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Protocol veri�cation with the Ald�ebaran toolsetMarius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent MounierVerimag centre Equation, 2 rue de Vignate, 38610 Gi�eres, Francewww: http://www.imag.fr/VERIMAGVerimag is a joint laboratory of Universit�e Joseph Fourier, CNRS and INPGAbstract. The design of distributed systems is an in-creasingly complex task, yet competitiveness requiresfaster developments. Formal Description Techniques (FDT)are a way to deal with this requirement, as they comewith tools allowing to simulate and verify the behaviourof a system without actually having to execute it, thustranslating part of the costly testing e�ort to the designe�ort. In this article, we present the veri�cation toolsetAld�ebaran. This veri�cation toolset is designed inde-pendently of any FDT, yet allows to work with the twomost used ones. It is implemented in a modular way, foran easy use and integration with other system designtools. We present the technical principles of this toolset,the performances obtained and the application domainsthrough the presentation of some case studies.Key words: Protocol engineering, formal methods, ver-i�cation, model checking1 IntroductionDistributed systems in general and more particularlytelecommunications systems are more and more com-plex, yet the time-to-market becomes shorter and shorter,as the competition between service manufacturers is in-creasing. It becomes crucial to develop systems rapidly,at the lowest cost, with a good quality level. To keepup with these various and conicting goals, engineeringteams need to evolve more and more towards reuse (inte-gration of previously implemented software componentsin a new application) and concurrent engineering (devel-opment in parallel of di�erent parts of a same applica-tion).Moreover, there is one crucial requirement whichdominates the area of large scale distributed telecom-munications. It is the requirement for openness, whichmeans that a telecommunication system can be com-posed of products designed by di�erent, often competingmanufacturers. Openness imposes that the interactionsCorrespondence to: Alain.Kerbrat@imag.fr

between the products components are based on stan-dard de�nitions, such as interfaces, services and proto-cols. These standard de�nitions should be as much aspossible implementation independent, to allow for max-imum freedom for each manufacturer. Yet it should bepossible to derive actual implementations for it, and tocheck if the chosen implementation is conform to thestandard it is derived from.Being such standards is the aim of Formal Descrip-tion Techniques (FDT). An FDT is basically aboutfounding a description language on a suitable mathe-matical model, to allow a designer to express a designunambiguously and to reason about it. This is the basisfor a language whose aim is to allow di�erent designers togive the same meaning to a same system's description.Furthermore, this language should be an internationalstandard, recognized as such by an international associ-ation such as the ISO or the ITU.Such Formal Description languages are currently three :Estelle[36] : Estelle (Extended �nite state machinelanguage) is an ISO standard. It is designed for thedescription of protocols, as a hierarchy of communi-cating extended state machines.Lotos[38]: Lotos (Language Of Temporal OrderingSequences) is a language coming from process alge-bra theories. Its �rst application for the design ofprotocols dates back to 1984, but Lotos became anISO standard in 1989. It is based on the algebraiccomposition of elementary actions, the resulting com-plex sequential behaviours can be encapsulated intoprocesses. These processes can communicate togetherthrough interaction ports. The communication modeis a multi-way rendez-vous.Lotos is based on two sub languages, one similar tothe CCS and CSPprocess algebras, for the descrip-tion of the control; the other is the Abstract DataType (ADT) de�nition language calledAct-One, forthe description of data.Sdl[11] : Sdl (Speci�cation and Description Language)�rst appeared in a Ccitt recommendation in 1976.Sdl has since evolved from an informal graphicaldescription technique to a full Formal Description



2 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent MounierTechnique, published in the Ccitt recommendationZ-100. Sdl is subject to some revisions every fouryears. Object-orientation and other extensions havebeen introduced in 1992.Sdl is based on a communicating extended state ma-chines, communicating via bi-directional links. Theselinks are connected to the state machines via interac-tion ports. Each state machine owns an input queue,which is common to all of its interaction ports.A complete FDT is not only a description language,but is usually completed by the following parts:a design methodology : A design can be obtained bymany di�erent, yet equivalent ways. Designers haveto make frequent choices during the design process.Making the right choices to obtain the \best" de-sign is a di�cult task. Even de�ning what best de-sign means is already hard. However, to enforce re-usability and communication between di�erent de-signers, a common design methodology is manda-tory. So most of FDTs come with their speci�c designmethodology [4, 12].tools : Tools such as editors are of course necessary forany language. Compilers are usually also needed,however for FDTs, compilation for implementationpurposes is not always possible or even desirable. Infact, the characteristic tool for FDTs is for taking ad-vantage of the formal de�nition of the language; thisformal de�nition allows to build tools for reasoningabout the program's behaviour without having to ac-tually execute it. There are tools for symbolic simu-lation, invariant analysis, deadlock checking, logicalproperties veri�cation, ...A coherent set of e�cient tools is crucial for a real useof FDTs in any development environment. Commercialcompanies already provide well designed editors, simula-tors and C code generators for a language such as Sdl.Some similar, but academic works exist for Estelle andLotos. The simulators of these toolsets use the formalde�nition of the language to render a correct view of thebehaviour of a system in its real environment. Moreover,they allow some more in-depth analysis such as deadlockor assertions checking. However, most of these toolsetsactually stop here, and do not o�er more advanced anal-ysis functionalities like the comparison of the system un-der development with a formal de�nition of its require-ments, or with another more abstract description of itsbehaviour. This is what formal veri�cation is about.In this article, we present the Ald�ebaran toolsetallowing to perform such formal analysis activities.Ald�ebaran is itself part of the C�sar-Ald�ebaranDistribution Package (Cadp). Cadp is a toolset devel-oped jointly with the Vasy action of Inria, the C�sarpart being designed for working with the FDT Lotos.Another interconnection ofAld�ebaran is with the com-mercial environment ObjectGeode from Verilog. Ob-jectGeode is an environment for the design of systemswith the FDT Sdl. In each case, Ald�ebaran brings theveri�cation and static analysis functionalities that thesetwo environments lack.

This article is structured as follows : in section 2, wepresent the theoretical principles Ald�ebaran is basedon. In particular, we present the model checking prin-ciple, and what are the critical points for an e�cientapplication of this principle. In section 3, we explainhow Ald�ebaran implements these principles, what arethe techniques employed and the performances obtained.One strong point of Ald�ebaran is its modular architec-ture, allowing to e�ciently and quickly experiment newveri�cation algorithms with new modeling techniques.In section 4, we present two examples of integration ofAld�ebaran modules for enhancing existing validationactivities. Finally, section 5 consists in the description ofsome signi�cant case studies and of the bene�ts broughtby using Ald�ebaran for their veri�cation.2 Principles of model based validationtechniquesModel checking [16, 51] consists in building a �nite modelof the system under analysis and to check the desiredrequirements on this model. The check itself amounts toa partial or complete exploration of the model.
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Fig. 1. Model checking principlesThe main advantages of this technique are that it canbe automated and it is fast. Furthermore, model checkingallows the easy production of counterexamples, when arequirement is not ful�lled. The main problem of modelchecking is the potential size of the model, which dependson the system complexity, and which can be huge. Thisproblem is the state explosion problem.Given this model, it is then possible to simulate stepby step, or randomly the system. Furthermore, if themodel is �nite, we can also explore it exhaustively, thusproviding the basis for formal veri�cation.2.1 What is the model?The model considered in the case of the toolset presentedbelow is a Labelled Transition System (LTS). An LTSis a state graph with anonymous states (no information



