now

Send_Delayed

now -x >= d_trans_min and
now -x <= d_trans_max delayable

SDT(m,b)

SET (t_repeat)

Wait_Ack

Fig. 2. The speci�cation of Transmitter using urgencies
industial users facing the problems that we have described, we present here two existing proposals forextending SDL with time-related constructs.The goal is to show how the semantic framework introduced in Section 5 may be used as a basisfor de�ning a precise semantics for SDL extensions such as the ObjectGEODE Simulator extensions[14] or QSDL, the extended SDL implemented in the tool QUEST [9].
7.1 The ObjectGEODE Performance Evaluation ExtensionsThe ObjectGEODE Simulator implements a series of SDL extensions, for modeling timing propertiesof systems. The modeler has the possibility to split the system among multiple processors, to givepriorities to processes, and to declare execution durations on actions.We can use these extesions to specify the process Transmitter from our example in Section 6.Namely, we use the ObjectGEODE extensions to model the non-deterministic waiting time beforethe transmission of signal SDT, as shown in Fig. 3. The transition shown in Fig. 3 may replace thetransition outgoing from the state Send, in the initial speci�cation of the BRP protocol (Fig. 1.In ObjectGEODE, execution durations on actions are speci�ed statically, by a time interval anda probability distribution (not used here). The actions that have no duration speci�ed, are consideredto take 0 time. The semantics of time consuming actions is the following: when an agent reaches atime consuming action, it enters an implicit state in which it stays for a time period complying to thespeci�ed interval. While the agent is in that state, only agents executed by other physical processorsmay execute. The other agents executed by the same physical processor as the blocked agent areblocked too. When time elapses, the agent exits the implicit state and executes the action in 0 time.

Send

none

’non-deterministic
wait’ #delay(d_trans_min, d_trans_max)

SDT(m,b)

SET (t_repeat)

Wait_AckFig. 3. The BRP Transmitter delay modeled using the ObjectGEODE performance evaluation extensions
In our example, the simulator executes all the actions described in the process Transmitter beforethe informal task 'non-deterministic wait'. Then, the simulator puts the Transmitter in an implicitstate, where it stays for a period of d_trans_min to d_trans_max time units. At the end of this period,the Transmitter exits the implicit state, and the simulator executes the output of SDT in 0 time.This semantics can be captured using urgencies. Associating a delay to an action is equivalent tosplitting the initial transition with an implicit intermediate state and an implicit delayable transition,as shown in Fig. 2.The advantage of using our semantic framework for expressing execution times is that our anal-ysis methods allow to consider both lower and upper limits simultaneously during simulation. Theanalysis methods we have developed on our model work with time intervals, and we can compute theminimal/maximal time span between two arbitrary occurrences in the system.

7.2 QSDLQueuing SDL (QSDL, [9]) is an extension of SDL with constructs for modeling timing properties ofsystems, developed at the University of Essen, Germany. QSDL was developed for doing performancemodeling and analysis on SDL systems.The tool supporting QSDL, QUEST [10], implements a discrete-time semantics that resemblesthe semantics implemented in ObjectGEODE and TAU. Time passes in simulation states, normaltransition actions take 0 time to execute. Additionally, QSDL introduces a new SDL statement, whichtakes time and which may be put on transitions: request. Like in ObjectGEODE, described in theprevious section, this time consuming action introduces in fact an implicit simulation state, in whichthe calling agent stays for as long as the request takes.The di�erence between QSDL and the ObjectGEODE performance evaluation extensions comesfrom the fact that the execution time of a request is not speci�ed statically. QSDL uses the concept ofqueuing machine to compute the dynamic execution time of a request. Queuing machines representcomputing resources shared between several agents of an SDL system, for which the agents compete.

