Verification and test generation for the SSCOP
protocol*

Marius Bozga! Jean-Claude Fernandez! Lucian Ghirvu!
Claude Jard!, Thierry Jéron!, Alain Kerbrat?
Pierre Morel! Laurent Mounier!

March 9, 1999

Abstract

Many formal tools are now efficient enough to deal with small to
medium size systems. Working with larger systems requires not so much
to improve these tools, but to use them in combination, applying one
tool for what it is most efficient for, and using its results to improve the
applicability of the other tools. This paper presents such a combination,
illustrated on an industrial protocol, large enough to break any brute
force approach. Two research teams allied their forces with a software
engineering tools maker in order to analyze, verify and generate automat-
ically tests for this protocol, by the extension and the interconnection of
their various tools. The results obtained give some hints on a methodology
for the formal validation of large systems.

Keyword: ATM, Protocol, Sscop, Static Analysis, Verification, Model-
checking, Conformance Testing, Test Generation.

*This work has been done in the context of FORMA. FORMA is a national project funded
by the French army, the CNRS and the ministry of research.

TVERIMAG-Centre Equation, 2 rue de Vignate, 38610 Gieres, France. This work
was partially supported by Région Rhone-Alpes, France. E-mail:{Marius.Bozga,Jean-
Claude.Fernandez, Lucian.Ghirvu, Laurent.Mounier }@imag.fr, Tel: 33+ 4 76 63 48 53, Fax:
33+ 4 76 63 48 50

{IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France, E-mail: {Claude.Jard,
Thierry.Jeron, Pierre.Morel }@irisa.fr, Tel: 33+ 2 99 84 74 64, Fax: 33+ 2 99 84 71 71

§VERILOG, 150 rue Nicolas Vauquelin, 31106 Toulouse Cedex , E-mail:kerbrat@verilog.fr

1 Introduction

The SscopP protocol (Service Specific Connection Oriented Protocol) is an indus-
trial protocol, part of the ATM stack (Asynchronous Transfer Mode), presently
standardized by the ITu-T [22].

The deployment of this protocol in telecommunications networks raises the
following questions :

e consolidation of the protocol specifications: does it correctly ensure the
service requested in all the possible configurations?

e design of correct and powerful tests to detect the nonconformity of imple-
mentations with respect to the standardized specification.

It is clear that the first point is essential in an objective of broad dissemina-
tion of the protocol. Standardization is not a sufficient guarantee of correctness.
Sscop is a complicated object which superimposes many protocol mechanisms
concerning complex situations from the point of view of memory and time man-
agement. Design bugs could resist the primarily manual work of the experts.
At least the conditions of guaranteed correct operation are not all completely
clarified.

The economic stake of the second point is also significant: only certified im-
plementations should be disseminated. The quality of the certification depends
on the quality of the tests.

There are actually several test suites available (that one can buy for a few
tens of thousands of dollars) which deserve to be improved:

e to guarantee that a conformant implementation will not be rejected (it
is a difficult problem in an asynchronous testing architecture where it is
necessary to foresee the phenomena of concurrency on different interfaces
and collisions of the stimuli and the observations)

Y

e to let slip through only a reduced number of non-conformant implemen-
tations (the tests must be as complete as possible).

This situation led the CNET (the research center of France Telecom) to
start an activity of formal verification and automatic test generation on the
Sscop. The entry point was the SDL (Specification and Description Language)
description provided as part of the Q 2110 [22] document. To evaluate the
capacity of industrial and academic tools to check properties and to generate
full-scale tests, the CNET subjected the SSCOP as industrial case study to the
ForMA project.

ForMmA is a French national action supported by the direction of the army,
the CNRS and the ministry of research. It aims at the evaluation and the transfer
of techniques of formal validation of temporal specifications. It is structured
in well targeted operations gathering research and industrial teams around a
case study and short term objectives (2 years). The SscoP experiment rallied
four research teams at CEA (Saclay), LSV (ENS Cachan), IrisA (Rennes) and

VERIMAG (Grenoble) in cooperation with CNET (Lannion) and the software
company VERILOG (Toulouse).

Our article presents the results obtained at the end of the first year and the
work achieved on SScoP in the context of SDL specifications and tools.

The plan of the article is the following. We start by presenting the Sscop
protocol and its formal specification then we present the tools used. The results
are gathered in three topics: preliminary analysis of the formal specification,
the verification of communicating entities and the automatic generation of con-
formance tests. We try to present the perspectives from both the point of view
of academic research and industrial results.

2 The Sscop protocol and its specification

2.1 The Sscop protocol

The Sscop protocol is standardized under reference ITU-T Q2110 [22]. Orig-
inally, it was conceived to reliably transfer data between two high bandwidth
network entities. Although its design makes it ready to treat significant vol-
umes of data, currently its use is confined in the indication layer of the ATM.
However, it is reasonable to think that it will be employed to transfer high vol-
umes of data in future applications. SSCOP is one of the underlayers of the layer
AAL (ATM Adaptation Layer). The main role of AAL is to adapt the service
provided by the ATM physical layer to the type of data passing by connections
established between two ends.

Q2931
? AAL SAP é Service primitives
Service . SSCF (Q2139) . .
Specific (Service Specific Coordination Functions)
(data control)
Convergence
Sublayer 4 Signals
(SSCs)
AAL SSCOP (Q2110)
Functions (Service Specific Connection Oriented Protocol)
(data transfert)
Signals
CPCS
C%rgrrpon (Common Part Convergence Sublayer)
AAL SAR (Segmentation And Reassembl age)
Functions

4 Service primitives
ATM SAP

Figure 1: Situation of Sscop in the ATM stack

2.1.1

Provided services

Sscop provides to the upper layer (Q2931 for example) the following services:

Sequencing: SDUs (Service Data Units) submitted by the upper layer are
numbered in the order in which they will be submitted for transfer,

Protocol error detection and recovery: the receiver detects loss of PDUs
(Protocol Data Units) and asks for selective retransmission,

Flow control: achieved by a classical window mechanism with size deter-
mined by the receiver,

Error reporting to the management layer,
Keep connection alive in the case of a long absence of data transfer,

Local data retrieval: if necessary, local data can be retrieved among not
yet released SDUs,

Connection control: establishment, release and resynchronization,
Data transfer with two modes: guaranteed or not,

Window state indication.

2.1.2 Exchanged signals

Sscop exchanges two types of signals with its environment:

2.2

signals exchanged with the upper layer SSCF (Service Specific Conver-
gence Function) defined in [23]. These signals are internal primitives of
the ATM stack (ASP for Abstract Service Primitives) and are generally
not observable from outside. Their coding is not standardized.

signals exchanged with a peer SSCOP entity. These signals are PDUs and
are accessible by a tester. Their coding is standardized.

The SpL specification of the Sscor protocol

The Sscop standardization document [22] contains an informal description of
the Sscopr and an SDL description of the protocol. This SDL description has
been coded by CNET using the SpL editor OBJECTGEODE (VERILOG). It con-
sists in approximately 2000 lines of SDL described by one single process. The
specification is open in the sense that the environment is not described. This
description is centered on signaling and some simplifications have been made
according to SSCOP implementations available in CNET. Some other simplifica-

tions,

such as removal of unobservable internal actions, have also been done by

the CNET in order to adapt it to the purpose of test generation.

This specification has been simulated in CNET using the SDL simulator OB-
JECTGEODE. The CNET also applied its test generator TVEDA to derive ab-
stract test cases. These test cases have been translated to executable test cases
and applied to real implementations. This work is described in [9]. We will
come back on the produced test suites in section 6.