Protocol veri�cation with the Ald�ebaran toolset 3except a distinguishing number) and transitions labelledwith an identi�cation of the actions performed duringthe states change. The notion of LTS is therefore quitesimilar to the usual notion of automaton (or state ma-chine). The �gure 2 is an example of LTS, with the state0 being the initial state.
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Fig. 2. Example of Labelled Transition System2.2 How is the model generated ?FDTs come usually with a de�nition of their operationalsemantics : the consequences of the execution of any in-struction are unambiguously de�ned by a set of mathe-matical rules. This set of rules is designed to be complete,coherent and computable for all the instruction set.More precisely, these rules rely on a abstract exe-cution model. This execution model is de�ned as a se-quential machine, where one state corresponds to a sys-tem's con�guration (where is the control, what are thevariables values). The execution of any instruction cor-responds then to a transition from one state to another.Execution sequences can be given as sequences of tran-sitions.Given this set of rules, it is possible to derive stat-ically and automatically any execution sequences; stati-cally means that we do not have to actually execute thesystem under investigation in its operating environment(which is what testing is about). Automatically meansthat we can use a computer to derive these executionsequences.Traditionally, the set of all possible execution se-quences is built as an execution tree : as systems like com-munication protocols are designed to run inde�nitely,this tree is usually of in�nite depth. However, one sys-tem's state can occur many times in this tree : it is thenpossible to fold the tree by merging some of the identicalstates. The result is then a LTS, which is traditionallycalled the model of the system. The generation steps ofthis graph are resumed in �gure 3.In this �gure, we consider a �rst process s1 able toperform inde�nitely the action a, and a second process s2able to perform the action b once. s1 and s2 work asyn-chronously (they do not communicate each other). If weapply usual operational semantics rules on this system
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modelFig. 3. Generation of the model of a parallel systemdescription (e.g., those of Lotos or Sdl), then we ob-tain an in�nite execution tree. However, many states ofthis tree are identical, in the sense that they correspondto the same control states and variables values. Then wecan merge these identical states and fold the executiontree into a graph.If we consider states with a bounded size (no un-bounded dynamic creation of processes) and variableswith a bounded domain, then the resulting graph (themodel) is �nite. However, its size is exponential with re-spect to the number of processes, and therefore usuallyhuge.2.3 Ald�ebaran presentationAld�ebaran is a formal veri�cation tool. It has beendeveloped for 10 years and integrates state-of-the-arttechniques as well as less recent, but intensively testedand applied techniques. It is distributed as a part of theC�sar-Ald�ebaran [19] toolbox.The architecture of this toolset is centered on themodel. More precisely, three main issues are addressed(see �gure 4):Model Generation: Use or design compilers from highlevel languages to generate the functions needed forthe model generation.Model Representation: Data structures and methods tostore and explore e�ciently this model.Analysis Program: Use or design algorithms and toolsto explore this model for simulation and veri�cationpurposes.Ald�ebaran is designed with respect to this decom-position. So the model exploration module presented in�gure 4 is a generic box providing what is necessary forthe exploration of the model. Once completed by a com-piler with the generation functions, this module can becoupled to an analysis program. We detail each of theseissues, and present the available analysis programs in thenext paragraphs.
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Fig. 4. Ald�ebaran principles2.4 Various techniques for e�cient representationIn order to deal e�ciently with the state explosion prob-lem, Ald�ebaran uses two di�erent, but complementarytechniques to represent the model.Enumerative representation: this kind of representationis the most classical one; sets of states or transi-tions are represented by the complete enumerationof their elements. So the size of the computer rep-resentation of these sets is proportional to the num-ber of their elements. However, the performances ob-tained with this representation, especially in memoryterms, depend greatly on the exploration techniqueused (see 2.6).Symbolic representation: in this kind of representation,a set is no longer represented by the enumeration ofits elements, but by a formula. Thus, the size of therepresentation of a set which is not proportional toits number of elements. For example, if we considerthe set of all even integers between 0 and 10, we caneither represent it by the enumeration f0,2,4,6,8,10gor by the formula fx 2 N j 9k 2 N; x = 2k and 0 �x � 10g.So symbolic techniques can lead to a very conciserepresentation of huge (even in�nite) sets, and canallow to perform analysis on models untractable byenumerative methods. On the other side, symbolicmethods involve costly computations and can also ex-plode in memory size depending on the system char-acteristics.Enumerative and symbolic representations are com-plementary. Depending on the system from which themodel is built, one of the representation can be more ef-�cient than the other. So it is important to be able towork with both.

2.5 Generation from higher-level languagesAld�ebaran is independent of any language, as themodel it works with is low level and su�ciently gen-eral. However, to ease the description of complex sys-tems, we usually use compilers from high-level languagesto produce the functions needed for the model explo-ration. Generally, the functions init (returning the ini-tial state), succ (computing the �rable transitions fromany state) and = (comparing two states) are required. De-pending on the kind of exploration to perform, it is some-times necessary to have the function pred (computingthe transitions leading to a state). We use also the func-tions pre (resp. prea) computing the transitions (resp.the transitions labelled by a) leading to a set of states.The compiler usually also indicates the exact structureof a state, a transition and a label.Ald�ebaran works with several di�erent compilers.The main compilers are C�sar which is an e�cientcompiler of Lotos description and ObjectGeode, fordealing with Sdl description. Another ad-hoc compilerallows the generation of the model from a set of ExtendedLabelled Transition Systems (ELTSs).An ELTS is a LTS extended with some local vari-ables, and whose transitions are decorated by a label,by a guard (allowing the �ring of the transition) andby a set of assignments performed on its variables. Thiskind of ELTS can be viewed as a Guarded Commandlanguage, extended with an implicit notion of controlvariable. Finally, we consider several ELTSs working inparallel. The structure of the composition and the com-munications between these ELTSs is given as an alge-braic composition expression, based either on the binaryrendez-vous and restriction operators of CSP[32], or then-ary rendez-vous and abstraction operators of CCS[48].This language is internal to Ald�ebaran and servesfor research and experimentation purposes. It is also usedas an intermediate form for transformations from higherlevel descriptions (see 4.1).2.6 Analysis programsThe analysis program is the algorithm which pilots theexploration of the model to check some properties, com-pute some informations or allow the user to simulate thesystem. It is coupled more or less tightly with the explo-ration module, depending on the kind of representationchosen. When we leave aside any interaction of the user,the e�ciency of the exploration becomes a crucial factorfor successful veri�cation. This e�ciency depends in parton the representation of the model and the data struc-tures used for its exploration, which is discussed in theprevious paragraph. It depend also on the quality of thealgorithm and on the optimizations one can bring to themodel's size.When we consider an enumerative representation ofthe model, we can choose two di�erent approaches:Working with the explicit representation: this consists inusing the exploration module to fully compute the



