
Veri�cation and test generation for the SSCOPprotocol�Marius Bozgay, Jean-Claude Fernandezy, Lucian Ghirvuy,Claude Jardz, Thierry J�eronz, Alain Kerbratx,Pierre Morelz, Laurent MounieryMarch 9, 1999AbstractMany formal tools are now e�cient enough to deal with small tomedium size systems. Working with larger systems requires not so muchto improve these tools, but to use them in combination, applying onetool for what it is most e�cient for, and using its results to improve theapplicability of the other tools. This paper presents such a combination,illustrated on an industrial protocol, large enough to break any bruteforce approach. Two research teams allied their forces with a softwareengineering tools maker in order to analyze, verify and generate automat-ically tests for this protocol, by the extension and the interconnection oftheir various tools. The results obtained give some hints on a methodologyfor the formal validation of large systems.Keyword: ATM, Protocol, Sscop, Static Analysis, Veri�cation, Model-checking, Conformance Testing, Test Generation.
�This work has been done in the context of Forma. Forma is a national project fundedby the French army, the CNRS and the ministry of research.yVerimag-Centre Equation, 2 rue de Vignate, 38610 Gieres, France. This workwas partially supported by R�egion Rhône-Alpes, France. E-mail:fMarius.Bozga,Jean-Claude.Fernandez, Lucian.Ghirvu, Laurent.Mounierg@imag.fr, Tel: 33+ 4 76 63 48 53, Fax:33+ 4 76 63 48 50zIRISA, Campus de Beaulieu, 35042 Rennes Cedex, France, E-mail: fClaude.Jard,Thierry.Jeron, Pierre.Morelg@irisa.fr, Tel: 33+ 2 99 84 74 64, Fax: 33+ 2 99 84 71 71xVERILOG, 150 rue Nicolas Vauquelin, 31106 Toulouse Cedex , E-mail:kerbrat@verilog.fr1

1 IntroductionThe Sscop protocol (Service Speci�c Connection Oriented Protocol) is an indus-trial protocol, part of the ATM stack (Asynchronous Transfer Mode), presentlystandardized by the Itu-T [22].The deployment of this protocol in telecommunications networks raises thefollowing questions :� consolidation of the protocol speci�cations: does it correctly ensure theservice requested in all the possible con�gurations?� design of correct and powerful tests to detect the nonconformity of imple-mentations with respect to the standardized speci�cation.It is clear that the �rst point is essential in an objective of broad dissemina-tion of the protocol. Standardization is not a su�cient guarantee of correctness.Sscop is a complicated object which superimposes many protocol mechanismsconcerning complex situations from the point of view of memory and time man-agement. Design bugs could resist the primarily manual work of the experts.At least the conditions of guaranteed correct operation are not all completelyclari�ed.The economic stake of the second point is also signi�cant: only certi�ed im-plementations should be disseminated. The quality of the certi�cation dependson the quality of the tests.There are actually several test suites available (that one can buy for a fewtens of thousands of dollars) which deserve to be improved:� to guarantee that a conformant implementation will not be rejected (itis a di�cult problem in an asynchronous testing architecture where it isnecessary to foresee the phenomena of concurrency on di�erent interfacesand collisions of the stimuli and the observations),� to let slip through only a reduced number of non-conformant implemen-tations (the tests must be as complete as possible).This situation led the Cnet (the research center of France Telecom) tostart an activity of formal veri�cation and automatic test generation on theSscop. The entry point was the Sdl (Speci�cation and Description Language)description provided as part of the Q 2110 [22] document. To evaluate thecapacity of industrial and academic tools to check properties and to generatefull-scale tests, the Cnet subjected the Sscop as industrial case study to theForma project.Forma is a French national action supported by the direction of the army,the Cnrs and the ministry of research. It aims at the evaluation and the transferof techniques of formal validation of temporal speci�cations. It is structuredin well targeted operations gathering research and industrial teams around acase study and short term objectives (2 years). The Sscop experiment ralliedfour research teams at CEA (Saclay), LSV (ENS Cachan), Irisa (Rennes) and2

Verimag (Grenoble) in cooperation with Cnet (Lannion) and the softwarecompany Verilog (Toulouse).Our article presents the results obtained at the end of the �rst year and thework achieved on Sscop in the context of SDL speci�cations and tools.The plan of the article is the following. We start by presenting the Sscopprotocol and its formal speci�cation then we present the tools used. The resultsare gathered in three topics: preliminary analysis of the formal speci�cation,the veri�cation of communicating entities and the automatic generation of con-formance tests. We try to present the perspectives from both the point of viewof academic research and industrial results.2 The Sscop protocol and its speci�cation2.1 The Sscop protocolThe Sscop protocol is standardized under reference ITU-T Q2110 [22]. Orig-inally, it was conceived to reliably transfer data between two high bandwidthnetwork entities. Although its design makes it ready to treat signi�cant vol-umes of data, currently its use is con�ned in the indication layer of the ATM.However, it is reasonable to think that it will be employed to transfer high vol-umes of data in future applications. Sscop is one of the underlayers of the layerAAL (ATM Adaptation Layer). The main role of AAL is to adapt the serviceprovided by the ATM physical layer to the type of data passing by connectionsestablished between two ends.
Q2931

SSCF (Q2130)
(Service Specific Coordination Functions)

(data control)

SSCOP (Q2110)
(Service Specific Connection Oriented Protocol)

(data transfert)

CPCS
(Common Part Convergence Sublayer)

SAR (Segmentation And Reassemblage)

Service primitives

Service
Specific

Convergence
Sublayer
(SSCS)
AAL

Functions

Common
Part
AAL

Functions

ATM SAP

AAL SAP

Signals

Signals

Service primitivesFigure 1: Situation of Sscop in the ATM stack3

2.1.1 Provided servicesSscop provides to the upper layer (Q2931 for example) the following services:� Sequencing: SDUs (Service Data Units) submitted by the upper layer arenumbered in the order in which they will be submitted for transfer,� Protocol error detection and recovery: the receiver detects loss of PDUs(Protocol Data Units) and asks for selective retransmission,� Flow control: achieved by a classical window mechanism with size deter-mined by the receiver,� Error reporting to the management layer,� Keep connection alive in the case of a long absence of data transfer,� Local data retrieval: if necessary, local data can be retrieved among notyet released SDUs,� Connection control: establishment, release and resynchronization,� Data transfer with two modes: guaranteed or not,� Window state indication.2.1.2 Exchanged signalsSscop exchanges two types of signals with its environment:� signals exchanged with the upper layer SSCF (Service Speci�c Conver-gence Function) de�ned in [23]. These signals are internal primitives ofthe ATM stack (ASP for Abstract Service Primitives) and are generallynot observable from outside. Their coding is not standardized.� signals exchanged with a peer Sscop entity. These signals are PDUs andare accessible by a tester. Their coding is standardized.2.2 The Sdl speci�cation of the Sscop protocolThe Sscop standardization document [22] contains an informal description ofthe Sscop and an Sdl description of the protocol. This Sdl description hasbeen coded by Cnet using the Sdl editor ObjectG�eode (Verilog). It con-sists in approximately 2000 lines of Sdl described by one single process. Thespeci�cation is open in the sense that the environment is not described. Thisdescription is centered on signaling and some simpli�cations have been madeaccording to Sscop implementations available in Cnet. Some other simpli�ca-tions, such as removal of unobservable internal actions, have also been done bythe Cnet in order to adapt it to the purpose of test generation.4