3 Tools

3.1 OBJECTGEODE (VERILOG)

OBJECTGEODE is a real time systems development toolset, supporting the use
of three formalisms:

SDL is the Specification and Description Language, standardized by the Z.100
recommendation [24]. SDL is the main language of the toolset, it allows
to describe the architecture and the behaviour of a real time distributed
system.

Msc is the Message Sequence Charts language. It is standardized by the Z.120
recommendation [25]. It is usually combined with SpDL, as it allows to
describe runs of the system, with a more or less abstract view of its archi-
tecture.

OMT is the Object Modeling Technique defined by J.Rumbaugh and al [26].
Within OBJECTGEODE, it is mainly used to describe data.

OBJECTGEODE includes graphical editors and compilers for each language.
It provides also a C code generator and a simulator which allows some debugging
and some verification of SDL programs. Finally, a test generation prototype is
also included.

As the focus of this work is on verification and test generation, we will
present in more details the simulator tool, which was necessary in several phases
of the verification and test generation works. The test generation prototype
was not applied, as its functionalities are largely covered by the tool TGV (see
section 3.2).

The Stmulator tool

The Simulator allows to simulate runs of the system, without having to actually
execute it in a real environment. It can be seen as a sort of abstract debugger,
as it allows to simulate the description step by step, to undo execution steps,
to set break points and to watch the contents of variables and queues. Finally,
it also allows to record, visualize as MSCs or replay some simulation sequences.
It is also more than a debugger, as it allows to perform automatic simulation,
either randomly or exhaustively, with systematic comparison of the behavior
with special state machines called observers.

The simulator working principle is based on the model checking principle.
The GsMcoMP SDL compiler produces the needed functions for the graph gen-
eration and some of the data structures for the model’s representation. The
Simulator itself provides the data structures for the model exploration (hash-
tables, stacks and heap management). It integrates exploration programs such
as deadlock and livelock search, assertion checking and comparison with ob-
servers. All the functions and the data structures provided by the simulator are
accessible via a well-defined API.

Observers: The core of the verification methods of OBJECTGEODE is based
on the observers [4]. They can be directly written using the GOAL language
or compiled from Mscs. Observers are state machines which are executed side
by side with the SDL description. Every time an event occurs (for example the
firing of the whole transition, or the input of a signal, or an informal decision),
the observer checks if it is an event it is able to recognize (there is a transition
from its current state which matches the system’s transition). If it is the case,
it executes its corresponding transition, otherwise it ignores the event. The
states of observers can be qualified either as success or error states. During
the comparison of a description with an observer, sequences leading to error
states can be saved as diagnostics. Moreover, observers can be considered as a
substitute to the user for exhaustive and random simulation modes. An observer
uses a set of probes, given as access paths to the entities (blocks, processes,
queues, variables) to be observed. These probes allow to observe events like
transition firing, communications of signals, creation or stopping of processes,
time progression or procedure calls. They also give the possibility to change the
program behavior, by changing the value of variables, so they can be used for
example for fault-injection in the system.

3.2 Tav (IRISA-VERIMAG)

Tav is a prototype tool developed by our two teams in Rennes and Greno-
ble [11, 12, 18]. Its aim is to automatically generate test cases for conformance
testing of distributed systems, starting from a formal specification of the system
and test purposes allowing to select test cases. These test cases are composed
of interaction sequences. An interaction is either an output of the tester which
is proposed to the implementation, or an input which is an expected answer
of the implementation according to its specification. Test cases also contain
timers which ensure the finiteness of the test execution and verdicts which are
produced according to the conformance or not of the implementation with re-
spect to the specification. The conformance relation relating implementations
to specifications is allmost identical to the ioco relation of Tremans et al [27].
Unformally it says that an implementation conforms to its specification if af-
ter any observable trace existing in the specification, outputs produced by the
implementation are foreseen in the specification and the implementation may
block only if the specification also allows it.

3.2.1 Main principles

The principle of TGV is to compute a test case from a specification of the system
and a test purpose. The algorithms are not described in detail here but these
algorithms ensure that produced test cases are unbiased in the sense that any
implementation which conforms to its specification will not be rejected by a test
case produced by TaGv.

The specification must be given in a language which operational semantics
allows to represent its set of possible behaviours by a state graph. This state
graph is either explicit or implicit leading to two different modes of using TGV:
explicit and on-the-fly generation.

Explicit generation: In this case the state graph of the specification is pre-
viously computed by a simulation tool. The test generation then necessitates
several phases. The first step is to translate the state graph into a format ac-
cepted by Tav. Then, as testing considers traces of observable interactions,
the internal actions are abstracted (7*-reduction), and the state graph is deter-
minized and then minimized [11]. The resulting graph represents the observable
behaviour of the specification on which the main algorithm of TGV can be ap-
plied. The main drawback of this approach is the state explosion problem which
limits the applicability of this method to small specifications. An alternative is
to generate test cases on-the-fly as described above.

On-the-fly generation: TGV can also be applied to implicit state graphs.
The principle is to compute a test case while constructing, in a lazy strategy,
only the part of the state graph which is necessary for the test case computa-
tion. This is called on-the-fly generation. The advantage of this method is to be
able to compute a test for large specifications with very large and even infinite
state graphs. In order to be applicable, TGV must be linked with an API of
a simulation tool which provides some basic functions for the graph construc-
tion, namely the function which computes the initial global state, the function
which computes fireable transitions, the function which computes the global
state reached from a previous global state by firing a transition, and functions
which compare global states and store them in memory. From an algorithmic
point of view, the difficulty comes from the fact that successive transformations
described above for explicit graphs (except minimization) are applied here to
implicit graphs during their construction. This imposes that algorithms are
conceived using APIs.

Test purposes: A test purpose characterizes an abstract property that the
system should have and that one wants to test. In TGV it is used to select a test
case from all possible behaviours of the specification. It is formalized by a finite
automaton labelled with some interactions of the specification. This automaton
has accepting states which define the accepted language and refusal states which
allow to cut the exploration of some parts of the state graph in order to better
guide the test case search. The automaton allows some abstraction using wild

card transitions. This contrasts in particular with the test generation method
used in SAMSTAG [16] which uses test purposes defined as Mscs describing
complete sequences.

Main algorithm: TavV is based on algorithms coming from the model-based
verification domain. These algorithms check that a specification satisfies a prop-
erty given by a logic formula or by an automaton. Some of them are based on
traversal of the state graph. If the property is not satisfied, a diagnostic se-
quence can be extracted. The algorithm of Tav adapts this principle for test
generation. Searching a sequence of the specification which satisfies the test
purpose can be seen as producing a sequence that characterizes the non satis-
faction of the negation of this test purpose. In fact, TGV is even more complex
as it produces a set of sequences i.e., a sub-graph. Very efficient algorithms exist
for doing this, and in particular those which perform on-the-fly verification are
well adapted for on-the-fly generation of test cases. The principle is to traverse
a synchronous product of the state graph of the specification and the test pur-
pose automaton. Test cases are synthesized while backtracking from reached
accepting states.

Testing architecture: Testers often do not directly communicate with im-
plementations. Such situation arises when communications take place through
fifo channels in an asynchronous way. This implies phenomenon such as message
collisions (the tester sends A and waits B while the implementation sends C)
and concurrency on different PCOs! (the implementation sends A on PCO1 and
B on PCO2 in sequence but the tester may receive A and B in any order). By
the way this creates lost of control and observation of the tester on the imple-
mentation. In order to treat this correctly and produce correct test cases, the
asynchronous communication must be a parameter of the test generation. ISO
9646 recommends to generate a generic test case and then to take into account
the test architecture for the production of an abstract test case. But for the
case of asynchronous communication, it is easy to prove that this strategy does
not work as the production of a generic test case may loose some informations
which are necessary in order to derive a correct abstract test case. For simple
architectures one could also treat the problem by a transformation of the state
graph of the specification. This has to be done on explicit or implicit state
graphs. In the second case, this implies to integrate the transformation in the
kernel of Tav. This was the first strategy adopted by Tav. But this slightly
complicated TGv and the implemented transformations were not complete. So,
our strategy is now to describe the test architecture inside the specification and
to derive abstract test cases from this new specification. This complicates the
specification and produces a supplementary explosion of the state graph. Thus
it would be difficult to apply this for explicit generation. But it works quite well
with on-the-fly generation. This has been experimented for Sscop.