Protocol veri�cation with the Ald�ebaran toolset 5reachable parts of the model and store all the tran-sitions on the way, then to apply the analysis pro-gram. In that case, the analysis program can be im-plemented rather independently of the explorationmodule, and have its own way of retrieving and stor-ing the model. This is obviously limited to models of\reasonable" size, however it is sometimes necessaryfor algorithms needing a global knowledge of a modelto work on it, like some minimization algorithms.Working with the implicit representation: this consists indesigning analysis algorithms which directly interactwith the exploration module, to pilot the explorationof the model according to their own strategies. Thisallows to implement the so-called \on the y" veri�-cation. One of the bene�ts of this approach is in termsof memory, as it is not usually necessary to recordthe transitions of the graph. For some algorithms, itis even not necessary to keep an exact idea of the ex-plored states, keeping either partial information (likein Holzmann's bit-state hashing) or only some states(at least the stack in a depth-�rst search). So thesavings in memory can be considerable.Finally, working with the symbolic representation re-quires the analysis algorithm to be implemented withrespect to the API of the exploration module. The al-gorithms working with this representation tend to bevery di�erent, as they operate directly on sets of states,so in a breadth-�rst like mode. Algorithms working onenumerative representations work with individual states,generally depth-�rst.2.7 Available analysis programsThe available analysis programs of Ald�ebaran includetools for locating deadlocks, livelocks, or some executionsequences speci�ed by a regular expression.On the veri�cation side, Ald�ebaran capabilities be-long to two main categories, behavioural veri�cation andlogical veri�cation.Behavioural veri�cationBehavioural veri�cation consists in comparing two dif-ferent descriptions of the behaviour of a system. Oneshould be the system's description, the other is usuallya formalization of the system's requirements. It can bea set of execution sequences, Mscs, or another LabelledTransition System. This LTS can itself be produced fromanother high-level description, possibly more abstract orfrom another point of view. Two examples of such be-havioural requirements are shown in the �gure 5.A crucial point with behavioural veri�cation is thede�nition of an adequate comparison relation. As wewant to compare behaviours, a good candidate for a com-parison relation should satisfy most or all of the followingcriteria:preservation of execution sequences : this is the basis ofbehavioural comparison, it ensures that two LTSs
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Order PreservationFig. 5. Examples of behavioural requirementssaid equals represent the same sets of execution se-quences (equivalence of language or trace equiva-lence).abstraction : we would like to compare two di�erent de-scriptions of a same system, at di�erent levels of ab-straction. This means for example that a given eventcan be present in the more detailed description, andabsent from the more abstract one, or an event ofthe most abstract can be re�ned into a sequence ofevents in the more detailed description. So the com-parison relation should take into account some ab-straction/observation criteria to allow the compari-son of the descriptions at the same abstraction level.This is usually done by de�ning a set of observableevents, and by considering other events as internal,thus anonymous or invisible.preservation of the branching structure : two LTSs canrepresent the same language, yet be di�erent in theirstructure. This structure reects the internal choicesmade in the corresponding system. These internalchoices can often inuence the interactions one sys-tem has with another. So it is important to take theminto account when verifying some properties.Thus, the comparison relation is either a preorder rela-tion, checking the behaviour inclusion, or a equivalencerelation, checking the behaviour equality.The relations considered in Ald�ebaran belong tothe class of the simulation and bisimulation [50] rela-tions. Simulation relations are preorder relations, whereasbisimulation relations are equivalence relations. Theserelations respect all the criteria de�ned above. By vari-ation of the abstraction criteria, and of how internal ac-tions are considered, we obtain a lattice of relations(see�gure 6) from the weakest, safety equivalence, to thestrongest, strong bisimulation, an interesting compro-mise being the branching bisimulation. Strongest heremeans the relation which distinguishes more LTSs. Thestrength of one relation is directly related to the kind ofproperties it preserves. For example, the strong bisim-ulation preserves every properties (safety or liveness),where the safety equivalence preserves only safety prop-erties. So choosing the right relation depends �rst onwhat is to be veri�ed.
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Fig. 6. Lattice of bisimulation relationsMinimizationIf we have two LTSs equivalent for one of these bisimu-lation relations, obviously it is better to work with thesmallest one (in term of number of transitions), as ver-ifying properties on it is equivalent to verifying proper-ties on the other. As these equivalence relations de�neequivalence classes for LTSs, we would like to be ableto pick one of the smallest in this class, and to continueto work with it. Some of the algorithms for behaviouralcomparison does in fact compute this minimal equivalentLTS. Two of these algorithms [49, 5] are implemented inAld�ebaran, and are in e�ect used also to produce thisminimal LTS.Logical veri�cationLogical veri�cation consists in checking if the system ver-i�es a property expressed as a temporal logic formula.Temporal logics allow to express overall properties of aprogram execution, such as liveness, mutual exclusion,fairness, : : : etc. These logics can be interpreted overLTSs: each formula exactly represents a class of LTSs,and the veri�cation problem consists in deciding whetherthe LTS associated to a given program belongs or not tothis class. In particular, whenever the LTS is �nite, thiskind of veri�cation can be fully automated, which gaverise to the actual model-checking activity [51, 16].Numerous temporal logics have been proposed in theliterature [46, 51, 16] to express program properties. Ba-sically, most of them are built upon propositional calcu-lus or �rst-order logic (interpreted over program states,i.e., variables and control points), extended with a set oftemporal operators to reason about program execution.Two family of logics are usually distinguished: linear-time logics, expressing program execution as a set of ex-ecution sequences; and branching-time logics, expressingprogram execution as an execution tree.The logic we consider within Ald�ebaran is the so-called alternation-free �-calculus [43]. This is a branching-time logic, based upon the propositional calculus with�x-point operators. More formally, its formulae are de-scribed by the following grammar:

' ::= T j X j :' j ' ^ ' j ' _ ' j<a> ' j [ a ] ' j �X:' j �X:'The intuitive semantics of these formulae is de�nedon the state-space of an LTS S as follows:{ T (true) is true in any state of S;{ <a> ' is true in state p if there exists an a-transitionfrom p leading to a state satisfying ';{ [ a ]' is true in state p if each a-transition from pleads to a state satisfying ';{ �X:' and �X:' denote the usual greatest �x-pointand least �x-point operators (where X is a free vari-able of ' representing a set of states of S);{ :, _ and ^ denote the usual boolean operators: nega-tion, disjonction, and conjonction.From this low-level speci�cation formalism, severalCtl-like macros operators are proposed. These macrosallow to express many usual program requirements, suchas: \there is no deadlock", \any a action is eventuallyfollowed by a b action", \It is not possible to perform ana action followed by a c action without performing a baction between them", : : : etc.3 Implementation of these techniques withinC�sar-Ald�ebaranWe present in this section how the principles described inthe previous section are implemented in Ald�ebaran. Inparticular, we take the point of view of the model's repre-sentation, and present for each di�erent type of represen-tation what technique is used and what kind of analysisis possible.3.1 Explicit Ald�ebaranHistorically the �rst model-checking tools worked ac-cording to the �gure 1:{ �rst, a compiler is used to produce explicitely themodel;{ then, the model-checking tool gets back this modeland builds its own explicit representation;{ �nally, analysis is performed on this internal repre-sentation.Obviously, such an approach su�ers directly from thestate explosion problem, but it allows to apply nearly allof the analysis programs interesting for veri�cation.With explicit representation, Ald�ebaran allows tominimize a LTS or to compare two LTSs e�ciently, us-ing various equivalence or preorder relations. The keyof this e�ciency is the implementation of an algorithm,which is an adapted version of the Paige and Tarjan al-gorithm [49, 21]. Moreover, as a LTS is represented ex-plicitly by its transition relation (a transition is no morethan a number, a label, a number coding respectivelythe source state, the identi�cation of the transition ac-tion, the target state), the tool may be interfaced veryquickly with compilers translating a high level descrip-tion to LTS, e.g. compilers for Lotos, Sdl.



