
Abstract
This work addresses the analysis and validation of

modular CHP specifications for asynchronous circuits,
using formalisms and tools coming from the field of
distributed software. CHP specifications are translated
into an intermediate format (IF) based on communicating
extended finite state machines. They are then validated
using the IF environment, which provides model checking
and bi-simulation tools.

1. Introduction

Asynchronous circuits show interesting potentials in
several fields such as the design of numeric operators,
smart cards and low power circuits [1]. An asynchronous
circuit can be seen as a set of communicating processes,
which read data on input ports, perform some
computation, and finally write on output ports. In our
work, asynchronous circuit specifications are written in
CHP, an enriched version of the CSP-based language
initially developed by Alain Martin [2].
Even medium size asynchronous circuits may display a
complex behavior, due to the combinational explosion in
the chronology of events that may happen. It is thus
essential to apply rigorous design and validation methods.
This paper describes the automatic validation of
asynchronous specifications written in CHP, prior to their
synthesis with the TAST design flow [12, 14].
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Figure 1: Formal verification flow for CHP

To this aim, we use formalisms and tools coming from the
field of software validation, in particular distributed

systems, whose execution model is similar to the
asynchronous circuits one. We start from an asynchronous
specification written in CHP and compile it into the IF
format. Resulting IF programs are compiled towards a
LTS and eventually submitted to the CADP toolset for
verification (Figure 1).
This paper is organized as follows. Section 2 reviews the
TAST design flow from CHP. Section 3 describes the
validation of concurrent systems with the IF environment.
Section 4 discusses the translation of CHP specifications
into the IF format, with an emphasis on the CHP concepts
that have no direct correspondence in IF. As a case study,
section 5 presents the application of our method to an
asynchronous FIR filter. Finally, we review related works
and present our conclusions.

2. The TAST Design Flow
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Figure 2: the TAST design flow

In the TAST asynchronous design flow [14], the compiler
translates CHP programs into Petri Nets (PN) and Data
Flow Graphs (DFG) (Figure 2). The PN model of a CHP
specification is translated to behavioral VHDL for
simulation purposes. The synthesizer performs process
decomposition and refinements on the PN formalization,
depending on the selected architectural target: micro-
pipeline, quasi delay insensitive circuit (QDI), or
synchronous circuit. A dedicated compiler produces a
structural gate network, in source VHDL, for simulation
and back-end processing using commercial CAD tools.
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CHP: the TAST Specification Language
CHP Specifications are organized as lists of components.
Each component has a name, a communication interface, a
declaration part and a statement part. Hierarchy is
managed through local component declarations and
instance specifications like in VHDL.
Data types are of three kinds: unsigned multi-rail (MR),
signed multi-rail (SMR) and single-rail (SR) with base,
length and dimension attributes standing for the range of
digits, the number of digits in a vector and the number of
vectors in an array, respectively.
This allows supporting arbitrary precision bi-dimensional
arrays of numbers, thus modeling memories, registers as
well as pure protocol signaling (using SR type)
independently of the precision of the machine.
Constants are declared at the component level. They are
visible throughout the component and cannot be masked
by process variables.
Processes communicate via point-to-point, asymmetric,
memory-less message passing, and compatible protocol
links. Channels have a name, an encoding and a type.
They connect ports of opposite directions (in/out) and
opposite protocols (active/passive). Data can be encoded
in two ways: DI (one of n code) used for delay insensitive
style synthesis and BD for bundled data (binary code) for
micro-pipeline style synthesis. Although arrays are
supported, channels can only carry out vector values.
The component statement part consists of instances and
processes. Instances are similar to VHDL.
Processes have a name, a communication interface, a
declaration part and a statement part. Variables are local
to their processes and are dynamically initialized when a
process starts its execution. Process ports can be
connected to local channels or to the component ports.
Basic process statements are communication actions and
variable assignments. Parallel and sequential
compositions, guarded commands, loop and choice
operations are the main construction mechanisms to build
processes.
Control structures can be either deterministic (the
environment must provide mutually exclusive guards) or
non deterministic (several guards may be true, only one is
elected randomly).
Note that concurrent statements can assign the same
variable, or access the same channel, within a process. It
may be desirable to check the absence of such behaviors
in a given design context.

3. The IF validation environment

IF[10] is a software environment developed in Verimag
for the formal specification and validation of
asynchronous systems. It provides both a description
language (the so-called IF intermediate format), and a set
of integrated validation tools. This environment is
motivated by two main objectives:
• Gather complementary formal validation techniques
(interactive simulation, model-checking, test case
generation, etc.) into a single open environment,
independent of any high-level description language;

• Support several representation levels of a system
behavior: a syntactic level, expressed by the IF
intermediate format, and a semantic level in terms of
labeled transition systems.
This environment has already been used for software
validation in various application domains: safety critical
systems, telecommunication protocols, etc. [18].