1PCO: Points of Control and Observation i.e. interfaces through which the implementation
is controlled and observed by testers

3.2.2 Languages and companion tools

Tav was first developed in the context of conformance testing of telecommuni-
cation protocols. So it is based on standard languages of the domain. Thus it
is applicable to specifications written in SpL [24] or LoTOS [1] and can produce
test cases in the TTCN language (Tree and Tabular Combined Notation) de-
fined as a part of [2]. Nevertheless, it is relatively independent of any language
because it manipulates the standard model of state graphs which is used to
represent the possible behaviours of specifications, test purposes and test cases.

On-the-fly generation has been applied successfully in the context of LoTOS
specifications using OPEN-CESAR [14] from the CESAR-ALDEBARAN toolset of
VERIMAG and INRIA Rhones-Alpes [10, 6]. In the context of SDL specifications
we have also applied on-the-fly generation using an open version of the OB-
JECTGEODE simulator from Verilog [28] which offers an API with state graph
construction functions described above [19]. In this case some libraries of
CESAR-ALDEBARAN are also used for graph storage.

The output of TGV is a test case which is given by a graph in an ad hoc
format. We can translate this test case into TTCN. In the context of telecom-
munication protocols, it is important to make this translation as TTCN is de
facto the standard for writing test cases.

3.3 Other tools from VERIMAG

VERIMAG is developing for 10 years a toolset dedicated to the design and ver-
ification of protocols. Some of them are distributed as part of the CESAR-
ALDEBARAN toolset [10, 6].

Some tools have been adapted or designed especially for this work, in order
to be connected efficiently with the OBJECTGEODE toolset. These tools can be
classified according to their functionality :

Generation of intermediate form: SDL2AUT has been partly developed for
this case study. This tool translates an SDL specification into a set of ex-
tended automata, one per SDL process. The transitions of these automata
are labelled with basic SDL actions (input, output, task,. ..).

In this form, the protocol became easily tractable by our verification tools
such as ALDEBARAN, MMGGRAPHIC, for the verification of some global
and very abstract properties. It was also possible to apply static analysis
techniques, which happened to be crucial for the limitation of the state
explosion occurring during the full verification and test generation.

Minimization and comparison of behaviours: ALDEBARAN allows to min-
imize a state graph, or to compare a state graph with a more abstract one,
with respect to equivalence relations preserving the observable behaviour
of the system. In particular, ALDEBARAN uses simulation and bisimulation
relations such as strong and weak bisimulation [21], branching bisimula-
tion [15], and safety equivalence [5].

Y

Evaluation of temporal logic formulas: EVALUATOR provides on-the-fly ver-
ification of temporal properties over finite state graphs. The temporal
logic considered in its case is the alternating-free p-calculus [20]. Like
many other similar on-the-fly verification tools, EVALUATOR is based on a
local resolution method for boolean equation systems [13]. Such systems
are usually derived from the state graphs when expressing the semantics of
temporal properties. EVALUATOR completes the other available analysis
tools, which are essentially based on behavioral verification.

Visualization: MMGGRAPHIC is a tool for visual analysis and diagnosis of
distributed systems. It uses a global and abstract view of the system.
The tool performs an interactive and visual exploration based on iterative
local refinements corresponding to a zoom effect on some states of the
system’s model, i.e. the state graph.

It works as follows : if we minimize the state graph of the system (preserv-
ing the behaviour), by considering only a small (e.g. less than 5) subset
of observable events, we usually obtain a model small enough to be drawn
and analyzed visually. Some parts of this very abstract model can be de-
tailed by extending the set of observable actions and then reiterating this
process.

VERIMAG took advantage of the APIs of OBJIECTGEODE, and connected the
tools SDL2AUT and EVALUATOR respectively to the SDL compiler and to the
simulator [19]. The benefits of such connections are numerous :

¢ A tool such as SDL2AUT can be designed without having to re-implement
a full SpL compiler, yet keeping the upward compatibility with future
evolutions of SDL.

e The model checker EVALUATOR can work on-the-fly on SDL specifications,
thus avoiding some limitations due to the state explosion problem.

Other translation tools have also been implemented, in order to convert the
explicit model produced by the OBJECTGEODE simulator into a model suitable
for ALDEBARAN, MMGGRAPHIC, and the explicit version of TGV.

4 Static analysis of the SDL specification

Our first attempt to verify the initial specification was to directly generate the
state graph using OBJECTGEODE. But even for very simple scenarii, this task
cannot be accomplished, mainly because of the complexity of the data part.

4.1 Abstract behavioural analysis

The following consideration allows to abstract away the variables: when simulat-
ing exhaustively an SDL specification without evaluating the values of the vari-
ables, we obtain a super set of the program behaviour. Indeed, the guards being

10

not evaluated, each transition of the control flow graph is fireable. Therefore,
there exists a simulation [21] between the original program and this abstract
model. Then, it is possible to check some class of properties on this abstract
behaviour, for instance the expected properties of the service. The interest of
these verifications is their weak cost, since the abstract graph is much smaller
than the original one. In particular, the verifications we performed consisted in
comparing this abstract graph with the one supplied by the standard to model
the interactions between adjacent layers.

This comparisons with respect to the safety equivalence, was performed with
ALDEBARAN. Some subtle errors, such as omission of timers setting, were found
using this method.

The main steps of the analysis are summarized below:

e generation of a reduced model from the SDL specification, with SD1.2aut.
We obtain a graph with about 1000 states.

e minimization of this model, using ALDEBARAN, with respect to strong
bisimulation. We obtain a graph with about 300 states.

e properties checking on this resulting graph.

However, this first abstraction was too coarse to verify the most interesting
properties. So, we now turn back to the original specification in order to perform
more sophisticated analyses.

4.2 Preliminary simplifications

When we want to model the behaviour of an SDL specification with a state
graph, two parameters have an influence on the size of this model:

e the state number, depending on the size of the variables domains.
e the state vector size, depending on the number of the program variables,

Our model based approach does not allow to perform parameterized verifi-
cation. Therefore, we choose to restrict the size of the variables domain to the
lowest values specified by the standard.

Another simplification was the suppression of useless variables, some of them
detected by the OBJECTGEODE compiler and some others detected by hand,
such as for example, some PDUS only relevant for the implementation (reserved
records, ...). Moreover, some parts of the specification have been slightly rewrit-
ten in order to suppress redundant variables (local variables used in a state to
construct a PpU before its emission).

Furthermore, consider the SpL implicit variables sender associated with
each process. It contains the identification of the process from which the last
message was received. This variable may take many values. As a consequence,
some states, behavioural equivalent, are distinguished. But this implicit variable
is not referenced in this specification. The use of an intrusive observer with

11

OBJECTGEODE allowed us to assign an unique value to this variable without
changing the behaviour of the specification.

These coarse simplifications may be refined strongly by performing live vari-
ables analysis [3, 29] of the specification, as explained in the next subsection.