Protocol veri�cation with the Ald�ebaran toolset 73.1.1 The Algorithm PrincipleIntuitively, Strong bisimulation puts together in a sin-gle class states which have the same behaviour in termsof elementary steps, i.e a transition. This means thattwo states are in the same class if they reach the sameclasses via a transition. The algorithm solves the rela-tional coarsest partition problem which is an instance ofthe partition re�nement paradigm. A partition P of a setS is a set of pairwise disjoint subsets of S whose unionis all of S. In the context of formal veri�cation, the re-lational coarsest partition problem may be expressed asfollows: given a LTS and an initial partition Pinit of theset of states, �nd the coarsest re�nement P of Pinit suchthat P is compatible with the transition relation. Thelast property is another characterization of bisimulationsrelations.The algorithm uses a primitive re�nement operationthat generalizes the one used in Hopcroft's algorithm: ifC and C' are two classes of the current partition, then,using the function pre, C is split into two subsets: onewhose states have a successor in C' and the other whosestates have no successor in C'.A naive implementation of this idea leads to an al-gorithm proportional in the size of the product betweenthe number of states and the size of transition relation.Paige and Tarjan proposed an optimization which keeptrack, for each state the number of successors in a reach-able class.3.1.2 Explicit model minimizationFor bisimulation equivalence, the LTS is preprocessed,following the abstract criterion which parametrizes theequivalence relation, and then minimized using the Paigeand Tarjan algorithm with the universal partition as ini-tial partition. For example, considering the observationalequivalence, the preprocessing consist in{ detecting maximal strongly connected component ofthe relation labelled with the internal action � ,{ computing the transitive closure of the transition re-lation labelled with � ,{ minimizing the result using the strong bisimulation.3.1.3 Explicit model comparisonGiven two LTSs, each of them is minimized following theequivalence relation under consideration, and the LTSde�ned as the union of the two resulting LTSs is mini-mized. If the two initial states are in the same class, thenthe two LTSs are equivalent.3.1.4 PerformancesLet m, n and c be respectively the number of states,transitions and the maximal number of successors by anaction. The theoretical complexity of the partition algo-rithm, implemented in Ald�ebaran is in O(c �m logn).

This allow the minimization of LTS about a few thou-sands of states and a few millions of transitions on aSparc 20 with 128 MB of memory.This point is particularly interesting using a compilerfor high level language. For example, strong bisimulationreduces usually the size of ObjectGeode LTS by 2 to10 factor, with very good performances : for example,the LTS of a satellite control protocol was reduced from147007 states and 555877 transitions to 66695 states and254030 transitions in 6 min on a Sparc 20 with 128MBof memory.Minimization is useful especially for two purposes,�rst the possibility of visualizing the resulting minimalmodel, second the possibility of speeding-up the veri�-cation process.Visualization of the minimal modelDuring the design of a distributed system, it becomesrapidly di�cult to understand how the di�erent interac-tions occur. Trying to understand the behaviour of thesystem by interactive simulation does not always help.Too often the key events are bogged down in too manyinsigni�cant events. However, once the LTS has beenminimized, it is possible to draw it to grasp its structure,and sometimes discover and understand some behaviourswhich were hidden in the description's complexity. It isparticularly e�ective when choosing a handful (usually2 or 3) of key events and hiding everything else. Theresulting minimized model if usually very small, yet of-ten more complex than one expects. The Cadp toolboxintegrates a tool for the automatic drawing and inter-active edition of LTS. It allows to picture rapidly andeasily the structure of these small LTSs (at most 10 to20 states). Even if this LTS remains too big to be drawn,the C�sar-Ald�ebaran simulator still allows to exploreit interactively. So combining the abstraction, minimiza-tion and visualization allows to do what is sometimescalled \visual veri�cation", that is verify \on sight" ona small enough model that a property is correct.Speeding-up the veri�cation processAnother interest of minimization is purely a perfor-mances aspect. Usually, the veri�cation process includesthe checking of many properties, so it involves manymodel's explorations. Some of the properties will needonly a simple exploration (e.g. for deadlocks), others thechecks of liveness conditions (e.g. for livelocks), someother the use of elaborate algorithms involving the com-putation of bisimulations. So if before performing allthese checks, it is possible to generate a minimized modelwith respect to a suitable equivalence, the whole veri�-cation process will be sped up by at least the reductionfactor (and usually much more, as many of the veri�ca-tion algorithms involved are not linear).3.2 Implicit Ald�ebaranAs already mentioned in section 2, one of the main mo-tivations for using an implicit model representation is



8 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent Mounierto partially avoid the state explosion problem occurringwhen using an explicit one. However, to bene�t of thisadvantage, program analysis has to be performed on-the-y, which means that the corresponding algorithms arebased on a forward traversal of the underlying LTS.We present here the common interface shared by thecomponents of C�sar-Ald�ebaran to access an implicitrepresentation of an LTS, and then the main veri�cationcapabilities o�ered by this toolset on such a representa-tion.3.2.1 A common interface to handle implicit LTSsThe purpose of this interface is to provide the veri�cationalgorithms with an uni�ed access to an implicit LTS rep-resentation, and that independently of the compiler usedto produce this LTS from a high-level source program.However, as a matter of fact, the internal architectureof the interface depends on this compiler, as describedbelow and illustrated on �gure 7.
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Fig. 7. A common interface to handle implicit LTSsLotos programs and ELTSs composition expressionsOriginally designed by H. Garavel to provide on-the-y veri�cation facilities for Lotos programs, the Open-C�sar environment [26]) implements the Model Explo-ration Module presented in section 2 as follows:{ Model generation is implemented by a graph mod-ule, namely a set of C data types to represent thestates and labels of the LTS, and a set of C func-tion for computing on-the-y its transition relation(functions init and succ, delivering respectively theinitial state and the �rable transitions from any givenstate). Of course, although the interfaces of this mod-ule can be \standardized", it body depends on thesource program under consideration. Therefore, ithas to be automatically generated from this sourceprogram.

{ Model representation is implemented by a C library,the storage module, providing data structures and as-sociated primitives to e�ciently store the part of thestate space of the LTS that has to be memorized dur-ing its exploration. Data structures currently avail-able are the following: a state table with hash accessto perform exhaustive simulation, a state queue anda state stack to manage breadth-�rst and depth-�rstexploration, a bitmap table to implement Holzmann'sbit hashing technique [33, 34], etc. As it is based onan abstract representation of states and labels, thestorage module is independent of the program underveri�cation.Practically, veri�cation tools are build upon this en-vironment as follows:The kernel of the veri�cation algorithm is provided asa C program, the so-called analysis program. This kernelis quite independent of the program under veri�cationand access it only through the graph module interface.Depending on its storage policy, it can also use someof the data structures available within the storage mod-ule. A graph module is then generated from the sourceprogram under veri�cation and the link edition of thesethree modules produces an analysis tool dedicated tothis particular source program. Examples of such anal-ysis tools include interactive or exhaustive simulation,deadlock detection, execution sequence search, etc.More recently, the following developments have beenperformed to extend this initial environment:{ a graph module generator for ELTSs compositionexpressions;{ two analysis programs, respectively dedicated to be-havioural and logical veri�cation, and described insections 3.2.2 and 3.2.3 below.Sdl programsThe successful results obtained with on-the-y ver-i�cation of Lotos programs lead us to extend implicitLTS representation withinAld�ebaran to the Sdl FDT.To this purpose, a similar environment of Open-C�sarhas been designed upon the ObjectGeode compiler [39].More precisely, this environment is implemented throughan Application Programming Interface (API) to the Ob-jectGeode simulator, graciously provided by Verilog.This API is written in C and it makes available thefunctions used by the simulator to explore the underlyingLTS (init and succ), as well as data structures for statestorage (i.e., stacks, bitmap tables, : : : etc.). Moreover,it also gives access to the scenario generation functions,thus diagnostic sequences computed by Ald�ebaran canbe played back by the simulator (see section 3.2.4).3.2.2 Behavioural veri�cation using implicit LTSsVerifying a behavioural speci�cation consists in compar-ing two LTSs with respect to an equivalence or a pre-order relation. To this purpose an e�cient algorithm has