This speci�cation has been simulated in Cnet using the Sdl simulator Ob-jectG�eode. The Cnet also applied its test generator TV�eda to derive ab-stract test cases. These test cases have been translated to executable test casesand applied to real implementations. This work is described in [9]. We willcome back on the produced test suites in section 6.3 Tools3.1 ObjectG�eode (Verilog)ObjectG�eode is a real time systems development toolset, supporting the useof three formalisms:Sdl is the Speci�cation and Description Language, standardized by the Z.100recommendation [24]. Sdl is the main language of the toolset, it allowsto describe the architecture and the behaviour of a real time distributedsystem.Msc is the Message Sequence Charts language. It is standardized by the Z.120recommendation [25]. It is usually combined with Sdl, as it allows todescribe runs of the system, with a more or less abstract view of its archi-tecture.Omt is the Object Modeling Technique de�ned by J.Rumbaugh and al [26].Within ObjectG�eode, it is mainly used to describe data.ObjectG�eode includes graphical editors and compilers for each language.It provides also a C code generator and a simulator which allows some debuggingand some veri�cation of Sdl programs. Finally, a test generation prototype isalso included.As the focus of this work is on veri�cation and test generation, we willpresent in more details the simulator tool, which was necessary in several phasesof the veri�cation and test generation works. The test generation prototypewas not applied, as its functionalities are largely covered by the tool Tgv (seesection 3.2).The Simulator toolThe Simulator allows to simulate runs of the system, without having to actuallyexecute it in a real environment. It can be seen as a sort of abstract debugger,as it allows to simulate the description step by step, to undo execution steps,to set break points and to watch the contents of variables and queues. Finally,it also allows to record, visualize as Mscs or replay some simulation sequences.It is also more than a debugger, as it allows to perform automatic simulation,either randomly or exhaustively, with systematic comparison of the behaviorwith special state machines called observers.5

The simulator working principle is based on the model checking principle.The Gsmcomp Sdl compiler produces the needed functions for the graph gen-eration and some of the data structures for the model's representation. TheSimulator itself provides the data structures for the model exploration (hash-tables, stacks and heap management). It integrates exploration programs suchas deadlock and livelock search, assertion checking and comparison with ob-servers. All the functions and the data structures provided by the simulator areaccessible via a well-de�ned API.Observers: The core of the veri�cation methods of ObjectG�eode is basedon the observers [4]. They can be directly written using the Goal languageor compiled from Mscs. Observers are state machines which are executed sideby side with the Sdl description. Every time an event occurs (for example the�ring of the whole transition, or the input of a signal, or an informal decision),the observer checks if it is an event it is able to recognize (there is a transitionfrom its current state which matches the system's transition). If it is the case,it executes its corresponding transition, otherwise it ignores the event. Thestates of observers can be quali�ed either as success or error states. Duringthe comparison of a description with an observer, sequences leading to errorstates can be saved as diagnostics. Moreover, observers can be considered as asubstitute to the user for exhaustive and random simulation modes. An observeruses a set of probes, given as access paths to the entities (blocks, processes,queues, variables) to be observed. These probes allow to observe events liketransition �ring, communications of signals, creation or stopping of processes,time progression or procedure calls. They also give the possibility to change theprogram behavior, by changing the value of variables, so they can be used forexample for fault-injection in the system.3.2 Tgv (Irisa-Verimag)Tgv is a prototype tool developed by our two teams in Rennes and Greno-ble [11, 12, 18]. Its aim is to automatically generate test cases for conformancetesting of distributed systems, starting from a formal speci�cation of the systemand test purposes allowing to select test cases. These test cases are composedof interaction sequences. An interaction is either an output of the tester whichis proposed to the implementation, or an input which is an expected answerof the implementation according to its speci�cation. Test cases also containtimers which ensure the �niteness of the test execution and verdicts which areproduced according to the conformance or not of the implementation with re-spect to the speci�cation. The conformance relation relating implementationsto speci�cations is allmost identical to the ioco relation of Tremans et al [27].Unformally it says that an implementation conforms to its speci�cation if af-ter any observable trace existing in the speci�cation, outputs produced by theimplementation are foreseen in the speci�cation and the implementation mayblock only if the speci�cation also allows it.6

3.2.1 Main principlesThe principle of Tgv is to compute a test case from a speci�cation of the systemand a test purpose. The algorithms are not described in detail here but thesealgorithms ensure that produced test cases are unbiased in the sense that anyimplementation which conforms to its speci�cation will not be rejected by a testcase produced by Tgv.The speci�cation must be given in a language which operational semanticsallows to represent its set of possible behaviours by a state graph. This stategraph is either explicit or implicit leading to two di�erent modes of using Tgv:explicit and on-the-y generation.Explicit generation: In this case the state graph of the speci�cation is pre-viously computed by a simulation tool. The test generation then necessitatesseveral phases. The �rst step is to translate the state graph into a format ac-cepted by Tgv. Then, as testing considers traces of observable interactions,the internal actions are abstracted (��-reduction), and the state graph is deter-minized and then minimized [11]. The resulting graph represents the observablebehaviour of the speci�cation on which the main algorithm of Tgv can be ap-plied. The main drawback of this approach is the state explosion problem whichlimits the applicability of this method to small speci�cations. An alternative isto generate test cases on-the-y as described above.On-the-y generation: Tgv can also be applied to implicit state graphs.The principle is to compute a test case while constructing, in a lazy strategy,only the part of the state graph which is necessary for the test case computa-tion. This is called on-the-y generation. The advantage of this method is to beable to compute a test for large speci�cations with very large and even in�nitestate graphs. In order to be applicable, Tgv must be linked with an API ofa simulation tool which provides some basic functions for the graph construc-tion, namely the function which computes the initial global state, the functionwhich computes �reable transitions, the function which computes the globalstate reached from a previous global state by �ring a transition, and functionswhich compare global states and store them in memory. From an algorithmicpoint of view, the di�culty comes from the fact that successive transformationsdescribed above for explicit graphs (except minimization) are applied here toimplicit graphs during their construction. This imposes that algorithms areconceived using APIs.Test purposes: A test purpose characterizes an abstract property that thesystem should have and that one wants to test. In Tgv it is used to select a testcase from all possible behaviours of the speci�cation. It is formalized by a �niteautomaton labelled with some interactions of the speci�cation. This automatonhas accepting states which de�ne the accepted language and refusal states whichallow to cut the exploration of some parts of the state graph in order to betterguide the test case search. The automaton allows some abstraction using wild7

card transitions. This contrasts in particular with the test generation methodused in Samstag [16] which uses test purposes de�ned as Mscs describingcomplete sequences.Main algorithm: Tgv is based on algorithms coming from the model-basedveri�cation domain. These algorithms check that a speci�cation satis�es a prop-erty given by a logic formula or by an automaton. Some of them are based ontraversal of the state graph. If the property is not satis�ed, a diagnostic se-quence can be extracted. The algorithm of Tgv adapts this principle for testgeneration. Searching a sequence of the speci�cation which satis�es the testpurpose can be seen as producing a sequence that characterizes the non satis-faction of the negation of this test purpose. In fact, Tgv is even more complexas it produces a set of sequences i.e., a sub-graph. Very e�cient algorithms existfor doing this, and in particular those which perform on-the-y veri�cation arewell adapted for on-the-y generation of test cases. The principle is to traversea synchronous product of the state graph of the speci�cation and the test pur-pose automaton. Test cases are synthesized while backtracking from reachedaccepting states.Testing architecture: Testers often do not directly communicate with im-plementations. Such situation arises when communications take place through�fo channels in an asynchronous way. This implies phenomenon such as messagecollisions (the tester sends A and waits B while the implementation sends C)and concurrency on di�erent PCOs1 (the implementation sends A on PCO1 andB on PCO2 in sequence but the tester may receive A and B in any order). Bythe way this creates lost of control and observation of the tester on the imple-mentation. In order to treat this correctly and produce correct test cases, theasynchronous communication must be a parameter of the test generation. ISO9646 recommends to generate a generic test case and then to take into accountthe test architecture for the production of an abstract test case. But for thecase of asynchronous communication, it is easy to prove that this strategy doesnot work as the production of a generic test case may loose some informationswhich are necessary in order to derive a correct abstract test case. For simplearchitectures one could also treat the problem by a transformation of the stategraph of the speci�cation. This has to be done on explicit or implicit stategraphs. In the second case, this implies to integrate the transformation in thekernel of Tgv. This was the �rst strategy adopted by Tgv. But this slightlycomplicated Tgv and the implemented transformations were not complete. So,our strategy is now to describe the test architecture inside the speci�cation andto derive abstract test cases from this new speci�cation. This complicates thespeci�cation and produces a supplementary explosion of the state graph. Thusit would be di�cult to apply this for explicit generation. But it works quite wellwith on-the-y generation. This has been experimented for Sscop.1PCO: Points of Control and Observation i.e. interfaces through which the implementationis controlled and observed by testers 8