4.3 Live variables analysis

A variable is live in a state if there is a path from this state along which its
value is used before it is redefined. Otherwise, it is dead. Live variables can be
computed by performing a backward analysis on the model. We modify slightly
the usual definition of Def and Use from [3]. We define Use(t) to be the set of
variables that are used in the transition ¢, and Def(t) to be the set of variables
that are defined (assigned) in the transition ¢.

A variable is live on a state p if there is a transition ¢, such that p = source(t)
(the transition source state) and either the variable is live on target(t) (the
transition target state) and not in Def(t), or if it is in Use(?).

This information is computed by solving the least fixpoint equations:

Vpe @ Live(p) = U (Use(t) U (Live(target(t)) \ Def(t))
{t|source(t)=p}

An important reduction of the model state space can be obtained by taking
into account the live variables for each control state. In fact a model state must
be strictly characterized by the values of the live variables, not by the values of
all model variables. Or, in other words, we must not distinguish states differing
only on values of dead variables. Thus, we can define a living equivalence which
is stronger than the strong bisimulation.

The model reduction that we propose consists in directly computing the
quotient model S;.,, . This can be done in a straightforward manner at the
model generation time using various techniques. For example we can directly use
the living equivalence to test equality of newly generated states instead of the
strong (complete) equality of state vectors. Another simple way is to modify
the initial automaton by introducing systematic (re)sets of dead variables to
some given value. This optimization has been implemented in a tool especially
designed for this case study. In this case study, a spectacular benefit we obtained
is the reduction of the state graph size by a division of 200.

4.4 Perspectives

The study of a complex SDL specification points out the importance of static
analysis to optimize the automaton modeling the behaviour. Some other anal-
ysis, such as constant or interval propagation, are currently studied. Moreover,
the use of the property we want to check (resp. the test purpose used to gener-
ate a test case) could improve even further the verification step (resp. the test
generation step).

12

5 Verification of a pair of communicating Sscop
entities

The purpose of the static analysis stage described in the previous section was
both to detect most of the coarsest errors or omissions in the original protocol
specification, and to abstract it to facilitate its verification by model-checking.
Therefore, it now remains to check for its correctness in more details.

However, because of its complexity, and particularly since there does not
exist any “exhaustive” reference behaviour of a protocol entity (i.e., valid for
any environment), it is clear that this correctness cannot be established in the
general case. Consequently it is necessary to concentrate our verification effort
to a set of representative scenarios, for which specific properties are expected.

More precisely, the system we consider in the following consists in a pair
of protocol entities, communicating through bounded fifo channels. Thus, the
communication layer is assumed to be reliable and no signal loss is allowed.
Moreover, each entity is able to exchange a given set of signals with its upper
layer (the SscrF layer). In particular, by restricting to an appropriate set the
signal sequences received by each entity from the SScF layer, it becomes pos-
sible, using OBJECTGEODE, to generate a model of the corresponding protocol
behaviour, and, when this model is finite, to verify it with ALDEBARAN.

In the remaining of the section we detail some scenarios of the verifications
that we performed using this approach?.

5.1 Connection establishment

We considered a first scenario devoted to a connection establishment between
two entities. For this scenario, the signals accepted at any time® by each entity
from its SSCF layer are:

e the request signal for a connection establishment (“AaEstablishRequest”);
o the response signal to a connection establishment (“AaEstablishResponse”).

The resulting state graph generated by OBIJECTGEODE contained 15 000
states, and was reduced modulo strong bisimulation to 5 000 states using ALDEBARAN.
For checking the correctness of the connection establishment, we considered
the two informal requirements:

Req 1: any connection request received by a protocol entity can be followed by
a connection confirmation issued by the same entity;

Req 2: any connection request received by a protocol entity is eventually fol-
lowed by a connection confirmation issued by the same entity.

2A preliminary approach was conducted by the LSV team (under the supervision of A.
Finkel) where the connection-disconnection phase was manually translated into Promela for
model-checking using SPIN

3following the reasonable feed simulation policy of OBIECTGEODE.

13

These two requirements were formally expressed in the p-calculus, and evaluated
on the protocol state graph using EVALUATOR.

Although the first requirement was clearly verified, the second one happened
to be false, and a diagnostic sequence was produced by the tool. The analysis
of this sequence showed that the connection establishment may fail due to the
expiration of one of the timers (“TimerCC”) associated to each entity. This
timeout happens when the PDU exchange required by the connection establish-
ment takes too much time. The connection is then aborted, which is correct
with respect to the standard. Consequently, Req 2 was rewritten as follows
and verified using EVALUATOR:

Any connection request received by a protocol entity, not followed
by a timeout of “TimerCC” occurring on any entity, is eventually
followed by a connection confirmation issued by the same entity.

Therefore, we can conclude that under our assumptions a correct connection
establishment is guaranteed by the SDL specification.

5.2 Disconnection

To analyze the protocol behaviour during a disconnection step we now add the
disconnection request signal (“AaReleaseRequest”) to the set of signals received
by each entity from the SSCF layer. The resulting state graph generated by
OBJECTGEODE contained now 30 000 states, and it was reduced to 8 000 states
by ALDEBARAN.

The informal requirements we considered were the following:

Req 3: any disconnection request received by a protocol entity is eventually
followed by a disconnection indication issued by the other entity;

Req 4: any disconnection request received by a protocol entity can be followed
by a disconnection confirmation issued by the same entity;

Req 5: any disconnection request received by a protocol entity is eventually
followed by a disconnection confirmation issued by the same entity.

These three requirements were expressed in terms of p-calculus formulas, and
evaluated on the protocol state graph using EVALUATOR, leading to the following
results:

e Req 3 is true, which means that any disconnection request is correctly
transmitted from one entity to the other;

e Req 4 is true, which means that a connection can be correctly released
by the two entities;

e however Req 5 happened to be false, and a diagnostic was produced by
EVALUATOR.

14

Here again, the analysis of this diagnostic showed that a disconnection request
may not be confirmed, either because the connection has never been correctly
established before, or because it has been already released in the meantime. Fur-
thermore, this last situation occurs either because of a timeout (of the “NoRe-
sponse” timer), or because the other entity has previously requested for a dis-
connection. Since these two scenarios do not contradict the SSCOP standard, the
disconnection step can be considered as correctly specified by the SDL protocol
description.

5.3 Data transfer

The last scenario we considered was devoted to the data transfer functionalities
offered by the protocol, and in particular the “guaranteed mode” allowing data
transmission even if the communication layer is not fully reliable. However, we
first tried to verify it with a reliable communication layer, which is a necessary
precondition.

The signals received by the protocol entities from the SSCF layer are the
following:

e For the entity 1, the “AaEstablishRequest” signal and the data transfer
requests of two distinct messages m and ma (“AaDataRequest(m)” and
“AaDataRequest(ms)”);

e For the entity 2, the “AaEstablishResponse” signal.

This signal set allows to build an asymmetrical scenario during which the con-
nection can be established (upon entity 1 request), and transmission of message
my or my can be requested at any time by entity 1. This asymmetry has been
introduced in order to restrict the corresponding protocol behaviour, and the re-
sulting state graph generated by OBJECTGEODE contained 4 000 000 states, and
33 000 states after its reduction using ALDEBARAN. The informal requirements
we considered were the following:

Req 6: a data transfer indication is never transmitted by a protocol entity to
its SscrF layer if it has not previously received a connection establishment
response from this layer.

Req 7: a data transfer indication of a given message is never transmitted by
a protocol entity to its SSCF layer if a data transfer request of the same
message has not been previously received by the other entity.

Req 8: a data transfer request of a given message received by a protocol entity
is eventually followed by a data transfer indication of the same message
issued by the other entity.