For projecting the QSDL extensions on our semantic framework which uses transition urgenciesto control time progress, we need is to model QSDL queuing machines by SDL automata annotatedwith urgencies. The task is not trivial, because the behavior of a queuing machine depends on a seriesof parameters:1. the speed. The absolute amount of work, which is a parameter of the request, is �rst divided bythe speed of the machine, to obtain an amount of work relative to the machine2. the number of processors. A machine may have from one to an in�nity of processors. Perfectparallelism is assumed (i.e. if a machine has n requests to process simultaneously, m processors,and a speed s, the rate at which each request is processed is r = mn s if n � m and r = s if n < m).3. the scheduling policy. In case of multiple, competing requests, the scheduling policy determineswhich requests are serviced and which are put on hold. QSDL de�nes the following schedulingpolicies: FIFO with three variants (non-preemptive, priority non-preemptive, and priority preemp-tive), Processor Time Sharing, In�nite Processors, Random non-preemptive, and LIFO prioritypreemptive. For details, see [10]We can model QSDL queuing machines in terms of SDL automata with urgencies, with fewmodi�cations to our semantic model. These modi�cations preserve the decidability results establishedin the basic framework, so that our analysis tools can work on the modi�ed semantic model.Our idea is not to replace the QSDL extensions with our own, but to base the QSDL semantics onour notion of urgency. Doing this would boost the power of veri�cation methods applicable to QSDL.
8 ConclusionsReferences1. Languages for telecommunications applications - speci�cation and description language (SDL). ITU-TRecommendation Z.100, 1996.2. Requirements for UML pro�les. OMG document ad/99-12-32, December 1999. OMG ADTF Green Paper.3. R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time. Information and Computation,(104):2{34, 1993.4. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, (126):183{235, 1994.5. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. Technical report, Verimag,Grenoble, 1998.6. M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and J. Sifakis. IF: An intermediaterepresentation for SDL and its applications. In R. Dssouli, G.v. Bochmann, and Y. Lahav, editors, SDL'99.The Next Milenium. Proceedings of the 9th SDL Forum, Montreal, Canada, 1999. Elsevier.7. M. Bozga, S. Graf, L. Mounier, and J. Sifakis. The intermediate representation IF. Technical report,Verimag, 1998.8. P.R. D'Argenio, J-P. Ktoen, T. Ruys, and J. Tretmans. The bounded retransmission protocol must be ontime! Technical report, University of Twente, 1997. Report CTIT 97-03.

9. M. Diefenbruch, E. Heck, J. Hintelmann, and B. M�uller-Clostermann. Performance evaluation of SDLsystems adjunct by queueing models. In R. Braek and A. Sarma, editors, Proceedings of SDL Forum'95.Elsevier Science B.V., 1995.10. M. Diefenbruch, J. Hintelmann, and B. M�uller-Clostermann. Quest User Manual. University of Essen,Dept. of Mathematics and Computer Science, Essen, Germany, March 1998.11. J-F. Groote and J. van de Pool. A bounded retransmission protocol for large data packets. In M. Wirsingand M. Nivat, editors, Algebraic Methodology and Software Technology, volume 1101 of LNCS, pages536{550. Springer-Verlag, 1996.12. R. Mateescu. Formal description and analysis of a bounded retransmission protocol. In Z. Brezo�cnikand T. Kapus, editors, Proceedings of the COST 247 International Workshop on Applied Formal Methodsin System Design (Maribor, Slovenia), pages 98{113. University of Maribor, Slovenia, June 1996. Alsoavailable as INRIA Research Report RR-2965.13. I. Ober, B. Coulette, and A. Kerbrat. Timed SDL simulation and veri�cation: Extending SDL with timedautomata concepts. submitted to FTRTFT'2000.14. J.-L. Roux. SDL performance analysis with ObjectGEODE. In A. Mitschele-Thiel, B. M�uller-Clostermann, and R. Reed, editors, Workshop on Performance and Time in SDL and MSC, Erlangen,Germany, February 1998. Friedrich-Alexander Universit�at, Erlangen-N�urnberg.15. Telelogic A.B., Malm�o, Sweden. Telelogic TAU SDL Suite Reference Manuals, 1999.16. VERILOG, Toulouse, France. ObjectGEODE 4.1 Reference Manuals, 1999.