3.2.2 Languages and companion toolsTgv was �rst developed in the context of conformance testing of telecommuni-cation protocols. So it is based on standard languages of the domain. Thus itis applicable to speci�cations written in Sdl [24] or Lotos [1] and can producetest cases in the TTCN language (Tree and Tabular Combined Notation) de-�ned as a part of [2]. Nevertheless, it is relatively independent of any languagebecause it manipulates the standard model of state graphs which is used torepresent the possible behaviours of speci�cations, test purposes and test cases.On-the-y generation has been applied successfully in the context of Lotosspeci�cations using Open-C�sar [14] from the C�sar-Ald�ebaran toolset ofVerimag and Inria Rhones-Alpes [10, 6]. In the context of Sdl speci�cationswe have also applied on-the-y generation using an open version of the Ob-jectG�eode simulator from Verilog [28] which o�ers an API with state graphconstruction functions described above [19]. In this case some libraries ofC�sar-Ald�ebaran are also used for graph storage.The output of Tgv is a test case which is given by a graph in an ad hocformat. We can translate this test case into TTCN. In the context of telecom-munication protocols, it is important to make this translation as TTCN is defacto the standard for writing test cases.3.3 Other tools from VerimagVerimag is developing for 10 years a toolset dedicated to the design and ver-i�cation of protocols. Some of them are distributed as part of the C�sar-Ald�ebaran toolset [10, 6].Some tools have been adapted or designed especially for this work, in orderto be connected e�ciently with the ObjectG�eode toolset. These tools can beclassi�ed according to their functionality :Generation of intermediate form: Sdl2aut has been partly developed forthis case study. This tool translates an Sdl speci�cation into a set of ex-tended automata, one per Sdl process. The transitions of these automataare labelled with basic Sdl actions (input, output, task,. . .).In this form, the protocol became easily tractable by our veri�cation toolssuch as Ald�ebaran, MmgGraphic, for the veri�cation of some globaland very abstract properties. It was also possible to apply static analysistechniques, which happened to be crucial for the limitation of the stateexplosion occurring during the full veri�cation and test generation.Minimization and comparison of behaviours: Ald�ebaran allows to min-imize a state graph, or to compare a state graph with a more abstract one,with respect to equivalence relations preserving the observable behaviourof the system. In particular,Ald�ebaran uses simulation and bisimulationrelations such as strong and weak bisimulation [21], branching bisimula-tion [15], and safety equivalence [5].9

Evaluation of temporal logic formulas: Evaluator provides on-the-y ver-i�cation of temporal properties over �nite state graphs. The temporallogic considered in its case is the alternating-free �-calculus [20]. Likemany other similar on-the-y veri�cation tools, Evaluator is based on alocal resolution method for boolean equation systems [13]. Such systemsare usually derived from the state graphs when expressing the semantics oftemporal properties. Evaluator completes the other available analysistools, which are essentially based on behavioral veri�cation.Visualization: MmgGraphic is a tool for visual analysis and diagnosis ofdistributed systems. It uses a global and abstract view of the system.The tool performs an interactive and visual exploration based on iterativelocal re�nements corresponding to a zoom e�ect on some states of thesystem's model, i.e. the state graph.It works as follows : if we minimize the state graph of the system (preserv-ing the behaviour), by considering only a small (e.g. less than 5) subsetof observable events, we usually obtain a model small enough to be drawnand analyzed visually. Some parts of this very abstract model can be de-tailed by extending the set of observable actions and then reiterating thisprocess.Verimag took advantage of the APIs of ObjectG�eode, and connected thetools Sdl2aut and Evaluator respectively to the Sdl compiler and to thesimulator [19]. The bene�ts of such connections are numerous :� A tool such as Sdl2aut can be designed without having to re-implementa full Sdl compiler, yet keeping the upward compatibility with futureevolutions of Sdl.� The model checker Evaluator can work on-the-y on Sdl speci�cations,thus avoiding some limitations due to the state explosion problem.Other translation tools have also been implemented, in order to convert theexplicit model produced by the ObjectG�eode simulator into a model suitablefor Ald�ebaran, MmgGraphic, and the explicit version of Tgv.4 Static analysis of the Sdl speci�cationOur �rst attempt to verify the initial speci�cation was to directly generate thestate graph using ObjectG�eode. But even for very simple scenarii, this taskcannot be accomplished, mainly because of the complexity of the data part.4.1 Abstract behavioural analysisThe following consideration allows to abstract away the variables: when simulat-ing exhaustively an Sdl speci�cation without evaluating the values of the vari-ables, we obtain a super set of the program behaviour. Indeed, the guards being10

not evaluated, each transition of the control ow graph is �reable. Therefore,there exists a simulation [21] between the original program and this abstractmodel. Then, it is possible to check some class of properties on this abstractbehaviour, for instance the expected properties of the service. The interest ofthese veri�cations is their weak cost, since the abstract graph is much smallerthan the original one. In particular, the veri�cations we performed consisted incomparing this abstract graph with the one supplied by the standard to modelthe interactions between adjacent layers.This comparisons with respect to the safety equivalence, was performed withAld�ebaran. Some subtle errors, such as omission of timers setting, were foundusing this method.The main steps of the analysis are summarized below:� generation of a reduced model from the Sdl speci�cation, with Sdl2aut.We obtain a graph with about 1000 states.� minimization of this model, using Ald�ebaran, with respect to strongbisimulation. We obtain a graph with about 300 states.� properties checking on this resulting graph.However, this �rst abstraction was too coarse to verify the most interestingproperties. So, we now turn back to the original speci�cation in order to performmore sophisticated analyses.4.2 Preliminary simpli�cationsWhen we want to model the behaviour of an Sdl speci�cation with a stategraph, two parameters have an inuence on the size of this model:� the state number, depending on the size of the variables domains.� the state vector size, depending on the number of the program variables,Our model based approach does not allow to perform parameterized veri�-cation. Therefore, we choose to restrict the size of the variables domain to thelowest values speci�ed by the standard.Another simpli�cation was the suppression of useless variables, some of themdetected by the ObjectG�eode compiler and some others detected by hand,such as for example, some Pdus only relevant for the implementation (reservedrecords, ...). Moreover, some parts of the speci�cation have been slightly rewrit-ten in order to suppress redundant variables (local variables used in a state toconstruct a Pdu before its emission).Furthermore, consider the Sdl implicit variables sender associated witheach process. It contains the identi�cation of the process from which the lastmessage was received. This variable may take many values. As a consequence,some states, behavioural equivalent, are distinguished. But this implicit variableis not referenced in this speci�cation. The use of an intrusive observer with11