Protocol veri�cation with the Ald�ebaran toolset 9been presented in section 3.1.4, able to deal with explicitLTSs.Unfortunately this algorithm is of no interest whenone of these LTSs has to be accessed only through animplicit representation. Indeed, it is based on partitionre�nements of the state space of the two LTSs, whichrequires a global knowledge of their transition relations.This is therefore not compatible with an implicit repre-sentation, since a pre-computation of the transition re-lation would loose the memory gain induced by such arepresentation.In this context, a new algorithm have been proposedfor comparing two LTSs with respect to a simulationor a bisimulation relation [24]. This algorithm is basedon a traversal of the LTSs, thus allowing on-the-y be-havioural veri�cation from an implicit representation.More precisely, it relies on the fact that the existence ofa bisimulation relation between two LTSs can be char-acterized by a criterion on the execution sequences ofa synchronous product of these two LTSs. This crite-rion can be checked by exhaustive enumeration of theseexecution sequences, and therefore carried out during adepth-�rst exploration of the synchronous product, with-out requiring to store the transition relations of the twoLTSs(only their state space has to be stored). When oneof the two LTSs under comparison is deterministic (i.e.,when its labelled transition relation is in fact a function),then this check can be reduced to a simple reachabilityproblem on the synchronous product. This happens tobe often the case in practice, since the LTS describingthe property to be veri�ed is usually deterministic.This algorithm has been implemented for several sim-ulation and bisimulation relations, whose most inter-esting in practice are strong (bi)simulation, branchingbisimulation, safety equivalence and safety preorder.The worst case time complexity of this algorithm isin O(m1:n1:m2:n2) in the general case (resp. O(m1:m2)when one LTS is deterministic) where n1, n2 and m1,m2 denote respectively the number of states and transi-tions of each LTS. However, it appears in practice thatthis theoretical complexity is far to be reached, and thatthe comparison times are close to the ones obtainedon explicit LTSs with the Paige & Tarjan algorithm.Moreover, as transition relations are never stored, thisalgorithm could be applied to LTSs with a large sizetransition relation (a few millions of transitions), thatcould not be handled using an explicit representation.Finally, thanks to the on-the-y approach, this algo-rithm is particularly e�cient when the two LTSs arenot related (i.e., when the behavioural speci�cation un-der check happens to be false) since in this case only asmall part of the state space of their synchronous prod-uct has to be explored and memorized.3.2.3 Logical veri�cation using implicit LTSsThe good results obtained in practice when verifying be-havioural speci�cations on-the-y naturally lead us toinvestigate how this same kind of algorithm could be ex-tended to the model-checking of logical speci�cations.

It turned out that boolean equation systems (Bes,for short), with mixed �x-point equations, are a suitableframework to formalize such algorithms [1, 60, 2]. Moreprecisely, we proposed a general algorithm for computingthe solution �(Xinit) of a given Bes E , where Xinit is adistinguished variable of E . This algorithm can be viewedas a generalization of the one described in section 3.2.2: itrelies on depth-�rst traversals of the dependency graphof the Bes, starting from variable Xinit. During thesetraversals a solution is computed for each variable of Efollowing a post�xed order.This general algorithm has been implemented withinAld�ebaran and applied to the veri�cation of alternation-free �-calculus formulae on implicit LTSs. The resultsobtained from this implementation are quite similar tothe ones obtained when verifying a behavioural speci�-cation: the worst-case time complexity is rarely reachedin practice, and, since the transition relation of the LTSis never stored, large size LTSs can be dealt with (a fewmillions of states and transitions). Moreover, here againthis algorithm is particularly e�cient when the logicalformula under check happens to be false, since only asmall part of the LTS has to be computed in such case.3.2.4 Diagnostic computationAs shown in this section, performing on-the-y veri�ca-tion on an implicit LTS is particularly attractive whenthe speci�cation under check happens to be false. Thus,this kind of representation is very useful in the earlystages of the veri�cation process, when the program un-der check usually still contains several errors. In this situ-ation the veri�cation tools are mainly used for debuggingpurpose, and therefore they have to produce accurate di-agnostic elements.However, since the veri�cation algorithms are basedon a depth-�rst exploration of the corresponding LTS,whenever an incorrect state is encountered, an executionsequence leading to this state is available in the execu-tion stack of the algorithm. Although not su�cient infrom theoretical point of view, this diagnostic sequenceusually provide enough information to identify the error(possibly by using a simulation tool to replay it).3.3 Symbolic Ald�ebaranUsing symbolic techiques for the representation of themodel can allow to push the limits of the state explosionproblem. However, this implies the design of special ver-i�cation algorithms and of encoding functions to obtainthe symbolic representation of a model from the system'sdescription.Binary decision diagrams (Bdds) [9] have provedto be very e�cient for representing and manipulatingboolean functions symbolically in many application do-mains. Their success relies on two important properties:they are canonical representations and allow e�cient(graph-based) computations with �nite functions.



10 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent MounierWe have implemented an e�cient procedure to builda symbolic model representation using di�erent types ofdecision diagrams for systems described by communicat-ing ELTSs. We propose also a suitable interface to thisrepresentation allowing the rapid development of com-plex symbolic veri�cation tools.3.3.1 The Symbolic Model InterfaceThe Symbolic Model Interface (SMI) is a library whichprovides for the e�cient construction and manipulationof symbolic representations (with decision diagrams) for�nite state systems described as networks of communi-cating ELTSs. The SMI components, illustrated on �g-ure 8, are briey described below.
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Fig. 8. The SMI architectureDecision diagrams moduleThe decision diagrams module provides an uniform frame-work for the use of Dd in symbolic veri�cation. It con-sists of a set of C++ generic classes handling decisiondiagrams, variables, variable lists, substitution lists, etc.These classes can be easily instantiated with any par-ticular Dd implementation. We have already done thisfor some e�cient Bdd implementations: TiGeR Bdds[17], Colorado University Cudds[56], Berkeley Bdds[8]and Verimag Bdds[52]. We have also experimented aparticular version ofmultivalued decision diagrams (Mdds),the Mdds with binary branching, developed at Verimag[6].Symbolic model generation moduleThe generation module provides functions to build the

symbolic model representation. It uses the decision di-agram module, i.e. a symbolic representation consistingof a set of decision diagrams which encode the modeltransitions and the model initial state set.The generation follows a compositional approach.First, a representation is built independently for eachELTS and then all these representations are composedto obtain the whole symbolic representation.The symbolic model generation is parameterized withvarious options. We can use two di�erent semantics forELTSs and composition operators: the �rst one, withbinary rendez-vous and restriction operator CSP-like[32], and the second with n-ary rendez-vous and ab-straction operator CCS-like[48]. We can a priori com-pute the reachable states using di�erent strategies (tak-ing all previously reached states or only the frontierstates to compute the next states). This computationcan be improved using the simultaneous composition ofasynchronous transitions. We allow partitioned transi-tion representations. We can also explicitly specify theDd variables order corresponding to the system vari-ables.The module consist of a set of C++ classes model-ing all the ELTSs concepts: processes, variables, expres-sions, assignments, transitions, etc. Speci�c methods tobuild corresponding decision diagrams are given for anyof them. Finally, the whole model is represented as aninstance of the SmiModel class, whose interface is:class SmiModel f...public:// basic setsSmiDDStateSet GetInitialStateSet();SmiDDStateSet GetReachableStateSet();// successors / predecessors computationSmiDDStateSet GetPost(SmiDDStateSet aSet, char* aLabel);SmiDDStateSet GetPre(SmiDDStateSet aSet, char* aLabel);SmiDDStateSet GetPreTilda(SmiDDStateSet aSet, char* aLabel);// transitionsSmiDDTransition GetTransition(char* aLabel);SmiDDTransition GetTauTransition();SmiDDTransition GetGlobalTransition();// model initializationvoid Initialize(...);gSymbolic model analysis moduleThe symbolic model analysis module can be consideredas the main program. Usually it is written by handand contains the implementation of the veri�cation al-gorithm. This module determines how the model is ex-plored, what kind of analysis is performed (forward,backward), which states are stored, etc.Basic operations on sets, such as union, intersectionor complementation are directly mapped to Dds func-tions. The inclusion or the equality test are straight-forward using Dds. Some specialized functions whichperform the model exploration, e.g. to compute the ini-tial/reachable state set (init,reachable) or the succes-sors/predecessors for a given state set (post,pre) are alsoprovided.



