Using BIP for Modeling and Verification of Networked Systems—

A Case Study on TinyOS-based Networks

Ananda Basu, Laurent Mounier, Marc Po@j Jacques Pulou, Joseph Sifakis

{basu, mounier, poulhies, sifakis t@imag.fr, jacques.pulou@orange-ftgroup.com

Abstract

Complex heterogeneous systems such as networked systenpgsed of hardware and software,
are validated by simulation of physical or virtual protogg The main obstacle for the application of
verification techniques, which are successfully appliedamplex software or hardware, is the lack of
methods for building global models faithfully represegttheir behavior.

We apply a model construction methodology usingekavior-Interaction-PriorityBIP) component
framework, to TinyOS-based networks. The methodologyistens building the model of a node as
the composition of a model extracted from a nesC programritesg the application, and models of
TinyOS components. Models for networks are obtained by esitqn of models for nodes by using
connectors implementing different types of radio chann&lss opens the way for enhanced analysis

and early error detection by using verification techniques.

1 Introduction

Modeling and verification techniques have been succegsipiblied to complex software or hard-

ware. Currently, validation of complex heterogeneousesyistsuch as networked systems, is carried out

by simulation or testing of prototype implementations.dfixig verification techniques could be applied
to heterogeneous systems, provided that we have metholgifding executable models faithfully rep-

resenting their behavior. The construction of such modglsdmposition of models of the application

software and of the underlying execution platform is a ddierand technical challenge.

A main difficulty for jointly modeling an application softw@ and its execution infrastructure, is that
they adopt very different execution models and views. Inponent-based software, components are
mainly used for structuring functions and associated dataractions between components are point-
to-point (.g. function calls) through binding interface specificatioi$is view is far from a system-
oriented view needed to model execution mechanisms andititeraction with the external environ-
ment. For instance, programs in the nesC language useddgrgmming TinyOS-based applications
[6], are sets of components and relations betwemwvided and usedinterfaces. This programmer’s
view is not sufficient for determining the interactions beém the application software and TinyOS
which manages entities such as tasks, commands and eveaplying specific scheduling rules.

Wireless sensor networks are complex component-baseshsystith rich dynamics subject to strong
extra-functional requirements. Their design involvesdbmposition of a variety of hardware and soft-
ware components developed with different methodologiestaals. We have a limited understanding
on how specific component features impact the global behalVmcope with complexity and enhance
understanding, it is important to consider wireless senstworks as the composition of a relatively
small set of functions, services and components by usinginental structuring principles. The main
obstacle for this is the lack of modeling frameworks encosspay heterogeneity. Most simulation en-
vironments use simulation software built in a more or lese@dmanner, by integrating the application
code in specific platforms [8, 7, 11, 9, 5]. They can be usefuldiebugging purposes but they are not
adequate for a more thorough exploration of a network’s deterministic dynamics.

We apply to TinyOS-based networks, a model constructiornatzlogy for building heterogeneous
real-time systems. This opens the way for enhanced anagsigarly error detection by using verifi-
cations techniques. The methodology is not specific to TBiy&hd we believe, can be adapted to net-

worked systems, in general. It uses Behavior-Interaction-Priority BIP) component framework [2].

BIP consists of a language for modeling component-basddragsand associated execution/simulation
and verification tools. It has sound theoretical foundatibased on operational semantics implemented
by a dedicated execution/simulation platform.

For a given sensor node, a global BIP model is built by comqp&iIP models for its application
software and for TinyOS. The latter is obtained by composiogtrollers for the execution of tasks,
events, radio and hardware devices. The models for apiplicadbftware are generated automatically
from nesC programs by a translator (shown in figure 1) whikkedannotated nesC code as input and
generates the corresponding BIP components and conne@td?Psmodels can be analyzed by using

powerful state space exploration techniques offered byRheolset [4, 3].

S
BIP Model
AppIn+TinyOS
]

BIP compiler
}
e — Mt

Figure 1. The modeling flow.

Library of

TinyOS
component$
in BIP

The methodology presented is characterized as follows:

¢ A global model for the network is built by composition of BIBraponents modeling the application
software as well as operating system and radio features.i3laimain difference with existing simula-
tion approaches, directly using TinyOS and C code genefatekde nesC compiler. The BIP model for
the TinyOS is an abstract machine driving the execution@BHP model, obtained by translation of the
application software written in nesC.

¢ A significant difference with existing simulation approashis that the obtained BIP models are
non-deterministic and fully characterize the behaviohefwireless sensor network. Furthermore, these
models have a well-defined notion of state. They can be vefifyeusing state space exploration tech-
nigues e.g., model-checking. Even if due to inherent litiates, complete verification of complex net-

works is intractable, verification is very useful for systdin debugging and early error detection.

3

e Another important difference is incremental model corcdtam of BIP models [10]. Incrementality
means that the global model is obtained by progressivelyposing its atomic components. This allows
preservation of the structure through translation into. Bt is, it is possible to identify in the global
model all its atomic components and their interactionssHtiows in particular, to study the impact of
changes of a component’s behavior or structure on the ghadedvior and its properties.