ObjectG�eode allowed us to assign an unique value to this variable withoutchanging the behaviour of the speci�cation.These coarse simpli�cations may be re�ned strongly by performing live vari-ables analysis [3, 29] of the speci�cation, as explained in the next subsection.4.3 Live variables analysisA variable is live in a state if there is a path from this state along which itsvalue is used before it is rede�ned. Otherwise, it is dead. Live variables can becomputed by performing a backward analysis on the model. We modify slightlythe usual de�nition of Def and Use from [3]. We de�ne Use(t) to be the set ofvariables that are used in the transition t, and Def(t) to be the set of variablesthat are de�ned (assigned) in the transition t.A variable is live on a state p if there is a transition t, such that p = source(t)(the transition source state) and either the variable is live on target(t) (thetransition target state) and not in Def(t), or if it is in Use(t).This information is computed by solving the least �xpoint equations:8p 2 Q Live(p) = [ftjsource(t)=pg(Use(t) [(Live(target(t)) nDef(t))An important reduction of the model state space can be obtained by takinginto account the live variables for each control state. In fact a model state mustbe strictly characterized by the values of the live variables, not by the values ofall model variables. Or, in other words, we must not distinguish states di�eringonly on values of dead variables. Thus, we can de�ne a living equivalence whichis stronger than the strong bisimulation.The model reduction that we propose consists in directly computing thequotient model S=�live . This can be done in a straightforward manner at themodel generation time using various techniques. For example we can directly usethe living equivalence to test equality of newly generated states instead of thestrong (complete) equality of state vectors. Another simple way is to modifythe initial automaton by introducing systematic (re)sets of dead variables tosome given value. This optimization has been implemented in a tool especiallydesigned for this case study. In this case study, a spectacular bene�t we obtainedis the reduction of the state graph size by a division of 200.4.4 PerspectivesThe study of a complex Sdl speci�cation points out the importance of staticanalysis to optimize the automaton modeling the behaviour. Some other anal-ysis, such as constant or interval propagation, are currently studied. Moreover,the use of the property we want to check (resp. the test purpose used to gener-ate a test case) could improve even further the veri�cation step (resp. the testgeneration step). 12

5 Veri�cation of a pair of communicating SscopentitiesThe purpose of the static analysis stage described in the previous section wasboth to detect most of the coarsest errors or omissions in the original protocolspeci�cation, and to abstract it to facilitate its veri�cation by model-checking.Therefore, it now remains to check for its correctness in more details.However, because of its complexity, and particularly since there does notexist any \exhaustive" reference behaviour of a protocol entity (i.e., valid forany environment), it is clear that this correctness cannot be established in thegeneral case. Consequently it is necessary to concentrate our veri�cation e�ortto a set of representative scenarios, for which speci�c properties are expected.More precisely, the system we consider in the following consists in a pairof protocol entities, communicating through bounded �fo channels. Thus, thecommunication layer is assumed to be reliable and no signal loss is allowed.Moreover, each entity is able to exchange a given set of signals with its upperlayer (the Sscf layer). In particular, by restricting to an appropriate set thesignal sequences received by each entity from the Sscf layer, it becomes pos-sible, using ObjectG�eode, to generate a model of the corresponding protocolbehaviour, and, when this model is �nite, to verify it with Ald�ebaran.In the remaining of the section we detail some scenarios of the veri�cationsthat we performed using this approach2.5.1 Connection establishmentWe considered a �rst scenario devoted to a connection establishment betweentwo entities. For this scenario, the signals accepted at any time3 by each entityfrom its Sscf layer are:� the request signal for a connection establishment (\AaEstablishRequest");� the response signal to a connection establishment (\AaEstablishResponse").The resulting state graph generated by ObjectG�eode contained 15 000states, and was reduced modulo strong bisimulation to 5 000 states usingAld�ebaran.For checking the correctness of the connection establishment, we consideredthe two informal requirements:Req 1: any connection request received by a protocol entity can be followed bya connection con�rmation issued by the same entity;Req 2: any connection request received by a protocol entity is eventually fol-lowed by a connection con�rmation issued by the same entity.2A preliminary approach was conducted by the LSV team (under the supervision of A.Finkel) where the connection-disconnection phase was manually translated into Promela formodel-checking using SPIN3following the reasonable feed simulation policy of ObjectG�eode.13

These two requirements were formally expressed in the �-calculus, and evaluatedon the protocol state graph using Evaluator.Although the �rst requirement was clearly veri�ed, the second one happenedto be false, and a diagnostic sequence was produced by the tool. The analysisof this sequence showed that the connection establishment may fail due to theexpiration of one of the timers (\TimerCC") associated to each entity. Thistimeout happens when the PDU exchange required by the connection establish-ment takes too much time. The connection is then aborted, which is correctwith respect to the standard. Consequently, Req 2 was rewritten as followsand veri�ed using Evaluator:Any connection request received by a protocol entity, not followedby a timeout of \TimerCC" occurring on any entity, is eventuallyfollowed by a connection con�rmation issued by the same entity.Therefore, we can conclude that under our assumptions a correct connectionestablishment is guaranteed by the Sdl speci�cation.5.2 DisconnectionTo analyze the protocol behaviour during a disconnection step we now add thedisconnection request signal (\AaReleaseRequest") to the set of signals receivedby each entity from the Sscf layer. The resulting state graph generated byObjectG�eode contained now 30 000 states, and it was reduced to 8 000 statesby Ald�ebaran.The informal requirements we considered were the following:Req 3: any disconnection request received by a protocol entity is eventuallyfollowed by a disconnection indication issued by the other entity;Req 4: any disconnection request received by a protocol entity can be followedby a disconnection con�rmation issued by the same entity;Req 5: any disconnection request received by a protocol entity is eventuallyfollowed by a disconnection con�rmation issued by the same entity.These three requirements were expressed in terms of �-calculus formulas, andevaluated on the protocol state graph using Evaluator, leading to the followingresults:� Req 3 is true, which means that any disconnection request is correctlytransmitted from one entity to the other;� Req 4 is true, which means that a connection can be correctly releasedby the two entities;� however Req 5 happened to be false, and a diagnostic was produced byEvaluator. 14

Here again, the analysis of this diagnostic showed that a disconnection requestmay not be con�rmed, either because the connection has never been correctlyestablished before, or because it has been already released in the meantime. Fur-thermore, this last situation occurs either because of a timeout (of the \NoRe-sponse" timer), or because the other entity has previously requested for a dis-connection. Since these two scenarios do not contradict the Sscop standard, thedisconnection step can be considered as correctly speci�ed by the Sdl protocoldescription.5.3 Data transferThe last scenario we considered was devoted to the data transfer functionalitieso�ered by the protocol, and in particular the \guaranteed mode" allowing datatransmission even if the communication layer is not fully reliable. However, we�rst tried to verify it with a reliable communication layer, which is a necessaryprecondition.The signals received by the protocol entities from the Sscf layer are thefollowing:� For the entity 1, the \AaEstablishRequest" signal and the data transferrequests of two distinct messages m1 and m2 (\AaDataRequest(m1)" and\AaDataRequest(m2)");� For the entity 2, the \AaEstablishResponse" signal.This signal set allows to build an asymmetrical scenario during which the con-nection can be established (upon entity 1 request), and transmission of messagem1 or m2 can be requested at any time by entity 1. This asymmetry has beenintroduced in order to restrict the corresponding protocol behaviour, and the re-sulting state graph generated byObjectG�eode contained 4 000 000 states, and33 000 states after its reduction using Ald�ebaran. The informal requirementswe considered were the following:Req 6: a data transfer indication is never transmitted by a protocol entity toits Sscf layer if it has not previously received a connection establishmentresponse from this layer.Req 7: a data transfer indication of a given message is never transmitted bya protocol entity to its Sscf layer if a data transfer request of the samemessage has not been previously received by the other entity.Req 8: a data transfer request of a given message received by a protocol entityis eventually followed by a data transfer indication of the same messageissued by the other entity.Using Evaluator the evaluation on the protocol state graph of the �-calculus version of these three requirements gave the following result:� Req 6 is true, which means that a connection is always correctly estab-lished when a data transfer occurs;15