Using EVALUATOR the evaluation on the protocol state graph of the u-
calculus version of these three requirements gave the following result:

¢ Req 6 is true, which means that a connection is always correctly estab-
lished when a data transfer occurs;

15

e Req 7 is true, which means that there is no “message generation” per-
formed by the protocol;

¢ Req 8 happened to be false, and a diagnostic was produced by EVALUA-
TOR.

The analysis of this diagnostic revealed something that seems to be an
anomaly in the protocol behaviour described by the SDL specification. This
anomaly concerns the “credit” value associated to a receiving entity, which
records the number of messages that can be still received without sending back
the corresponding acknowledgment. After acknowledgment this credit is then
supposed to be reset to its initial value.

However, in the diagnostic sequence exhibited by EVALUATOR the credit
value is never reset, which prevents the protocol to receive any further message
once the initial credit has been reached. The connection is then released due
to a timeout, and a new connection is established. This incorrect behaviour
is clearly demonstrated when considering the “abstract” behaviour produced
by ALDEBARAN after minimization of the state graph with respect to branch-
ing bisimulation (where only “AaDataRequest” and “AaDatalndication” signal
exchanges are observed).

5.4 Future work

The results obtained with this basic set of properties show that, even if they
can be only partially applied by considering restrictive scenarios, model-checking
verification techniques are quite useful to improve the knowledge of a system
behaviour, or to detect some anomalies in its description.

Consequently this work needs to be continued, either by analyzing other
scenarios (for instance the re-synchronization of a connection, the local data
retrieval, etc.), or by considering a more unreliable environment for a proto-
col entity (including for instance an unreliable communication layer, possible
failures of the other entity, etc.). However, it is likely the case in this last per-
spective that the state graph modeling the corresponding behaviour becomes
too large to be fully generated. In these situations other facilities of the veri-
fication tools will have to be used, such as on-the-fly verification, or symbolic
BDD-based representations [6].

6 Automatic generation of conformance tests

The SDL specification of the SSCcoP protocol has been used for the automatic
generation of test cases. This work has benefited from the preliminary analysis
and optimizations made on the SDL specification. Verifications also gave us more
confidence in the specification. This is important for automatic test generation
as the specification is the reference model. Conversely, the first works made on
test generation helped us in the process of specification correction and gave us
some ideas on static analysis useful for verification and test generation.

16

Our objective in this case study was not to produce a “complete” test suite
like those already available from the ATM Forum [8]. The first aim was to
compare tests produced by Tcv with those written by hand or produced by
other tools. In particular we had the ambition to produce better tests from
common test purposes, to treat more complex test purposes and to generate
test cases for different test architectures. This case study was also the occasion
to evaluate the maturity of our tool, to improve it and to open new research
perspectives.

6.1 Tools used

The SpDL toolset OBJECTGEODE has been used for the edition (correction) of
the SscoP specification and for its simulation. ALDEBARAN has been used with
the explicit version of TGV for the 7*-reduction, minimization and determiniza-
tion of partial state graphs produced by OBJECTGEODE. Some of these graphs
and produced test cases have been visualized with a prototype tool named Vis-
cope [17] which allows to draw state graphs in 2D or 3D. Finally, TGV has been
used for test generation in its two use modes i.e. on explicit state graphs and
on-the-fly with its connection to OBJECTGEODE.

6.2 Preliminary analysis and test purpose formalization

A preliminary analysis of the specification (see section 4) allowed us to better
understand the protocol and its SDL specification and to detect some transcrip-
tion errors and possible simplifications.

The goal of this analysis was also to identify some interesting test purposes,
to formalize them in order to generate test cases. Fifty test purposes have been
identified and formally specified. These test purposes cover all functionalities
of the SscoP protocol but of course not all its possible behaviours. But most
of these test purposes describe complex behaviours as they correspond to test
cases covering several control states of the protocol (e.g. connection followed
by disconnection, connection followed by data transfer, etc). This should be
compared with the work made on verification of communicating SSCOP entities.

6.3 Analysis of available test suites

Several test suites have already been produced for the SScoP protocol, such as
the one produced by the tool TESTGEN (INT Evry France) [7]. But during
this study we had only access to three TTCN test suites of the SSCOP protocol.
These test suites had been produced in three different ways. We have tried to
compare test cases produced by TGv with some test cases from those test suites.
Test suites available to us were the following;:

e the ATM Forum test suite (see ftp.atmforum.com, af-test-0067.000) has
been written by hand by specialists of the SSCOP protocol. It is the richest
test suite of the three considered ones because it reflects the expertise of

17

test developers. It contains a declaration part (types of messages, timers
definitions), a constraint part (values of message parameters, etc) a be-
haviour part which describes the sequencing of actions in each test case.
These behaviours make full use of TTCN constructs such as loops, vari-
ables, separation of test cases into a preamble (a sequence leading to a
particular control state), a test body (verifying the test purpose) an iden-
tification sequence (a sequence which can be used to identify the current
control state of the protocol) and a postamble (return to the initial control

state).

It is clear that some of the constructs used are difficult to generate auto-
matically but we consider that this test suite represents a goal to reach
by automatic tools.

e a test suite produced automatically by the SAMSTAG tool from the Uni-
versity of Liibeck [16] is also available. The generation is based on the
description of test purposes by Mscs (Message Sequences Charts). The
test suite also comprises a declaration part, a constraint part and a be-
haviour part. Behaviours are simpler that in the ATM Forum suite. In
particular timers are not produced and one test case is basically a sequence
leading to a PASS verdict, decorated with INCONCLUSIVE verdicts on
undesired inputs. According to the paper, eight different versions of the
SDL specification of the SscoP have been used, each of them restricted
to some functionalities of the protocol in order to be able to generate test
cases.

e a test suite generated by TVEDA from CNET. The available suite was pro-
duced by a previous version of TVEDA called “syntactic TVEDA”. TVEDA
is limited to single process specifications. The tool automatically generates
test purposes, by default one for each branch of each transition of the SDL
specification. In this version of TVEDA, preambles and postambles were
not produced though they are with the new version. The computation of
test cases was made by constraint resolution. The test suite contains a
declaration part, a constraint part and a behaviour part.

A new version of TVEDA has also been used on SSCOP and produces more
complete test cases but the test suite itself was not available to us but
only a paper [9].

6.4 Test architecture

The test suites from TVEDA and the ATM Forum consider that the tester has
only access to the lower PCO. SAMSTAG considers that the two PCOs are ob-
servable and controllable. In fact, even for one PCO, most test cases need
interactions through the upper PCO. This cannot be avoided as almost all con-
trol states of the protocol can only be accessed after some interactions through
the upper PCO. Thus in TTCN test suites from TVEDA and the ATM Forum,

18

in the case of a non controllable PCO, these interactions are signaled with the
mechanism of implicit send.

Test System System Under Test
(SUT)
TCP uT
LT
ASP(N) § PCO
PDU(N)
< > |UT
PCO i ASP(N-1) ASP(N-l)t
Service (N-1)

Figure 2: Remote testing architecture

The three above mentioned test suites are supposed to be derived for a
Remote architecture (see figure 2). In fact this does not appear in test suites.
In a remote test architecture one should see particular behaviours due to the
asynchronism between the tester and the IUT. In fact the asynchronism is not
taken into account. The test suite for a remote architecture seems to differ from
a local test method only by the fact that PDUs (Protocol Data Units) and not
ASP (Abstract Service Primitives) are exchanged with the lower tester.