3.1 The IF intermediate format

A IF system description consists of a set of
communicating processes. Each process can access
(private) local data and (shared) global data. Inter-process
communication can be performed by message passing
(through asynchronous buffers), by rendez-vous (through
gates), or via shared data.
Several predefined data types are proposed  (Boolean,
integer, enumerated types, arrays, records, etc.) together
with abstract data types definition facilities (their concrete
implementation being provided in C).
From a syntactic point of view, each process is described
as an extended automaton with explicit control states and
transitions. Each transition is labelled by an atomic
execution step and may include a Boolean guard, an inter-
process   communication, and assignments to local or
global data. The execution model is asynchronous:
internal process steps are performed independently from
each other, and their parallel composition is expressed by
interleaving. However a notion of unstable control states
allows tuning the atomicity level of process transitions:
sequences of transitions between unstable states are
considered atomic.
Rather than a "user oriented" description language, IF is a
general intermediate format for asynchronous systems. Its
main advantages are its expressiveness, flexibility, formal
operational semantics, and its well-accepted underlying
automaton model. Several high-level specification
languages are already automatically translated into IF,
such as SDL [10] and UML profiles [19].

3.2 The IF validation toolbox

The IF toolbox is partitioned into two layers:
• The syntactic layer provides source level operating
tools based on static analysis. They allow performing
static optimizations (dead code elimination, live variable
analysis) and program slicing.
• The semantic layer relies on the so-called model-
based validation technique. A generic simulation engine
builds the labeled transition system (LTS) expressing the
exhaustive behaviour of an IF description. Various
validation tools can then operate on this LTS to check
whether it satisfies a given property. Particular available
tools are the ones offered by the CADP toolbox [7],
namely a general temporal logic verifier, and a bi-
simulation checker.
In model-based validation of asynchronous systems one of
the major concern is to avoid (or at least limit) the state
explosion problem (the size of the underlying LTS).  In
the IF toolbox this problem is tackled at several levels:
• static optimization and program slicing are very



efficient since performed at the source level;
• the IF simulation engine is able to produce "reduced"
LTS with respect to a preorder relation between execution
sequences (still preserving some trace properties);
• large descriptions can be verified in a compositional
way (by generating and reducing in turn the LTS
associated to each part of the specification).

4. Translation of CHP descriptions into IF

In this section, the semantics of the CHP language and its
translation into the IF format are briefly presented.

4.1. Concepts in direct correspondence

The CHP notions of component, port, variable and
process are in direct correspondence with the notions of
system, gate, var and process in IF.
All ports and declared local variables must be typed in
both formalisms, but many CHP types give
implementation information (e.g. one-hot coding) and
their translation must be decided individually.
The three simple statements found in a process body are
identical (syntax and semantics) in CHP and IF:
var_Id := expression variable assignment
In_port ? var_Id read an input port into a variable
Out_port ! var_Id write a variable to an output port

4.2. Concepts of CHP that need a transformation step

a)  From channels to synchronization expressions
In IF the communication architecture is given by a
LOTOS-like synchronization expression. To construct this
expression, the headings of all processes must be analyzed
to identify the synchronization ports between each pair of
processes. To lose no information in the translation phase,
comments are added (e.g. Input/Output to distinguish
channel direction in the IF system).

b)  Process ports
All the component and process ports must be declared as
gates of the IF system, even the process ports which are
connected to local channels. Thus, ports declared as CHP
process ports must be added to the system list of gates if
they are not already present (as a component port, or as a
port of a previous process).

c)  Process body
The block of statements describing the behavior of the
process is translated into a set of states and labeled
transitions.

4.3. Statements and their composition

In the following, let S1, …Si denote general statements,
A1…Aj denote simple assignments, and RW1,…RWi
simple read or write communication actions.

a) Sequential composition
In CHP, the sequential composition of S1 and S2, written

S1 ; S2 means that S2 starts its execution after the end of
S1. To efficiently translate this composition (and reducing
the numbers of IF states) we consider  three cases,
depending on S1 and S2 structure:

  Figure 3!: Sequential composition

Case 1: S1 and S2 are possibly complex, or involve more
than one communication (general case): intermediate
states must be introduced. In IF syntax:

from ei do S1 to ej ;
     from ej do S2 to ek;
Case 2: A1 and A2 are simple assignments: they can all
be sequentially executed during a single state transition. In
IF syntax: from ei do A1, A2 to ej;
Case 3: The first statement RW1 is a communication,
considered to synchronize one or more following simple
assignments. In IF syntax: from ei sync RW1 do A2 to ej;

b) Parallel composition
In CHP, statements separated by commas are concurrent.
In IF, no concurrent statements may exist inside a process,
parallelism exists only between processes.
To translate the CHP concurrent composition [S1 , S2] the
general solution involves the creation of a sub-process
comp for statement S2, and the explicit synchronization of
its execution start and completion, as shown on Figure 4.
This solution however involves a significant overhead in
model size, as it generates all inter-leavings of comp with
all the model processes.