� Req 7 is true, which means that there is no \message generation" per-formed by the protocol;� Req 8 happened to be false, and a diagnostic was produced by Evalua-tor.The analysis of this diagnostic revealed something that seems to be ananomaly in the protocol behaviour described by the Sdl speci�cation. Thisanomaly concerns the \credit" value associated to a receiving entity, whichrecords the number of messages that can be still received without sending backthe corresponding acknowledgment. After acknowledgment this credit is thensupposed to be reset to its initial value.However, in the diagnostic sequence exhibited by Evaluator the creditvalue is never reset, which prevents the protocol to receive any further messageonce the initial credit has been reached. The connection is then released dueto a timeout, and a new connection is established. This incorrect behaviouris clearly demonstrated when considering the \abstract" behaviour producedby Ald�ebaran after minimization of the state graph with respect to branch-ing bisimulation (where only \AaDataRequest" and \AaDataIndication" signalexchanges are observed).5.4 Future workThe results obtained with this basic set of properties show that, even if theycan be only partially applied by considering restrictive scenarios, model-checkingveri�cation techniques are quite useful to improve the knowledge of a systembehaviour, or to detect some anomalies in its description.Consequently this work needs to be continued, either by analyzing otherscenarios (for instance the re-synchronization of a connection, the local dataretrieval, etc.), or by considering a more unreliable environment for a proto-col entity (including for instance an unreliable communication layer, possiblefailures of the other entity, etc.). However, it is likely the case in this last per-spective that the state graph modeling the corresponding behaviour becomestoo large to be fully generated. In these situations other facilities of the veri-�cation tools will have to be used, such as on-the-y veri�cation, or symbolicBDD-based representations [6].6 Automatic generation of conformance testsThe Sdl speci�cation of the Sscop protocol has been used for the automaticgeneration of test cases. This work has bene�ted from the preliminary analysisand optimizations made on the Sdl speci�cation. Veri�cations also gave us morecon�dence in the speci�cation. This is important for automatic test generationas the speci�cation is the reference model. Conversely, the �rst works made ontest generation helped us in the process of speci�cation correction and gave ussome ideas on static analysis useful for veri�cation and test generation.16

Our objective in this case study was not to produce a \complete" test suitelike those already available from the ATM Forum [8]. The �rst aim was tocompare tests produced by Tgv with those written by hand or produced byother tools. In particular we had the ambition to produce better tests fromcommon test purposes, to treat more complex test purposes and to generatetest cases for di�erent test architectures. This case study was also the occasionto evaluate the maturity of our tool, to improve it and to open new researchperspectives.6.1 Tools usedThe Sdl toolset ObjectG�eode has been used for the edition (correction) ofthe Sscop speci�cation and for its simulation. Ald�ebaran has been used withthe explicit version of Tgv for the ��-reduction, minimization and determiniza-tion of partial state graphs produced by ObjectG�eode. Some of these graphsand produced test cases have been visualized with a prototype tool named Vis-cope [17] which allows to draw state graphs in 2D or 3D. Finally, Tgv has beenused for test generation in its two use modes i.e. on explicit state graphs andon-the-y with its connection to ObjectG�eode.6.2 Preliminary analysis and test purpose formalizationA preliminary analysis of the speci�cation (see section 4) allowed us to betterunderstand the protocol and its Sdl speci�cation and to detect some transcrip-tion errors and possible simpli�cations.The goal of this analysis was also to identify some interesting test purposes,to formalize them in order to generate test cases. Fifty test purposes have beenidenti�ed and formally speci�ed. These test purposes cover all functionalitiesof the Sscop protocol but of course not all its possible behaviours. But mostof these test purposes describe complex behaviours as they correspond to testcases covering several control states of the protocol (e.g. connection followedby disconnection, connection followed by data transfer, etc). This should becompared with the work made on veri�cation of communicating Sscop entities.6.3 Analysis of available test suitesSeveral test suites have already been produced for the Sscop protocol, such asthe one produced by the tool TESTGEN (INT Evry France) [7]. But duringthis study we had only access to three TTCN test suites of the Sscop protocol.These test suites had been produced in three di�erent ways. We have tried tocompare test cases produced by Tgv with some test cases from those test suites.Test suites available to us were the following:� the ATM Forum test suite (see ftp.atmforum.com, af-test-0067.000) hasbeen written by hand by specialists of the Sscop protocol. It is the richesttest suite of the three considered ones because it reects the expertise of17

test developers. It contains a declaration part (types of messages, timersde�nitions), a constraint part (values of message parameters, etc) a be-haviour part which describes the sequencing of actions in each test case.These behaviours make full use of TTCN constructs such as loops, vari-ables, separation of test cases into a preamble (a sequence leading to aparticular control state), a test body (verifying the test purpose) an iden-ti�cation sequence (a sequence which can be used to identify the currentcontrol state of the protocol) and a postamble (return to the initial controlstate).It is clear that some of the constructs used are di�cult to generate auto-matically but we consider that this test suite represents a goal to reachby automatic tools.� a test suite produced automatically by the Samstag tool from the Uni-versity of L�ubeck [16] is also available. The generation is based on thedescription of test purposes by Mscs (Message Sequences Charts). Thetest suite also comprises a declaration part, a constraint part and a be-haviour part. Behaviours are simpler that in the ATM Forum suite. Inparticular timers are not produced and one test case is basically a sequenceleading to a PASS verdict, decorated with INCONCLUSIVE verdicts onundesired inputs. According to the paper, eight di�erent versions of theSdl speci�cation of the Sscop have been used, each of them restrictedto some functionalities of the protocol in order to be able to generate testcases.� a test suite generated by TV�eda from Cnet. The available suite was pro-duced by a previous version of TV�eda called \syntacticTV�eda". TV�edais limited to single process speci�cations. The tool automatically generatestest purposes, by default one for each branch of each transition of the Sdlspeci�cation. In this version of TV�eda, preambles and postambles werenot produced though they are with the new version. The computation oftest cases was made by constraint resolution. The test suite contains adeclaration part, a constraint part and a behaviour part.A new version of TV�eda has also been used on Sscop and produces morecomplete test cases but the test suite itself was not available to us butonly a paper [9].6.4 Test architectureThe test suites from TV�eda and the ATM Forum consider that the tester hasonly access to the lower PCO. Samstag considers that the two PCOs are ob-servable and controllable. In fact, even for one PCO, most test cases needinteractions through the upper PCO. This cannot be avoided as almost all con-trol states of the protocol can only be accessed after some interactions throughthe upper PCO. Thus in TTCN test suites from TV�eda and the ATM Forum,18

in the case of a non controllable PCO, these interactions are signaled with themechanism of implicit send.
TCP UT

IUT

LT PCOASP(N)

ASP(N-1)

PDU(N)

ASP(N-1)PCO

Service (N-1)

System Under Test
(SUT)

Test System

Figure 2: Remote testing architectureThe three above mentioned test suites are supposed to be derived for aRemote architecture (see �gure 2). In fact this does not appear in test suites.In a remote test architecture one should see particular behaviours due to theasynchronism between the tester and the IUT. In fact the asynchronism is nottaken into account. The test suite for a remote architecture seems to di�er froma local test method only by the fact that PDUs (Protocol Data Units) and notASP (Abstract Service Primitives) are exchanged with the lower tester.Following these observations, we have decided to consider two di�erent testarchitectures.� a remote architecture with two PCOs and a synchronous interaction. Thisarchitecture is considered in order to compare produced test cases withthe three available test suites with the same assumptions.� a remote asynchronous architecture. Asynchronism is limited to the lowertester because we can suppose that the upper tester communicates in asynchronous way using ASPs: the synchronous abstraction is a good ab-straction for this PCO. The lower tester communicates asynchronously,simulating a link in an ATM network. This communication is supposednot to be lossy as it is the tester itself that will simulate loss of data. Inorder to consider an asynchronous interaction between the protocol andits environment, we added a process between them. This adds a �fo queuebetween the speci�cation of the Sscop and the environment in each di-rection. The new process just delays interactions. Each message receivedfrom the environment (resp. from the Sscop) is enqueued and later sent19