Following these observations, we have decided to consider two different test
architectures.

e aremote architecture with two PCOs and a synchronous interaction. This
architecture is considered in order to compare produced test cases with
the three available test suites with the same assumptions.

e aremote asynchronous architecture. Asynchronism is limited to the lower
tester because we can suppose that the upper tester communicates in a
synchronous way using ASPs: the synchronous abstraction is a good ab-
straction for this PCO. The lower tester communicates asynchronously,
simulating a link in an ATM network. This communication is supposed
not to be lossy as it is the tester itself that will simulate loss of data. In
order to consider an asynchronous interaction between the protocol and
its environment, we added a process between them. This adds a fifo queue
between the specification of the Sscop and the environment in each di-
rection. The new process just delays interactions. Each message received
from the environment (resp. from the SscoP) is enqueued and later sent

19

to the SScoP (resp. environment). This was necessary due to the commu-
nication semantics used in OBJECTGEODE between the specification and
the environment. This semantics states that messages received from or
sent to the environment are not enqueued.

6.5 Experiments

Tav has been used in two ways, explicitly and on-the-fly. We detail here how
these experiments were conducted and the results obtained.

6.5.1 Explicit Tgv

When TaGvV is used in explicit mode, we first have to build the state graph of the
specification with the OBJECTGEODE simulator. But for a large specification as
Sscop (with a very large state graph), it is impossible to generate the complete
state graph. Thus, for each test purpose, we have to build a partial state graph
which allows to produce the corresponding test case. The first thing to do
is to close the specification with inputs from the environment using the feed
mechanism of OBJECTGEODE, just as was done for verification. A subset of
inputs is selected after a close look to the specification. These inputs are always
available and are possible in several control states although they are ignored.
We have thus used the mechanism of stop conditions in order to forbid these
inputs in some states. Care must be taken to use stop conditions only in this
context. In fact, stop conditions could be put on any transition, for example on
outputs of the specifications, possibly producing biased test cases i.e. test cases
that would reject correct implementations. A safer possibility is to use refusal
states in the test purpose. But this was not available in TGv at the beginning
of the study. After the state graph has been computed with OBJECTGEODE,
ALDEBARAN minimizes it with respect to 7*-a equivalence and determinizes it.
This state graph represents the observable behaviour of the specification. TGv
takes as inputs this state graph and the test purpose automaton and produces
a test case which can be translated into TTCN.

This way of using TGV has been used only in the case of a synchronous com-
munication between the ITUT and the tester. At the time of this first experiment,
the on-the-fly version of TGV was not available.

Fifty test cases have been produced corresponding to the fifty formalized
test purposes. The sizes of the state graphs produced by OBJECTGEODE were
in the order of some thousands states. The reduction of these state graph by
ALDEBARAN produced state graphs of some hundred states. The total time
spent for the generation of one test case was in the order of some seconds. Test
cases produced by TGV for simple test purposes are quite comparable with those
of the three available test suites. This allowed us to find some errors in those
test suites such as bad management of timers or omission of inputs due to SSCop
timeouts.

20

6.5.2 On-the-fly generation

In the case of on-the-fly generation, TGV pilots OBJECTGEODE and all phases
(abstraction, 7*-reduction and determinization) are done in one pass. This
possibility of using TGV has been adopted for the two considered architectures.

Remote synchronous architecture: As mentioned earlier, the use of stop
conditions has been suppressed and replaced by refusal states in test purposes.
This allowed a simplification of test purposes descriptions and a better selection
of test cases. On-the-fly generation also allows to relax constraints put by the
environment and stop conditions in the case of explicit generation. Obtained test
cases are generally identical to those produced in an explicit way. Differences
may occur due to the exploration order and different constraints. But the global
execution time is generally smaller as only a sub-graph of the specification is
traversed and constructed by Tav.

Remote asynchronous architecture: As said previously, in this case the
specification was completed with a new process which dissynchronizes the com-
munication between the environment and the SSCOP protocol. In order to limit
the behaviours of the new specification, we have limited to one the size of the
queue associated to the channel from the environment to the specification. This
can be justified by the fact that in practice, after sending a message to the IUT,
the tester waits for reactions before sending a new message.

Produced test cases are often different from those produced in a synchronous
communication context and are thus difficult to compare with available test
suites. The main reason is that asynchronous interactions produces the classical
problem of message collision. This happens very often as in many control states,
after a first interaction and a timer setting, SSCOP waits for an input A and
then sends B. But if A does not arrive in time, the timer expires and an output
C is sent. Thus a tester sending A may receive either B or C. This is the case
for example for a connection establishment (see the example below). Another
typical situation may also happen due to asynchronism on multiple PCOs. The
order in which messages are sent by the protocol is not necessarily conserved
because messages can be delayed. Thus if the protocol entity sends A on a PCO
followed by B on an other PCO, the tester should consider the possibilities of
receiving A followed by B or B followed by A. The chosen testing architecture
of SscoP produces a derived situation as only the lower PCO is asynchronous.
A situation which happens is then, when in a transition a message A is sent on
the lower PCO followed by a message B on the upper PCO. In this case, we will
always observe B before A.

Example: This last situation and a message collision happen in the following
behaviour of SscoP. In state Idle, when an aaestablishrequest ASP is received
by Sscop from the upper layer, a bgninvoke PDU is sent to the peer entity (the
environment in our case), timer_CC is set and SSCOP goes to state Outgoing
Connection Pending. In this state, SSCOP may receive several inputs among

21

which a bgaksignal PDU. If this PDU is received, SSCOP sends an aaestab-
lishconfirm to the upper layer. But if timer_CC expires, it may send again
bgninvoke. After Maz_CC timeouts of timer_CC and outputs of bgninvoke (in
our example Maz_CC = 4) , Sscop sends a message sequence composed of an
maaerrorindication (which is considered unobservable here), an endinvoke PDU
and a aareleaseindication ASP in this order.

In an asynchronous environment the behaviour of a tester which wants to
envisage all the possible responses to a bgaksignal after an aaestablishrequest is
quite complicated as proves the test produced by TaGv in figure 3. The tester
starts by sending an aaestablishrequest, receives a bgninvoke PDU, and sends a
bgaksignal. Then it must wait for an aaestablishconfirm or a bgninvoke PDU
due to message collision (timer.CC may have expired while bgaksignal is still
progressing). The arrival of bgaksignal can be delayed for a long time, thus
timer_CC may expire several times before it is received. The choice between
receiving aaestablishconfirm or bgninvoke PDU is thus repeated twice (lines 4-5
and 6-7). After Maz_CC - 1 receptions of bgninvoke PDU (line 7) it will have
three possible continuations (lines 9, 13 and 14). First (line 13), it may receive an
aaestablishconfirm. The second possibility (line 14) is to receive a last bgninvoke
PDU followed either by a release indication (line 15) followed by an endinvoke
PDU (due to the asynchronism on the lower PCO) or an aaestablishconfirm (line
18). But as the reception of bgninvoke may be delayed, a third possibility (line
8) is to receive an aareleaseindication before bgninvoke and endinvoke.

Despite a different testing architecture (only PDUs are controllable and ob-
servable), we can consider that the test case of the ATM Forum numbered
S2_V_P3 partly corresponds to the previous example. It considers the output
of bgaksignal by the tester in state Outgoing Connection Pending. The possi-
bility to receive a bgninvoke is not considered, thus this event would lead to
a fail verdict. This is either an error (the test case may reject a conformant
implementation) or a proof that they suppose a synchronous communication in
a remote testing architecture which is not realistic.