Protocol veri�cation with the Ald�ebaran toolset 11For example, consider a simple algorithm which com-putes the reachable states for a given model. The imple-mentation using the SMI library looks as follows:SmiModelManager manager; // the managerSmiModel* model = NULL; // the modelSmiDDStateSet reach, prev; // two state sets// create the model from the \example" �lemodel = manager.CreateModel(\example");model->Initialize(); // build the symbolic representation// the reachable state computationreach = model->GetInitialStateSet();do fprev = reach;// get and store next statesreach = SmiDDOr(prev, model->GetPost(prev));g while (prev != reach)// print the reachable states numberprintf(\%lf reachable states",model->Cardinal(reach));3.3.2 Symbolic analysis toolsUsing the SMI library we have implemented two ver-i�cation algorithms: a �-calculus model checking algo-rithm and a minimal model generation algorithm wrtvarious equivalence relations. The algorithms principlesand their performances are briey described in the restof this section.�-calculus model checkerThe model checker performs the backward evaluationof �-calculus formulae over symbolic model representa-tions. The algorithm for a formula '0 works in two steps:{ Initially, the set [['0]] of model states satisfying theformula '0 is constructed. All needed operations arestraightforward to implement using the SMI func-tions. The basic boolean expressions are directly eval-uated over the system variables and a Dd for thesatisfying states is obtained. The next state formulae(<a> '; [ a ]') are evaluated using the primitivepre. The �xed point formulae are successively iter-ated until a stabilized state set is obtained. Finally,any boolean combination of formulae is reduced tothe corresponding set operation (complementation,intersection, etc).{ After this stage, one out of three di�erent decisionprocedures can be invoked. The standard evaluationprocedure tests if the initial state set init is includedin [['0]]. The forward analysis procedure checks ifexists some reachable states satisfying the formula,if the intersection [['0]]\reachable is not empty. Ifsuch states exist, a shortest sequence to one of them isalso extracted. Finally, the invariance checking pro-cedure tests if the formula is satis�ed by the initialstates and if it is always preserved by one transitionstep.

Minimal model generatorClassical minimization tools (see section 3.1.4) usuallydissociate two tasks for computing the minimal model.One task is to compute the partition re�nement whichactually corresponds to the minimization, the other isto compute reachability from the initial states. The re-sult is a minimal and reachable model. The computa-tion of reachability (which amounts to the production ofthe explicit model as in section 3.1.4) su�ers from thestate explosion problem. It would be better to be ableto compute the partition re�nement and reachability atthe same time.This is the aim of the Minimal Model Generation(Mmg)algorithm [5]. Given a transition relation and an initialpartition, this algorithm allows to compute the minimaland reachable model up to bisimulation equivalence (cur-rently, strong, weak and branching bisimulation). As itis the case for the Paige and Tarjan algorithm, this samealgorithm can be used to compare two models, againwithout having to compute reachability beforehand.This algorithm relies on a symbolic representation ofthe transition relation. It is for example also used forthe analysis of timed automata with a symbolic repre-sentation based on linear inequalities [57]. We adaptedit for a use with decision diagrams in Ald�ebaran, withinteresting results [20].3.3.3 PerformancesThese implementations has been successfully tested onseveral protocols. For example the veri�cation of the mu-tual exclusion property in a model of the token ring pro-tocol [27] with more than 5 � 108 states takes 1 hourand 16 minutes using the symbolic model checker. Thesame model can be minimized by the symbolic Mmgwrt the branching bisimulation in less than 10 minutes.Good results can be mentioned also for the Fischer's mu-tual exclusion protocol: in a discrete time version with12 processes (the model having more than 1013 states!)the mutual exclusion property was instantaneous veri-�ed (less than 3 seconds). Further results obtained usingthe symbolic Ald�ebaran can be found in [7] where ane�cient approach for the symbolic veri�cation of asyn-chronous circuits was proposed.4 Ald�ebaran at work4.1 Compositional generationOne of the possible approaches to overcome the stateexplosion problem inherent to model-based veri�cationmethods relies on the following observation: instead ofconsidering the initial LTS S obtained from the pro-gram description, veri�cation can be performed on itsquotient S=R, where R is an equivalence relation pre-serving the properties under check. However, the maindi�culty remains to obtain this quotient without having�rst to explicitly generate the whole LTS S. In partic-ular, a �rst solution to this problem has already been



12 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent Mounierproposed in section 3.3.2, the Minimal Model Genera-tion algorithm, based on a symbolic representation ofS.4.1.1 Compositional LTS generationWe present here an alternative solution, when the pro-gram under consideration is described by a compositionexpression between communicating LTSs. More pre-cisely, provided that R is a congruence with respect tothe operators of this expression, the quotient S=R can beobtained following a compositional approach [59]: it con-sists in (repeatedly) generating the LTS S0 associated toa given sub-expression, and replacing this sub-expressionin the initial one by the quotient S0=R.
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Fig. 9. Compositional generationFigure 9 illustrates this approach for a compositionexpression E build from LTSs S1, S2 and S3 (in theleft-hand side of the bold line):1. each LTS Si is replaced by its quotient Si=R;2. S12 is generated by composition of S1=R and S2=R,then minimized into its quotient S12=R;3. S12=R is then composed with S3=R, leading to LTSS123;4. Finally, S123 is minimized itself to produce the quo-tient S=R associated to E.Thus, the whole LTS S never has to be generated.Unfortunately, this straightforward technique is notalways so appealing in practice. In particular, interme-diate LTSs (like S12 in the above example) may oftencontain lots of unnecessary execution sequences, forbid-den by the synchronizations expected by its environment(the rest of the composition expression). In the worstcases, the size of these LTSs may even exceed the one ofS, leading to a failure of this approach.4.1.2 Reducing the size of intermediate LTSsAn appealing solution was proposed by [31, 29] and [14,15] to reduce the size of the intermediate LTSs producedduring a compositional generation. Intuitively, it consistsin expressing the environment of a sub-expression as aninterface, i.e., an LTS representing a set of \authorized"execution sequences that can be performed by this sub-expression. Thus, using a projection operator, only a re-stricted LTS associated to a sub-expression is generated,