to the Sscop (resp. environment). This was necessary due to the commu-nication semantics used in ObjectG�eode between the speci�cation andthe environment. This semantics states that messages received from orsent to the environment are not enqueued.6.5 ExperimentsTgv has been used in two ways, explicitly and on-the-y. We detail here howthese experiments were conducted and the results obtained.6.5.1 Explicit TgvWhen Tgv is used in explicit mode, we �rst have to build the state graph of thespeci�cation with the ObjectG�eode simulator. But for a large speci�cation asSscop (with a very large state graph), it is impossible to generate the completestate graph. Thus, for each test purpose, we have to build a partial state graphwhich allows to produce the corresponding test case. The �rst thing to dois to close the speci�cation with inputs from the environment using the feedmechanism of ObjectG�eode, just as was done for veri�cation. A subset ofinputs is selected after a close look to the speci�cation. These inputs are alwaysavailable and are possible in several control states although they are ignored.We have thus used the mechanism of stop conditions in order to forbid theseinputs in some states. Care must be taken to use stop conditions only in thiscontext. In fact, stop conditions could be put on any transition, for example onoutputs of the speci�cations, possibly producing biased test cases i.e. test casesthat would reject correct implementations. A safer possibility is to use refusalstates in the test purpose. But this was not available in Tgv at the beginningof the study. After the state graph has been computed with ObjectG�eode,Ald�ebaran minimizes it with respect to ��-a equivalence and determinizes it.This state graph represents the observable behaviour of the speci�cation. Tgvtakes as inputs this state graph and the test purpose automaton and producesa test case which can be translated into TTCN.This way of using Tgv has been used only in the case of a synchronous com-munication between the IUT and the tester. At the time of this �rst experiment,the on-the-y version of Tgv was not available.Fifty test cases have been produced corresponding to the �fty formalizedtest purposes. The sizes of the state graphs produced by ObjectG�eode werein the order of some thousands states. The reduction of these state graph byAld�ebaran produced state graphs of some hundred states. The total timespent for the generation of one test case was in the order of some seconds. Testcases produced by Tgv for simple test purposes are quite comparable with thoseof the three available test suites. This allowed us to �nd some errors in thosetest suites such as bad management of timers or omission of inputs due to Sscoptimeouts. 20

6.5.2 On-the-y generationIn the case of on-the-y generation, Tgv pilots ObjectG�eode and all phases(abstraction, ��-reduction and determinization) are done in one pass. Thispossibility of using Tgv has been adopted for the two considered architectures.Remote synchronous architecture: As mentioned earlier, the use of stopconditions has been suppressed and replaced by refusal states in test purposes.This allowed a simpli�cation of test purposes descriptions and a better selectionof test cases. On-the-y generation also allows to relax constraints put by theenvironment and stop conditions in the case of explicit generation. Obtained testcases are generally identical to those produced in an explicit way. Di�erencesmay occur due to the exploration order and di�erent constraints. But the globalexecution time is generally smaller as only a sub-graph of the speci�cation istraversed and constructed by Tgv.Remote asynchronous architecture: As said previously, in this case thespeci�cation was completed with a new process which dissynchronizes the com-munication between the environment and the Sscop protocol. In order to limitthe behaviours of the new speci�cation, we have limited to one the size of thequeue associated to the channel from the environment to the speci�cation. Thiscan be justi�ed by the fact that in practice, after sending a message to the IUT,the tester waits for reactions before sending a new message.Produced test cases are often di�erent from those produced in a synchronouscommunication context and are thus di�cult to compare with available testsuites. The main reason is that asynchronous interactions produces the classicalproblem of message collision. This happens very often as in many control states,after a �rst interaction and a timer setting, Sscop waits for an input A andthen sends B. But if A does not arrive in time, the timer expires and an outputC is sent. Thus a tester sending A may receive either B or C. This is the casefor example for a connection establishment (see the example below). Anothertypical situation may also happen due to asynchronism on multiple PCOs. Theorder in which messages are sent by the protocol is not necessarily conservedbecause messages can be delayed. Thus if the protocol entity sends A on a PCOfollowed by B on an other PCO, the tester should consider the possibilities ofreceiving A followed by B or B followed by A. The chosen testing architectureof Sscop produces a derived situation as only the lower PCO is asynchronous.A situation which happens is then, when in a transition a message A is sent onthe lower PCO followed by a message B on the upper PCO. In this case, we willalways observe B before A.Example: This last situation and a message collision happen in the followingbehaviour of Sscop. In state Idle, when an aaestablishrequest ASP is receivedby Sscop from the upper layer, a bgninvoke PDU is sent to the peer entity (theenvironment in our case), timer CC is set and Sscop goes to state OutgoingConnection Pending. In this state, Sscop may receive several inputs among21

which a bgaksignal PDU. If this PDU is received, Sscop sends an aaestab-lishcon�rm to the upper layer. But if timer CC expires, it may send againbgninvoke. After Max CC timeouts of timer CC and outputs of bgninvoke (inour example Max CC = 4) , Sscop sends a message sequence composed of anmaaerrorindication (which is considered unobservable here), an endinvoke PDUand a aareleaseindication ASP in this order.In an asynchronous environment the behaviour of a tester which wants toenvisage all the possible responses to a bgaksignal after an aaestablishrequest isquite complicated as proves the test produced by Tgv in �gure 3. The testerstarts by sending an aaestablishrequest, receives a bgninvoke PDU, and sends abgaksignal. Then it must wait for an aaestablishcon�rm or a bgninvoke PDUdue to message collision (timer CC may have expired while bgaksignal is stillprogressing). The arrival of bgaksignal can be delayed for a long time, thustimer CC may expire several times before it is received. The choice betweenreceiving aaestablishcon�rm or bgninvoke PDU is thus repeated twice (lines 4-5and 6-7). After Max CC - 1 receptions of bgninvoke PDU (line 7) it will havethree possible continuations (lines 9, 13 and 14). First (line 13), it may receive anaaestablishcon�rm. The second possibility (line 14) is to receive a last bgninvokePDU followed either by a release indication (line 15) followed by an endinvokePDU (due to the asynchronism on the lower PCO) or an aaestablishcon�rm (line18). But as the reception of bgninvoke may be delayed, a third possibility (line8) is to receive an aareleaseindication before bgninvoke and endinvoke.Despite a di�erent testing architecture (only PDUs are controllable and ob-servable), we can consider that the test case of the ATM Forum numberedS2 V P3 partly corresponds to the previous example. It considers the outputof bgaksignal by the tester in state Outgoing Connection Pending. The possi-bility to receive a bgninvoke is not considered, thus this event would lead toa fail verdict. This is either an error (the test case may reject a conformantimplementation) or a proof that they suppose a synchronous communication ina remote testing architecture which is not realistic.