22

Test Case Dynamic Behaviour

| Test Case Name : example |
| Group : |
| Purpose : Test the different response possibilities after a connection acknowledgement

| Default |
| Comments |
| Nr | Label | Behaviour Description | Constraints Ref | Verdict | Comments

11	ut ! aaestablishrequest, St tbgninvoke	aaestablishrequest0			
2		1t 7 bgninvoke, Cl tbgninvoke	bgninvokel		
3		1t ! bgaksignal,	bgaksignal2		
		St tbgninvoke, St taaestablishconfirm			
1 41 | ut ? aaestablishconfirm, | | | |
1 | | Cl taaestablishconfirm, Cl tbgninvoke | | (PASS) |

| 5 | | 1t 7 bgninvoke, | bgninvokel | | |
1 1 | Cl taaestablishconfirm, Cl tbgninvoke, | | | |
1 | | St tbgninvoke, St taaestablishconfirm | | | |
1 6 1 | ut ? aaestablishconfirm, | | | |
| | | Cl taaestablishconfirm, C1 tbgninvoke | | (PASS) |

71	1t ? bgninvoke,	bgninvokel			
		Cl taaestablishconfirm, C1 tbgninvoke,			
		St tbgninvoke, St taaestablishconfirm,			
		St taareleaseindication			
8		ut ? aareleaseindication,	aareleaseindication3		
1		Cl taareleaseindication,			
1		Cl taaestablishconfirm,			
		Cl tbgninvoke,			
		St tbgninvoke			
9	1t 7 bgninvoke,	bgninvoket			
		Cl tbgninvoke, St tendinvoke			
10		1t 7 endinvoke, Cl tendinvoke	endinvoke4	(PASS)	

| 11 | | ? tendinvoke | | FAIL |

| 12 | | ? tbgninvoke | | FAIL |

| 13 | | ut 7 aaestablishconfirm, | | | |
1 | | Cl taareleaseindication, | | | |
1 | | Cl taaestablishconfirm, | | | |
| | | Cl tbgninvoke | | (PASS) |

| 14 | | 1t 7 bgninvoke, | bgninvokel | | |
1 | | Cl taareleaseindication, | | | |
		Cl taaestablishconfirm,			
		Cl tbgninvoke,			
		St taaestablishconfirm,			
		St taareleaseindication			
15		ut ? aareleaseindication,	aareleaseindication3		
		Cl taareleaseindication,			
		Cl taaestablishconfirm,			
		St tendinvoke			
16		1t ? endinvoke, Cl tendinvoke	endinvoke4	(PASS)	

| 17 | | ? tendinvoke | | FAIL |

1 18 | | ut ? aaestablishconfirm, | | | |
| | | Cl taareleaseindication, | | | |
| | | Cl taaestablishconfirm | | (PAsS) |

| 19 | | ? taareleaseindication | | FAIL |

| 20 | | ? taaestablishconfirm | | FAIL |

| 21 | | ? taareleaseindication | | FAIL |

| 22 | | ? taaestablishconfirm | | FAIL |

| 23 | | ? tbgninvoke | | FAIL |

| 24 | | ? taaestablishconfirm | | FAIL |

| 25 | | ? tbgninvoke | | FAIL |

| 26 | | ? taaestablishconfirm | | FAIL |

| 27 | | ? tbgninvoke | | FAIL |

| 28 | | 7 tbgninvoke | | FAIL |

Figure 3: A test case generated by Tav for a remote asynchronous architecture

This example makes evident the need of using automatic tools as human
mind has some difficulties to envisage all possible behaviours in complex sit-
uations such as the one presented above, and this may cause many errors in
manual test cases. The advantage of TGV on other tools is crucial for this kind
of situations. First, contrary to some other tools (TVEDA for example), TGV
is not limited to one process. Thus modeling different testing architectures by
extension of the specification is compatible with test generation. Second, TGv
produces test cases which can have several branches leading to a PASS verdict.

To our knowledge, TavV is the only tool that can make this. All other tools are
based on the computation of one main sequence of the observable behaviour of
the specification. In the case were different outputs are possible, the tester has
to consider all possible inputs. In these tools, one possibility is continued and
lead to a PASS verdict while all other possible inputs immediately produce an
INCONCLUSIVE verdict. This is too restrictive, especially in the case of asyn-
chronism were several possible arrival orders should be considered equally. This
is very important for test execution too because test cases should be reexecuted
until a PASS or FAIL verdict is reached, Thus INCONCLUSIVE verdicts should
be avoided, when continuations may lead to a PASS verdict. This principle is
adopted by Tav.

6.5.3 Verification combined with test generation

At the beginning of our experiments, as we still had doubts on the SDL spec-
ification used, we have used verification capabilities of OBJECTGEODE while
generating tests with Tav. We have encoded in a GOAL observer an automaton
describing the abstract behaviour of the SSCOP protocol at its upper interface
SSCF. The test generation is made on a synchronous product of the specifica-
tion and the observer. Thus we verify that all sequences traveled during the test
generation are at least accepted by this automaton. This gives more confidence
in the specification and in the generated test cases.

Another observer, an intrusive one, was also used to reduce the size of the
state graph. The role of this observer was to reset the implicit variable SENDER,
which is never used in the specification (see section 4).

6.5.4 Future work in test generation

As Tav is still a prototype, the work made on case studies as SSCOP helps us to
improve it. In particular, we are designing a new generation algorithm which will
produce test cases with loops and, as a consequence, still less INCONCLUSIVE
verdicts. This is particularly interesting in current situations were some inputs
may happen without modifying the expected behaviour. We are also working
on the expressive power of test purposes in order to allow more abstraction on
parameters and the possibility to describe more discriminating test purposes
with unobservable actions and states predicates. These improvements will be
implemented in TGav and tested on the SSCOP specification.

The Sscop specification has a large control part but also a large data part.
Tav treats data by enumeration and this obliges us to limit the variables do-
mains or fix the parameters of interactions. This encourages us to have a closer
look at symbolic methods and proof methods. Symbolic methods could avoid
enumeration and used in conjunction with proof methods and classical verifica-
tion methods, we expect to produce test cases closer to manual ones i.e. which
also manipulate variables (counters for example) which are common in TTCN.

We are also investigating the problem of distributed testing. The literature
on the subject is rather poor because it is a difficult subject. But Concurrent

24

TTCN the new version of TTCN allows to describe distributed testers and test
suites for multi-party testing already exist. Thus, users of test generation tools
will soon want to generate distributed testers. We are particularly interested
by this research and we have made first steps in the direction of producing
distributed tests.

Finally, we are working on an industrial project with VERILOG and CNET
which aim is to develop an industrial test generation tool in the OBJECTGEODE
environment. This tool will be adapted from three tools: TVEDA from CNET,
TTCGEN from VERILOG and TGV.

7 Conclusion and future work

This case study is a representative one of a large class of protocols. The com-
plexity of the data part leads to combine other approaches with model-checking.
The use of data-flow (or static) analysis, originally a component of global opti-
mization part of a compiler, in the context of model-checking, allows to abstract
the data part with respect to the desired property.

The work done on the SSCOP protocol has been very interesting on many
aspects. It was rapidly clear that brute force verification could not work on
the original specification due to its inherent complexity. This statement led
us to the study of techniques for the reduction of this complexity, before the
application of brute force tools.

e Static analysis proved very useful for the reduction of state graphs which
is profitable for the purpose of verification as well as for test generation.

e Verification on abstract state graphs obtained without variable evaluation
allowed to detect subtle errors in the SDL specification.

e Defining restricted environments instead of completely chaotic environ-
ments allowed to prove basic properties and to detect an error in a system
composed of a pair of communicating entities.

e The on-the-fly technique, especially for test generation, proved again its
efficiency even on such a large specification.