Figure 4!: Parallel composition

A more efficient solution is to statically generate a non-
deterministic choice between all the possible execution
sequences for the concurrent statements, provided these
statements initially label a single transition. This keeps the
inter-leavings local, and prevents the proliferation of
states for the overall model (Figure 5).
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Figure 5: Interleaving generation for [ S1, S2, S3]

c) Repetition
The loop statement of CHP allows repeating the execution
of a simple or composed statement S. A repeated simple
statement labels a transition from a state to the same state
(case 1).  If S is complex, one or more intermediate states
may be generated for its translation, but the first and final
states are the same (case 2).

Figure  6: Repetition

d) Deterministic / non deterministic  selection
Let Ci be Boolean expressions and Si be simple or
composed statements, guarded by Ci. If Ci is false, Si is
stalled; if Ci is true, Si is executable.
CHP offers two selection operators. The non-deterministic
selection @@ encloses one or more guarded statements,
and makes no assumption on the number of guards than
can be true. If more than one Ci is true, one among the
corresponding Si is randomly selected and executed. The
deterministic selection @ imposes on its environment that
only one of the Ci be true, a property to be verified. Both
are translated as a set of guarded statements that label a set
of transitions between the same two states (see Figure 7).

CHP IF

@[ C1  =>  S1 ; break
     C2  =>  S2 ; break
        … … …
     Cn  =>  Sn ; break ]

from ei if (C1) do S1 to ej;
from ei if (C2) do S2 to ej;
… … …
from ei if (Cn) do Sn to ej;

C1/S1              C2/S2  …         Cn/ Sn

ei

ej

Figure 7: Selection

Repetition and selection may be combined: if one ore
more guarded statements end with loop instead of break,

the whole selection block is re-entered upon execution of
those statements (Figure 8).

CHP IF

@[   C1  =>  S1 ; loop
       C2  =>  S2 ; loop
       … … …
       Cn  =>  Sn ; break  ]

from ei if (C1) do S1 to ei;
from ei if (C2) do S2 to ei;
… … …
from ei if (Cn) do Sn to ek;

Figure 8!: Repetition with selection.

4.4. Example

To illustrate the translation, we consider one typical
process: Mux_3L, taken from the case study of section 5.
In this process, the control channel (Ctrl_Round1_L) is
typed MR[3][1], i.e. one-of-three data encoding. Control
channel is read in the local variable “Ctrl”. According to
the value of “Ctrl”, one of the two channels (L0, Li_buf2)
is read and its value is written on channel L16 o r
Li_1_buf1.

CHP code of Multiplexer “Mux_3L”

process Mux_3L
PORT ( L0, Li_buf2        : IN DI passive DR[32];
      L16,   Li_1_buf1, Ctrl_round1_l : IN DI passive MR[3]; )
Variable ctrl  :  MR[3];
Variable in1  :  DR[32];
begin
[Ctrl_round1_l ? ctrl;
@[ Ctrl = "0"[3]  =>  L0 ? in1 ; Li_1_buf1 ! in1 ; break
     Ctrl = "1"[3]  =>  Li_buf2 ? in1 ; Li_1_buf1 ! in1 ; break
     Ctrl = "2"[3]  =>  Li_buf2 ? in1 ; L16 ! in1 ; break
   ]; loop ];
end ;

The graphical representation of the corresponding IF
program is shown on Figure 9.

Figure 9!: IF representation of Mux_3L
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5. Case study : DES Chip

The global architecture of a fully asynchronous DES
(Data Encryption Standard) chip is described in Figure10.
It is basically an iterative structure, based on three self-
timed loops synchronized through communicating
channels. Channel Sub-Key synchronises the ciphering
data-path with the sub-key computation data-path. CTRL
is a set of channels generated by the Controller bloc (a
finite state machine) which controls the data-paths along
sixteen iterations as specified by the DES algorithm [20].
The 1-bit input channel CRYPT/DECRYPT is used by the
Controller to configure the chip and trigger the ciphering.
The 64-bit channels DATA and KEY are used to
respectively enter the plain text and the key. The ciphered
text is output through the 64-bit channel OUTPUT.
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Figure 10: Asynchronous DES Chip architecture

The overall CHP component contains 26 processes (17 in
the ciphering data-path, 4 in the sub-key data-path). The
translation produces an IF system where each CHP
process is represented by an IF process.