22

+---+| Test Case Dynamic Behaviour |+---+| Test Case Name : example || Group : || Purpose : Test the different response possibilities after a connection acknowledgement || Default : || Comments : |+-------+-------+--+----------------------+------------+------------+| Nr | Label | Behaviour Description | Constraints Ref | Verdict | Comments |+-------+-------+--+----------------------+------------+------------+| 1 | | ut ! aaestablishrequest, St tbgninvoke | aaestablishrequest0 | | || 2 | | lt ? bgninvoke, Cl tbgninvoke | bgninvoke1 | | || 3 | | lt ! bgaksignal, | bgaksignal2 | | || | | St tbgninvoke, St taaestablishconfirm | | | || 4 | | ut ? aaestablishconfirm, | | | || | | Cl taaestablishconfirm, Cl tbgninvoke | | (PASS) | || 5 | | lt ? bgninvoke, | bgninvoke1 | | || | | Cl taaestablishconfirm, Cl tbgninvoke, | | | || | | St tbgninvoke, St taaestablishconfirm | | | || 6 | | ut ? aaestablishconfirm, | | | || | | Cl taaestablishconfirm, Cl tbgninvoke | | (PASS) | || 7 | | lt ? bgninvoke, | bgninvoke1 | | || | | Cl taaestablishconfirm, Cl tbgninvoke,| | | || | | St tbgninvoke, St taaestablishconfirm,| | | || | | St taareleaseindication | | | || 8 | | ut ? aareleaseindication, | aareleaseindication3 | | || | | Cl taareleaseindication, | | | || | | Cl taaestablishconfirm, | | | || | | Cl tbgninvoke, | | | || | | St tbgninvoke | | | || 9 | | lt ? bgninvoke, | bgninvoke1 | | || | | Cl tbgninvoke, St tendinvoke | | | || 10 | | lt ? endinvoke, Cl tendinvoke | endinvoke4 | (PASS) | || 11 | | ? tendinvoke | | FAIL | || 12 | | ? tbgninvoke | | FAIL | || 13 | | ut ? aaestablishconfirm, | | | || | | Cl taareleaseindication, | | | || | | Cl taaestablishconfirm, | | | || | | Cl tbgninvoke | | (PASS) | || 14 | | lt ? bgninvoke, | bgninvoke1 | | || | | Cl taareleaseindication, | | | || | | Cl taaestablishconfirm, | | | || | | Cl tbgninvoke, | | | || | | St taaestablishconfirm, | | | || | | St taareleaseindication | | | || 15 | | ut ? aareleaseindication, | aareleaseindication3 | | || | | Cl taareleaseindication, | | | || | | Cl taaestablishconfirm, | | | || | | St tendinvoke | | | || 16 | | lt ? endinvoke, Cl tendinvoke | endinvoke4 | (PASS) | || 17 | | ? tendinvoke | | FAIL | || 18 | | ut ? aaestablishconfirm, | | | || | | Cl taareleaseindication, | | | || | | Cl taaestablishconfirm | | (PASS) | || 19 | | ? taareleaseindication | | FAIL | || 20 | | ? taaestablishconfirm | | FAIL | || 21 | | ? taareleaseindication | | FAIL | || 22 | | ? taaestablishconfirm | | FAIL | || 23 | | ? tbgninvoke | | FAIL | || 24 | | ? taaestablishconfirm | | FAIL | || 25 | | ? tbgninvoke | | FAIL | || 26 | | ? taaestablishconfirm | | FAIL | || 27 | | ? tbgninvoke | | FAIL | || 28 | | ? tbgninvoke | | FAIL | |+-------+-------+--+----------------------+------------+------------+Figure 3: A test case generated by Tgv for a remote asynchronous architectureThis example makes evident the need of using automatic tools as humanmind has some di�culties to envisage all possible behaviours in complex sit-uations such as the one presented above, and this may cause many errors inmanual test cases. The advantage of Tgv on other tools is crucial for this kindof situations. First, contrary to some other tools (TV�eda for example), Tgvis not limited to one process. Thus modeling di�erent testing architectures byextension of the speci�cation is compatible with test generation. Second, Tgvproduces test cases which can have several branches leading to a PASS verdict.23

To our knowledge, Tgv is the only tool that can make this. All other tools arebased on the computation of one main sequence of the observable behaviour ofthe speci�cation. In the case were di�erent outputs are possible, the tester hasto consider all possible inputs. In these tools, one possibility is continued andlead to a PASS verdict while all other possible inputs immediately produce anINCONCLUSIVE verdict. This is too restrictive, especially in the case of asyn-chronism were several possible arrival orders should be considered equally. Thisis very important for test execution too because test cases should be reexecuteduntil a PASS or FAIL verdict is reached, Thus INCONCLUSIVE verdicts shouldbe avoided, when continuations may lead to a PASS verdict. This principle isadopted by Tgv.6.5.3 Veri�cation combined with test generationAt the beginning of our experiments, as we still had doubts on the Sdl spec-i�cation used, we have used veri�cation capabilities of ObjectG�eode whilegenerating tests with Tgv. We have encoded in a Goal observer an automatondescribing the abstract behaviour of the Sscop protocol at its upper interfaceSSCF. The test generation is made on a synchronous product of the speci�ca-tion and the observer. Thus we verify that all sequences traveled during the testgeneration are at least accepted by this automaton. This gives more con�dencein the speci�cation and in the generated test cases.Another observer, an intrusive one, was also used to reduce the size of thestate graph. The role of this observer was to reset the implicit variable SENDERwhich is never used in the speci�cation (see section 4).6.5.4 Future work in test generationAs Tgv is still a prototype, the work made on case studies as Sscop helps us toimprove it. In particular, we are designing a new generation algorithm which willproduce test cases with loops and, as a consequence, still less INCONCLUSIVEverdicts. This is particularly interesting in current situations were some inputsmay happen without modifying the expected behaviour. We are also workingon the expressive power of test purposes in order to allow more abstraction onparameters and the possibility to describe more discriminating test purposeswith unobservable actions and states predicates. These improvements will beimplemented in Tgv and tested on the Sscop speci�cation.The Sscop speci�cation has a large control part but also a large data part.Tgv treats data by enumeration and this obliges us to limit the variables do-mains or �x the parameters of interactions. This encourages us to have a closerlook at symbolic methods and proof methods. Symbolic methods could avoidenumeration and used in conjunction with proof methods and classical veri�ca-tion methods, we expect to produce test cases closer to manual ones i.e. whichalso manipulate variables (counters for example) which are common in TTCN.We are also investigating the problem of distributed testing. The literatureon the subject is rather poor because it is a di�cult subject. But Concurrent24

TTCN the new version of TTCN allows to describe distributed testers and testsuites for multi-party testing already exist. Thus, users of test generation toolswill soon want to generate distributed testers. We are particularly interestedby this research and we have made �rst steps in the direction of producingdistributed tests.Finally, we are working on an industrial project with Verilog and Cnetwhich aim is to develop an industrial test generation tool in the ObjectG�eodeenvironment. This tool will be adapted from three tools: TV�eda from Cnet,TTCgeN from Verilog and Tgv.7 Conclusion and future workThis case study is a representative one of a large class of protocols. The com-plexity of the data part leads to combine other approaches with model-checking.The use of data-ow (or static) analysis, originally a component of global opti-mization part of a compiler, in the context of model-checking, allows to abstractthe data part with respect to the desired property.The work done on the Sscop protocol has been very interesting on manyaspects. It was rapidly clear that brute force veri�cation could not work onthe original speci�cation due to its inherent complexity. This statement ledus to the study of techniques for the reduction of this complexity, before theapplication of brute force tools.� Static analysis proved very useful for the reduction of state graphs whichis pro�table for the purpose of veri�cation as well as for test generation.� Veri�cation on abstract state graphs obtained without variable evaluationallowed to detect subtle errors in the Sdl speci�cation.� De�ning restricted environments instead of completely chaotic environ-ments allowed to prove basic properties and to detect an error in a systemcomposed of a pair of communicating entities.� The on-the-y technique, especially for test generation, proved again itse�ciency even on such a large speci�cation.Another lesson of this case study is the strong link between veri�cation andtest generation. Con�dence in the speci�cation is crucial for test generation as itis used as the reference model. Thus our work on veri�cation, even if it is partial,has been very useful for the con�dence in generated test cases. Moreover, as saidabove, both activities take bene�t of all optimizations made by static analysison the speci�cation. An interesting aspect is also the use of ObjectG�eodeobservers during test generation. This allowed to perform optimizations and toverify that produced test cases are correct with respect to an abstract behaviourof the Sscop protocol. This again improves the con�dence in generated testcases. A last point to notice is the great similarity between some propertiesthat have been veri�ed on peer entities and some test purposes used for test25