Another lesson of this case study is the strong link between verification and
test generation. Confidence in the specification is crucial for test generation as it
is used as the reference model. Thus our work on verification, even if it is partial,
has been very useful for the confidence in generated test cases. Moreover, as said
above, both activities take benefit of all optimizations made by static analysis
on the specification. An interesting aspect is also the use of OBJECTGEODE
observers during test generation. This allowed to perform optimizations and to
verify that produced test cases are correct with respect to an abstract behaviour
of the Sscop protocol. This again improves the confidence in generated test
cases. A last point to notice is the great similarity between some properties
that have been verified on peer entities and some test purposes used for test

25

generation. As algorithms are quite similar, this is another proof of the great
interaction between these activities which deserves further developments.

Last, but not least, it allowed us to improve our tools and to develop new
ones. In particular several tools have been slightly improved by their connection
to OBJECTGEODE and consequently their ability to treat SDL specifications.
EvALUATOR and TaV are now connected to the simulator API. This allows
EVALUATOR to perform on-the-fly model checking and TGV to generate on-the-
fly test cases from SDL specifications. The development of a new static analysis
tool connected to the APT of OBJECTGEODE’s compiler through SDL2AUT now
allows to perform static analysis on SDL specifications.

The case study provider (CNET) expressed a great interest for the results
obtained on the SScoP specification and test cases. The specification has been
slightly improved by numerous optimizations and corrections of detected errors.
The two first test generation campaigns with a synchronous interaction and
their comparison with available test suites has allowed to detect some errors
in the different test suites. The experiment with asynchronous interactions has
produced interesting test cases. These results proved again that automation is
profitable in quality for complex specifications.

Our work on a complex case study such as SSCOP has been very fruitful also
for the numerous research perspectives open or confirmed. The first experiments
on static analysis for the optimization of specifications have been very encour-
aging and deserves further developments. The idea of using supplementary
information such as the property to check or the test purpose seems promising
for a more efficient analysis in the perspective of model-checking or test gener-
ation. The improvement of our model-checking and test generation algorithms
is also a constant concern and the present case study has given us some new
ideas on such improvements. This is particularly important in order to produce
test cases of better quality. For this aim, we are also starting to work on the
conjunction of different methods such as symbolic methods, proof methods and
test generation, with the ambition to generate parametrized test cases which
manipulate data. In parallel we have already started to work on the difficult
problem of distributed testing which needs knowledge in testing, distributed
systems and program transformation. And finally, as already noticed, this case
study showed us that the interaction between verification and test generation
needs further work which will certainly be fruitful for both activities.

References

[1] ISO/IEC International Standard 8807. LOTOS — A Formal Description
Technique Based on the Temporal Ordering of Observational Behaviour.
Technical report, International Organization for Standardization — In-
formation Processing Systems — Open Systems Interconnection, Geneve,
September 1988.

26

[2]

[10]

[11]

[12]

ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Intercon-
nection, Information Technology - Open Systems Interconnection Confor-
mance Testing Methodology and Framework - Part 1 : General Concept -
Part 2 : Abstract Test Suite Specification - Part 3 : The Tree and Tabular
Combined Notation (TTCN), 1992.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL Be-
haviors with GEODE. In SDL forum’95. Elsevier Science (North Holland)
1995.

Y

A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety
for Branching Time Semantics. In 18th ICALP. Springer Verlag, july 1991.

M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol Verifi-
cation with the ALDEBARAN Toolset. First edition of the STTT (Software
Tools and Technology Transfer) journal, 1997.

A. Cavalli, B.-H. Lee, and T. Macavei. Test generation for the SSCOP-
ATM networks protocol. In Proceedings of SDL forum’97. Elsevier Science
(North Holland), 1997.

Y

The ATM Forum Technical Committee. Conformance abstract test suite
for the SSCOP for UNT 3.1, af-test-0067.000, sept 1996. Available by ftp
at ftp.atmforum.com.

I. Disenmayer, S. Gauthier, and L. Boullier. L’outil TVEDA dans une
chaine de production de tests d’un protocole de télécommunication. In
G. Leduc, editor, CFIP’97 : Ingénierie des Protocoles, pages 271-286. Her-
mes, sept 1997.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A Protocol Validation and Verification Toolbox. In
Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Con-
ference on Computer-Aided Verification, CAV’96 (New Brunswick, New
Jersey, USA). LNCS 1102 Springer Verlag, August 1996.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using On-the-fly Verifi-
cation Techniques for the Generation of Test Suites. In R. Alur and T.A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided
Verification, CAV’96, (New Brunswick, New Jersey, USA). LNCS 1102
Springer Verlag, aug 1996.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An Experiment in Auto-
matic Generation of Test Suites for Protocoles with Verification Technol-
ogy. Science of Computer Programming, 29, 1997.

27

[13]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J.-C. Fernandez and L. Mounier. A Local Checking Algorithm for Boolean
Equation Systems. Technical Report Spectre-95-07, Verimag, Grenoble-
France, 1995.

H. Garavel. OPEN/CAESAR: An Open Software Architecture for Verifi-
cation, Simulation and Testing. In Bernhard Steffen, editor, Proceedings
of the 4th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’98), volume 1384 of Lecture
Notes in Computer Science, pages 68—84. Springer-Verlag, April 1998.

R.J. Van Glabbeek and W.P. Weijland. Branching Time and Abstraction
in Bisimulation Semantics (extended abstract). CS-R 8911, Centrum voor
Wiskunde en Informatica, Amsterdam, 1989.

J. Grabowski, R. Scheurer, and D. Hogrefe. Applying SAMSTAG to the
B-ISDN Protocol SSCOP. Technical Report A-97-01, part I, University of
Liibeck, January 97.

T. Jéron and C. Jard. 3D layout of reachability graphs of communicating
processes. In Graph Drawing’94, DIMACS Workshop, pages 25-33, Prince-
ton, New-Jersey, Octobre 1994. LNCS n° 894. Paru en rapport de recherche
bilingue francais-anglais, Irisa n® 852 et Inria n°® 2334.

T. Jéron and P. Morel. Abstraction, 7-réduction et déterminisation a la
volée: application & la génération de test. In G. Leduc, editor, CFIP’97 :
Ingénierie des Protocoles. Hermes, sept 1997.

A. Kerbrat, C. Rodriguez, and Y. Lejeune. Interconnecting the OBJECT-
GEODE and CESAR-ALDEBARAN Toolsets. In Proceedings of SDL fo-
rum’97. Elsevier Science (North Holland), 1997.

Y

D. Kozen. Results on the Propositional u-Calculus. In Theoretical Com-
puter Science. North-Holland, 1983.

R. Milner. A Calculus of Communication Systems. In LNCS 92. Springer
Verlag, 1980.

ITU-T Recommendation Q.2110. B-ISDN - ATM Adaptation Layer - Ser-
vice Specific Connection Oriented Protocol (SSCOP), 1994.

ITU-T Recommendation Q.2130. Couche d’adaptation du mode de trans-
fert asynchrone de signalisation dans le RNIS a large bande - fonction de
coordination propre au service pour la signalisation a I'interface utilisateur-
réseau, 1994.

ITU-T Recommendation Z-100. Specification and Description Language,
1996.

ITU-T Recommendation Z-120. Message Sequence Charts, 1996.

28

[26] J. Rumbaugh, M. Blaha, W. Premerlani, F. Edyy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Inc., Englewood Cliffs, 1991.

[27] J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software—Concepts and Tools, 17(3):103-120, 1996. Also: Techni-
cal Report No. 96-26, Centre for Telematics and Information Technology,
University of Twente, The Netherlands.

[28] VERILOG. ObjectGeode SDL Simulator Reference Manual. Technical
report, VERILOG, 1996.

[29] M. N. Wegman and F. K. Zadeck. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Languages and Systems,
13(2):181-210, April 1991.

29