in which useless execution sequences have been cut o�according to its corresponding interface.These results obtained by [31] and [14] lead us togeneralize this approach to the composition expressionsused within C�sar-Ald�ebaran [44]. To this purpose,a suitable projection operator has been de�ned and im-plemented upon the implicit LTS interface (see sec-tion 3.2.4), thus allowing to generate on-the-y the re-stricted LTS associated to a sub-expression of a compo-sition expression. Two kinds of interface can be handledby this operator:{ \exact" interfaces, that are automatically computedfrom the environment of the sub-expression;{ \user-given" interfaces, that can be supplied by theuser when the computed ones are not su�cient (i.e.,they do not restrict enough the sub-expression).Note that in this latter case, the correctness of theseinterfaces can be automatically checked at the end ofthe compositional generation process.Finally, a compositional generation tool has also beenimplemented withinC�sar-Ald�ebaran. This tool takesas inputs a composition expression E (extended withprojection operators) between LTSs, and one of thebisimulation relation R accepted by Ald�ebaran. Then,it automatically generates the LTS quotient S=R asso-ciated to E by performing corresponding calls to thecomponents of C�sar-Ald�ebaran.4.1.3 Practical resultsThe practical results obtained so far on large size case-studies proved the interest of compositional generation,in particular when symbolic representations are too largeto e�ciently work on. As an example, compositionalgeneration has been successfully applied to the veri�ca-tion of an atomic multicast protocol (the rel/Rel proto-col [55]): a LTS quotient of about 1 million of states wasgenerated in a few hours on a Sun SS 20 workstation,whereas several days of computation on the same work-station were necessary to produce the symbolic represen-tation of the whole LTS(containing about 200 millionsof states).4.2 Support for automatic conformance test generationAnother example of application of theAld�ebaranmod-ularity is the tool Tgv(for Test Generation with Veri�-cation technology).Tgv is a prototype for the automaticgeneration of conformance test suites [22, 23]. It is devel-oped jointly byVerimag and the Inria project Pampa.4.2.1 Working principlesTgv takes as input the model of a formal speci�cation,a test purpose and a test architecture. Tgv outputs testsuites either as an LTS or in the standard language forconformance test suites Ttcn. The external view of the
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Test caseFig. 10. External view of TGV.Tgv package is illustrated in Figure 10. The generationof a test case can be decomposed in several functionalparts which are performed by di�erent tools. We presentin more details each of these partsTest architectureThe Test Architecture describes how the ImplementationUnder Test (IUT) is placed in its testing environmentand how the tester communicate with the IUT. The com-munications with the IUT usually go through Points ofControl and Observation(PCO). A Test architecture canbe quite complex, depending on the tester (which can beitself composed of several coordinated testers) and thePCOs (which can be separated from the IUT by somelayers of the testing environment). More details can befound in the Itu-T recommendation ISO 9646 [37].The Model of the implementationThe tester has an external, black box view of the IUT.It can only send outputs to and receive inputs from theIUT, it cannot observe any internal actions, much lessthe state of the IUT. Outputs are controllable actionsinitiated by the tester and sent to the IUT whereas in-puts are observable actions, initiated by the IUT andreceived by the tester.In contrast, a formal speci�cation generally modelsthe internal view of the system, i.e. the behaviour of thesystem with its internal actions and states changes.To produce a model of the IUT in its testing environ-ment, we replace internal actions by invisible transitionsdenoted by � . Then these �s are abstracted away withrespect to the weak bisimulation and the result is de-terminized. Other speci�cation transformations are alsoperformed to take care of asynchronous communicationsbetween the IUT and the tester.

The result is a Input-Output LTS (IOLTS) , ab-stract (no more reference to internal action) and deter-ministic.Test purposeA test purpose de�nes a pattern on some particular in-teractions between the IUT and the tester. This patternis usually extracted from the system's requirements. Soa test purpose describes the desired test cases for testingthe conformance of the system with respect to a givenrequirement.A test purpose is modeled as a direct acyclic graphwith a set of distinguished accepting states (indicatingsuccess of the test). In the current version of Tgv it isgiven as a LTS, extended with attributes on states, fordistinguishing accepting states.4.2.2 Test generation processThe current version of Tgv works either with the im-plicit or explicit representation of the model. In the ex-plicit case, we use Ald�ebaran to produce the abstractand deterministic IOLTS modeling the implementation.In the implicit case, we apply a specially designed algo-rithm which performs abstraction and determinizationon the y. The rest of Tgv processing is done on thisexplicit or implicit abstract and deterministic IOLTS.Test graph generation This is the kernel of the tool. Thealgorithm is based on a depth-�rst traversal of a kind ofsynchronous product between the IOLTS of the modeland the LTS representing the test purpose.During the traversal, two di�erent things are done:{ the algorithm checks that the test purpose is at leastfeasible.{ meanwhile, a skeleton graph of the test case is syn-thesized.Some transitions are decorated with the verdicts(PASS), PASS, FAIL and INCONCLUSIVE.Finally, timers management is added to the test case.Timers are used in test cases when a reaction of theimplementation is expected but one does not want towait for an unbounded time because an error that isnot observable may have occurred. The di�culty in themanagement of timers is that concurrency and non-determinism should not be treated in the same way.Timers are managed by Tgv in the following way. Atimer tm is associated to each possible reception of themessagem by the tester. The timer tm is started in thelast transition which necessarily precedes the receptionof m. When the reception of message m is expected,the expiration of tm may occur. Thus there is always achoice between reception of m and reception of tm i.e.timeout of tm. In each transition sequence, a timer tmis cancelled in a transition following its start and as soonas the reception of m is no more possible in the future.



14 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent MounierOnce completed with timer management, the result-ing LTS can be translated into Ttcn or be kept in theAld�ebaran format for translation in other proprietarytest cases formats.4.2.3 Advantages in using TgvFormal techniques developed in the area of veri�cationcould be useful and pro�table for the automatic gener-ation of test suites. The main gains are qualitative andquantitative:{ qualitative the comparison between test suites auto-matically generated with hand-written test suites hasshown some errors to be detected in the manual test,{ quantitative Tgv already provides a productivity (oftest cases) improvement of +25%.4.3 ConclusionThe �rst prototype of Tgv was developed in a few weeks,by reusing some modules of Cadp and by adapting somee�cient veri�cation techniques, such as on-the-y veri-�cation, synchronous product of LTSs and behaviouralequivalence [22]. The actual version continues to evolvewith Ald�ebaran, in particular for the implicit intercon-nection with the ObjectGeode tool. This version shouldbe the basis for the industrial transfer of Tgv in thefuture version of ObjectGeode.5 Practical use of Ald�ebaranAld�ebaran is actually distributed as a part of theC�sar-Ald�ebaran toolset in more than 130 sites. It isused in many places for teaching purposes. Ald�ebaranis also used in several signi�cant case-studies. We presentin this section some of these case studies.5.1 TelecommunicationsGeneration of test suites for the Drex protocolThe Drex protocol is part of an industrial contractsponsored by theDgaDirection G�en�erale pour l'Armementof the French Army. Partners of this contract are Cnet(Centre National d'Etude des T�el�ecommunications), CapSesa R�egions,Verilog, the Pampa team from Irisa andVerimag.The goal of this contract was to �nd out if the auto-matic generation of test sequences is feasible and pro�t-earning in industrial context. Three tools have been stud-ied and/or developed, TV�eda (Cnet), Topic (Verilog)and Tgv (Inria). In order to compare the methods andthe tools, these three tools had to generate test suites,starting from the same speci�cation Sdl speci�cationof the Drex protocol and test purposes in natural lan-guages and to compare the results with hand writtentest suites. It appears that �nally the consortium agreeson the di�erent components of a realistic test generator,

and that Tgv represents a good demonstrator of theseideas.TheDrex protocol runs on a network called Socrateand connects several MTBX (Telecommunication Meansof Air-Bases). Only a subset of the services o�ered by theDrex protocol have been speci�ed in Sdl: Priority, Rov-ing User, Call Forwarding, Implicit Partitioning of Users,Safety path and User to User Signalling. A generic Sdlspeci�cation of around 2000 lines has been written andinstantiated for each service.Results obtained using Ald�ebaran and TgvThe time needed for the generation of a test case hasto be separated into two parts: the time needed for thegraph generation with G�eode which took between 3.5sand 400s and the test case generation with Tgv whichtook between 1s and 2s.As we have already mentioned, we have discovered er-rors in the hand written test suites, and we have provedthat automatic generation provides a productivity im-provement.Other recent telecommunication case studies include :feature interactions in telephony systems [42], Isdn UserPart protocol [41], Sscop protocol (ongoing work),Viresprotocol (ongoing work)5.2 Hardware protocolsVeri�cation of the Powerscale bus arbiter protocolPowerScale is the multiprocessor, PowerPC-based archi-tecture used by Bull in its Escala series of workstationsand servers. In this case-study [13], the main componentsof this architecture (processors, memory controller andbus arbiter) were described by 760 lines of Lotos.Results obtained using Ald�ebaranThis case study is a good illustration of the power of com-positional generation. It was not possible to generate thewhole model, and on the y veri�cation techniques failedfor lack of memory. Using compositional generation, itwas possible to break the system into three main parts,generate the corresponding LTS, and after minimizationof these LTSs, generate a bisimulation-equivalent LTS ofthe whole system. This resulting LTS was 52320 statesand 176284 transitions, so it became easy to perform allneeded veri�cations.5.3 Embedded systemsDms Design Validation (Ddv)Ddv [3] is a case study sponsored by Esa-Estec anddeveloped in collaboration Matra-Marconi Space(Mms)and Dornier. Dms (Data Management System) is thecontrol system of a satellite. Is is responsible for the de-tection and treatment of failures.