generation. As algorithms are quite similar, this is another proof of the greatinteraction between these activities which deserves further developments.Last, but not least, it allowed us to improve our tools and to develop newones. In particular several tools have been slightly improved by their connectionto ObjectG�eode and consequently their ability to treat Sdl speci�cations.Evaluator and Tgv are now connected to the simulator API. This allowsEvaluator to perform on-the-y model checking and Tgv to generate on-the-y test cases from Sdl speci�cations. The development of a new static analysistool connected to the API of ObjectG�eode's compiler through Sdl2aut nowallows to perform static analysis on Sdl speci�cations.The case study provider (Cnet) expressed a great interest for the resultsobtained on the Sscop speci�cation and test cases. The speci�cation has beenslightly improved by numerous optimizations and corrections of detected errors.The two �rst test generation campaigns with a synchronous interaction andtheir comparison with available test suites has allowed to detect some errorsin the di�erent test suites. The experiment with asynchronous interactions hasproduced interesting test cases. These results proved again that automation ispro�table in quality for complex speci�cations.Our work on a complex case study such as Sscop has been very fruitful alsofor the numerous research perspectives open or con�rmed. The �rst experimentson static analysis for the optimization of speci�cations have been very encour-aging and deserves further developments. The idea of using supplementaryinformation such as the property to check or the test purpose seems promisingfor a more e�cient analysis in the perspective of model-checking or test gener-ation. The improvement of our model-checking and test generation algorithmsis also a constant concern and the present case study has given us some newideas on such improvements. This is particularly important in order to producetest cases of better quality. For this aim, we are also starting to work on theconjunction of di�erent methods such as symbolic methods, proof methods andtest generation, with the ambition to generate parametrized test cases whichmanipulate data. In parallel we have already started to work on the di�cultproblem of distributed testing which needs knowledge in testing, distributedsystems and program transformation. And �nally, as already noticed, this casestudy showed us that the interaction between veri�cation and test generationneeds further work which will certainly be fruitful for both activities.References[1] ISO/IEC International Standard 8807. LOTOS | A Formal DescriptionTechnique Based on the Temporal Ordering of Observational Behaviour.Technical report, International Organization for Standardization | In-formation Processing Systems | Open Systems Interconnection, Gen�eve,September 1988. 26

[2] ISO/IEC International Standard 9646-1/2/3. OSI-Open Systems Intercon-nection, Information Technology - Open Systems Interconnection Confor-mance Testing Methodology and Framework - Part 1 : General Concept -Part 2 : Abstract Test Suite Speci�cation - Part 3 : The Tree and TabularCombined Notation (TTCN), 1992.[3] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,Techniques and Tools. Addison-Wesley, 1986.[4] B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL Be-haviors with GEODE. In SDL forum'95. Elsevier Science (North Holland),1995.[5] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safetyfor Branching Time Semantics. In 18th ICALP. Springer Verlag, july 1991.[6] M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol Veri�-cation with the Ald�ebaran Toolset. First edition of the STTT (SoftwareTools and Technology Transfer) journal, 1997.[7] A. Cavalli, B.-H. Lee, and T. Macavei. Test generation for the SSCOP-ATM networks protocol. In Proceedings of SDL forum'97. Elsevier Science(North Holland), 1997.[8] The ATM Forum Technical Committee. Conformance abstract test suitefor the SSCOP for UNI 3.1, af-test-0067.000, sept 1996. Available by ftpat ftp.atmforum.com.[9] I. Disenmayer, S. Gauthier, and L. Boullier. L'outil TVEDA dans unechâ�ne de production de tests d'un protocole de t�el�ecommunication. InG. Leduc, editor, CFIP'97 : Ing�enierie des Protocoles, pages 271{286. Her-m�es, sept 1997.[10] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, andM. Sighireanu. CADP: A Protocol Validation and Veri�cation Toolbox. InRajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 8th Con-ference on Computer-Aided Veri�cation, CAV'96 (New Brunswick, NewJersey, USA). LNCS 1102 Springer Verlag, August 1996.[11] J.-C. Fernandez, C. Jard, T. J�eron, and C. Viho. Using On-the-y Veri�-cation Techniques for the Generation of Test Suites. In R. Alur and T.A.Henzinger, editors, Proceedings of the 8th Conference on Computer-AidedVeri�cation, CAV'96, (New Brunswick, New Jersey, USA). LNCS 1102Springer Verlag, aug 1996.[12] J.-C. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in Auto-matic Generation of Test Suites for Protocoles with Veri�cation Technol-ogy. Science of Computer Programming, 29, 1997.27

[13] J.-C. Fernandez and L. Mounier. A Local Checking Algorithm for BooleanEquation Systems. Technical Report Spectre-95-07, Verimag, Grenoble-France, 1995.[14] H. Garavel. OPEN/CAESAR: An Open Software Architecture for Veri�-cation, Simulation and Testing. In Bernhard Ste�en, editor, Proceedingsof the 4th International Conference on Tools and Algorithms for the Con-struction and Analysis of Systems (TACAS'98), volume 1384 of LectureNotes in Computer Science, pages 68{84. Springer-Verlag, April 1998.[15] R.J. Van Glabbeek and W.P. Weijland. Branching Time and Abstractionin Bisimulation Semantics (extended abstract). CS-R 8911, Centrum voorWiskunde en Informatica, Amsterdam, 1989.[16] J. Grabowski, R. Scheurer, and D. Hogrefe. Applying SAMSTAG to theB-ISDN Protocol SSCOP. Technical Report A-97-01, part I, University ofL�ubeck, January 97.[17] T. J�eron and C. Jard. 3D layout of reachability graphs of communicatingprocesses. In Graph Drawing'94, DIMACS Workshop, pages 25{33, Prince-ton, New-Jersey, Octobre 1994. LNCS no 894. Paru en rapport de recherchebilingue fran�cais-anglais, Irisa no 852 et Inria no 2334.[18] T. J�eron and P. Morel. Abstraction, � -r�eduction et d�eterminisation �a lavol�ee: application �a la g�en�eration de test. In G. Leduc, editor, CFIP'97 :Ing�enierie des Protocoles. Hermes, sept 1997.[19] A. Kerbrat, C. Rodriguez, and Y. Lejeune. Interconnecting the Object-G�eode and C�sar-Ald�ebaran Toolsets. In Proceedings of SDL fo-rum'97. Elsevier Science (North Holland), 1997.[20] D. Kozen. Results on the Propositional �-Calculus. In Theoretical Com-puter Science. North-Holland, 1983.[21] R. Milner. A Calculus of Communication Systems. In LNCS 92. SpringerVerlag, 1980.[22] ITU-T Recommendation Q.2110. B-ISDN - ATM Adaptation Layer - Ser-vice Speci�c Connection Oriented Protocol (SSCOP), 1994.[23] ITU-T Recommendation Q.2130. Couche d'adaptation du mode de trans-fert asynchrone de signalisation dans le RNIS �a large bande - fonction decoordination propre au service pour la signalisation �a l'interface utilisateur-r�eseau, 1994.[24] ITU-T Recommendation Z-100. Speci�cation and Description Language,1996.[25] ITU-T Recommendation Z-120. Message Sequence Charts, 1996.28

[26] J. Rumbaugh, M. Blaha, W. Premerlani, F. Edyy, andW. Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Inc., Englewood Cli�s, 1991.[27] J. Tretmans. Test generation with inputs, outputs and repetitive quies-cence. Software|Concepts and Tools, 17(3):103{120, 1996. Also: Techni-cal Report No. 96-26, Centre for Telematics and Information Technology,University of Twente, The Netherlands.[28] VERILOG. ObjectGeode SDL Simulator Reference Manual. Technicalreport, VERILOG, 1996.[29] M. N. Wegman and F. K. Zadeck. Constant Propagation with ConditionalBranches. ACM Transactions on Programming Languages and Systems,13(2):181{210, April 1991.

29