5.1. Some verified properties

Characteristic properties of the DES behavior have been
expressed in mu-calculus, and automatically verified using
CADP, on a SUN Ultra 250 with 1.6 GB memory. The
model LTS generation time is 1:05:27.02 and its size is:
(3 e+7 transitions, 5.3 e+6 states). The meaning and
performances (verification time in h:min:sec; Memory) of
typical properties are listed below :
P1: Freedom from deadlock (27:41.23 ; 884 MB)
P2: After reception of the 3 inputs (Key, Data, Decrypt),
Output is always produced (27:31.93 ; 865 MB)
P3: The counter of the controller counts correctly.
(26:25.64 ; 885 MB)
P4: Each iteration of the ciphering and sub-key data-paths
synchronizes correctly. (26:25.65 ; 879 MB)

5.2. Verification by behavior reduction

To verify properties P3 and P4, which relate to the
synchronizing channels only, an alternative technique is
available. The model behavior is reduced by hiding all the
labels which do not relate to CTRL and Sub-Key. This can

be obtained by applying property-preserving equivalence
reduction techniques which for this model take (11:46.31;
1.71 GB). The resulting LTS is depicted on Figure 11,
which shows the cyclic behavior and exhibits the
synchronization on channel Sub-Key.

Figure  11: Reduced LTS for property P3

5.3. Handling state explosion

The following techniques have been used during the
verification experiments:
- Data abstraction: this is a well known strategy, by which
data are reduced to one bit, when their value do not
influence the property at hand.
- Explicit generation of interleaving for CHP intra-process
concurrent statements (instead of generating synchronized
concurrent IF processes, see section 4.3). Without this
feature, the model generation faces LTS size explosion.

6. Related works

The verification of asynchronous circuits heavily depends
on the design approach: timed or un-timed (delay
insensitive) circuits. In the first approach, ATACS!is a set
of tools that supports the synthesis, analysis, and
verification of timed circuits [3]; KRONOS is dedicated to
timed automata verification [11]. However, only very
small examples have been published using these
techniques: the verification of timed systems faces serious
complexity problems. In contrast, our work stays at a
higher abstraction level, focuses on un-timed
specifications and leaves open the choice of the target
implementation model.
Concurrent processes are widely used for specifying an
un-timed asynchronous behavior; two main directions
have been explored: language-based and graph-based.
 Graph-based specification methods are used at a low
conceptual level. They are painful for the designer, but the
synthesized circuit is fast and efficient. Petri nets or Signal
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Transition Graph (STG) formalisms are used. Both the
circuit specification and its environment assumptions can
be modeled using Petri nets or STG. A state encoding is
associated to this representation, which allows the
application of BDD symbolic model checking techniques
[6, 13, 16].
The language-based method eases the designer's task; it
allows for modular and high level specifications, at the
cost of efficiency in the synthesized result.
Early validation works include experiments with CIRCAL
to model micro-pipe lines: the proof is performed on the
parallel composition of the implementation and the
properties modeled as processes [4]. The use of LOTOS to
specify asynchronous circuits has also been suggested,
making available the CADP verification tool box [17].
We question the adequacy of LOTOS for circuit
specification as no circuit synthesis flow has been built
from it. We do keep however the idea of using CADP, but
taking as input a hardware design language.
In a previous feasibility study [5], we used an industrial
symbolic model checker intended for property checking
on RTL designs. We translated the Petri Net produced by
TAST as a pseudo synchronous VHDL description, where
the pseudo clock thus introduced was only to make each
computation cycle a visible state. In essence, our
translation performed a static pre-order reduction. This
approach gives good results after the communication
expansion, but this occurs too late in the design process to
validate the initial specifications.

7. Conclusion

We have implemented a first prototype translator that
automatically produces the IF model for a CHP
specification, along the principles explained in this paper.
Preliminary experiments have shown that the IF/CADP
toolbox offers a convenient abstraction level for the
formal validation of initial CHP specifications.
Essential properties can be proven on the specification,
before synthesis decisions are made visible in the design
description. This provides a new service to the TAST user.
During the architecture exploration process, the designer
may use transformations that have not been formally
proven correct, and wishes to check that essential
properties are retained on the refined architecture; our
automatic link to IF/CADP is a possible answer to this
requirement.
The perspectives of this work include some improvements
to the current version of the translator (e.g. negative
numbers are currently not recognized) and its application
to many more benchmarks. The scalability of the approach
to large circuits, of the size of a 32-bit microprocessor will
be measured. It will certainly involve elaborate model
reduction strategies, some of which are still not
automated. We also intend to work on the combination of
symbolic simulation and model checking, applied to
asynchronous circuit verification. Finally, replacing the
mu-calculus by a more widely accepted property
specification language such as the Accelera PSL would
ease the designer's access to the verification toolbox.
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