Protocol veri�cation with the Ald�ebaran toolset 15One of the goals of this study was to de�ne a method-ological framework for specifying and validating fault tol-erant systems. It is based on the combined use of Sdlfor the speci�cation of the system and of the Fault De-tection, Isolation and Recovery (Fdir) methodology.Results obtained using Ald�ebaranFor this case study, Ald�ebaran was used in combina-tion with G�eode (ObjectGeode was not available atthe time), with only the explicit connection.Two Sdldescriptions were produced : one functional descriptionwritten by Mms whose main aim was the veri�cation ofthe requirements, and one architectural description writ-ten by Dornier, whose main aim was code generation.The requirements themselves were established during theFailure Mode E�ects and Criticality Analysis (Fmeca).The aims of the study was to verify that both descrip-tions were correct wrt the requirements. Each Sdl spec-i�cation was about 4000 lines of comment-free Sdl-88.We were able to �nd some errors and prove some re-quirements on the �rst one. We present more detailedresults on the second one, namely the Architectural de-scription with Fault Injection, which proved to be themost di�cult to verify.The complete model was too large to be generated.Instead, a classical partial generation method was ap-plied: using the G�eode simulator, we produced an exe-cution sequence leading the system in an interesting statefor veri�cation. In that case, this sequence correspondedto the �ring of all initialization procedures of the system.The model was generated from this state, with the injec-tion of one particular fault. Then the stop conditions oftheG�eode simulator were applied to stop the generationof the model, when the system was able to come backto a stable state (i.e. the fault was treated) or a givendepth was reached. The resulting model (depending onthe fault) was up to 147007 states and 555877 tran-sitions. Using minimization and visualization, we werethen able to verify the properties corresponding to thecorrect treatment of faults.Other recent embedded systems case studies include : rail-yard systems [25], the satellite control system Msg [53]5.4 Security protocolsVeri�cation of the Equicrypt ProtocolThe Equicrypt Trusted Third Party protocol is an au-thenti�cation protocol for the conditional access to mul-timedia services. It is based on the use of a TrustedThird Party for authenti�cation. The speci�cation [45]consisted in around 2000 lines of Lotos.Results obtained with Ald�ebaranModel-checking is often viewed as being inadequate forthis kind of protocols, due to the relative complexity of

data manipulation wrt the control. However, when appli-cable, model checking brings the possibility to generatecounter examples to unsatis�ed properties. In this casestudy, this ability was crucial, as it allowed to producetwo possible attacks on the protocol. The production ofattacks is generally up to the protocol veri�er when us-ing more theorem proving based methods. Finally, theuse of e�cient minimization algorithms proved essential,as the model was 786681 states and 4161795 transitionsand took 20 hours to be generated. It was minimizedby Ald�ebaran for strong bisimulation in 20 minutesusing an Ultra-Sparc 2 with 800 Mbytes of RAM. Theresulting model was 69754 states and 520633 transitions,which allowed to perform all needed veri�cations.5.5 Network protocolsSome network protocols case studies include a boundedretransmission protocol [47], a Internet transport proto-col Tcp [54], and some distributed leader election algo-rithms [27]6 ConclusionThe Ald�ebaran toolset we have presented in this ar-ticle is devoted to the formal veri�cation of distributedsystems. More precisely, it consists in an integrated setof tools, closely interconnected, and allowing to addressseveral program validation issues, such as symbolic de-bugging, formal veri�cation of behaviour's requirements,and automatic test case generation.This toolset relies on the so-called model-based ap-proach: from a formal description of the program underconsideration a model is generated, then program anal-ysis is performed on this model. Several model represen-tations are available within Ald�ebaran, each of themo�ering particular advantages in terms of e�ciency, andeach of them leading to di�erent kinds of program anal-ysis algorithms.The Ald�ebaran toolset has been now developed for10 years, with an important concern to keep it openand evolutive, achieved through an architecture basedon clear-cut modules. In particular:{ It is open, as already connected to two Fdt-based de-velopment environments : the Lotos compilerC�sar,from the Inria action Vasy, and the commercialSdl environment ObjectGeode, from the Verilogcompany. Conversely, parts of Ald�ebaran are rou-tinely used in conjunction with other tools, like inthe Tgv environment presented in section 4.2. Forexample, it is used to perform time abstraction ontimed-automata with the Kronos tool [57], or tominimize abstract state graphs produced by a the-orem prover [30]. Finally, Ald�ebaran is also openfrom an internal point of view. For instance, its sym-bolic LTS representation interface allows to use sev-eral existing Dd packages (section 3.3.3).



16 Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat and Laurent Mounier{ It is evolutive, as it allows an easy prototyping of newanalysis algorithms or new veri�cation strategies:both the Tgv's kernel algorithm and the composi-tional generation strategy presented in section 4 wereimplemented within a few weeks using Ald�ebaranexisting modules. Moreover, some of its underly-ing algorithms have been adapted to other contexts:in particular, the on-the-y algorithm used withinAld�ebaran for bisimulation checking could be re-used both for theTgv kernel and within an optimizerfor synchronous code distribution [10].TheAld�ebaran toolset has been already distributedas a part of the C�sar-Ald�ebaran package to morethan 130 sites, and thus used in numerous case stud-ies, some of them being of industrial origin. Therefore,thanks to this user feedback, its components achieved arelative robustness.We conclude by an overview of the development per-spectives of Ald�ebaran, according to the three main is-sues of model-based veri�cation addressed by this toolset,namely model generation, model representation and pro-gram analysis.{ Regarding model generation, it is clear that the ver-i�cation capabilities o�ered by Ald�ebaran can beapplied to any formalism those (operational) seman-tics can be expressed in terms of LTSs, provided thatthere already exists a compiler able to produce thisLTS. If such a connection is usually straightforwardthrough an explicit LTS representation, it is moredi�cult to obtain it through an implicit representa-tion, and much more di�cult through a symbolic one(unless the compiler already produces such a repre-sentation).However, this later kind of connection can be moreeasily achieved using a higher level program represen-tation than the LTS, like the communicating ELTSsnetworks already existing within Ald�ebaran. Tothis purpose, we plan to extend this intermediate pro-gram representation to other communication mecha-nisms than rendez-vous and shared variables, such as�fo channels. Thus, formalisms like Sdl or Promelacould be translated in such a program representation,making possible to generate symbolic representationsthat could be processed by Ald�ebaran.{ Regarding model representations, most of the per-spectives concern the de�nition of suitable symbolicrepresentation. Indeed, if the Bdd have been initiallyproposed for boolean program representation (andhence hardware veri�cation), they are not necessar-ily well adapted for representing programs with moregeneral data types, or asynchronous communicationmodes. Even if many extensions have been alreadyproposed, none of them is quite satisfactory at themoment.Furthermore, other kinds of symbolic representationscould be also considered when the program underconsideration is expressed in terms of communicatingELTSs. In particular, representations based on con-vex polyhedra already proved their interest for staticanalysis purpose [40].
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