The paper makes the following three main contributions.

¢ It provides a methodology for building global and faithfubdels for heterogeneous networked

systems.

¢ Itallows a better understanding of the interplay betweatf@tm-dependent and platform-independent
features. The model of a node is the composition of an atistrachine modeling TinyOS, and a

system-oriented model of its application software.

e It provides a single framework supporting both behaviomlification and simulation of net-
worked systems. A comparison on common benchmarks witk-sfathe-art simulation envi-

ronments, shows that this is possible without significanfigperance degradation.

The paper is structured as follows. Section 2 provides aiscicpresentation of BIP, the underlying
modeling methodology and supporting tools. An informalgergation of nesC and its semantics is
given in Section 3. Section 4 describes the modeling priadgr nesC programs. Section 5 describes
the modeling principle for TinyOS. The global model constron is explained in Section 6, as the
composition between application and TinyOS components.pk#eent experimental results for three

examples in Section 7 and conclude in Section 8.

2 The BIP component framework

BIP![2] is a software framework for modeling heterogeneoustigad components. The BIP compo-

nent model is the superposition of three layers: the lowgerladescribes thbehaviorof a component

1BIP stands foBehavior, Interaction, Priorityand can be downloaded:
http://www-verimag.imag.fr/~async/BIP/bip.html

as a set ofransitions(i.e a finite state automaton extended with data); the internetiager includes
connectorglescribing thenteractionsbetween transitions of the layer underneath; the upper taye

sists of a set opriority rules used to describe scheduling policies for interasti@uch a layering offers
a clear separation between component behavior and steuzftarsystem (interactions and priorities).

The BIP framework consists of a language and a toolset inujua frontend for editing and parsing
BIP programs and a dedicated platform for the model valifatiThe platform consists of an Engine
and software infrastructure for executing models. It a®tate space exploration and provides access
to model-checking tools of the IF toolset [4, 3]. This pesnd validate BIP models and ensure that they
meet properties such as deadlock-freedom, state invaact schedulability.

The BIP language allows hierarchical constructiorcompound componentsom atomicones by
using connectors and priorities.

An atomiccomponent consists of a setdrtsused for the synchronization with other components, a
set of transitions and a set of local variables. Transitoescribe the behavior of the component. They
are represented as a labeled relation betweairol statesA transition is labeled with a port, a guard
g and a functionf written in C. The guard is a boolean expression on local variables and the function
is a block of C code. Wheais true, f is executed if an interaction involvingoccurs.

Interactions between components are specifieddoyectors A connector is a list of ports of atomic
components which may interact. For instan@eskl.call, task2.begin, task3.begin) is a con-
nector relating respectively the pottsl |, begin , begin of instancesaskl , task2 , task3 of a generic
componentrask, as shown in figure 2(a). To determine the interactions ofraeotor, its ports have
the synchronization attributeempleteor incompleterepresented graphically by a triangle and a bullet,
respectively. A connector defines a set of interactions défiby the following rules:

o If all the ports of a connector are incomplete then synclzation is byrendezvousThat is, only one
interaction is possible, the interaction including all gwets of the connector.

e If a connector has one complete port then synchronizatibg lwoadcast That is, the complete port
may synchronize with the other ports of the connector. Th&sibte interactions are the non empty

sublists containing this complete port.

Figure 2. BIP port types and connectors.

Infigure 2(a), all the ports are incomplete, so the only t@asnteraction is the rendezvogsski.call,
task2.begin, task3.begin)

In figure 2(b), ascall is complete andegin ports are incomplete, the feasible interactions are
(taskl.call), (taskl.call ,task2.begin), (taskl.call ,task3.begin)and faskl.call ,task2.begin
task3.begin).

In BIP, it is possible to associate with an interaction aivatibn condition (guard) and a data transfer
function both written in C. The interaction is possible ihgponents are ready to communicate through
its ports and its activation condition is true. Its execuntgtarts with the computation of data transfer

function followed by notification of its completion to thet@macting components.

3 The nesC programming model — informal semantics

We briefly present nesC, an extension of C used to develogSmpplications [6].

nesC applications are built by writing and assembtioppponentgepresenting either software (e.g., a
protocol layer) or hardware (e.g., radio devices, timarsssers). Componenpsovideanduseinterfaces,
which are groups of services. Interfaces contmmmandsndevents

The providers of an interface implement the commands (bynsieécommand handlejswhile the
users implement the events (by meansweént handlefs This distinction between commands and
events within the same interface, allows to properly imm@atthe so-calledplit phasemechanism: the
execution of a non atomic operation (e.g., sending a packsplit into two distinct phases, a command
call to request the operation, and an event reception indgds termination.

It is also possible to use deferred computation mechanisittexitasks A nesC application is there-

fore written in C code, extended with a few extra primitivies,, call a commandsignalan event, and
posta task.

There are two types of components in nes@dulesand configurations Modules provide applica-
tion code, implementing one or more interfaces. Configonstiare used to wire components together.
Note that the wiring relation between components is nottpmimpoint. In particular, a command call
performed by a component can be bound to several Commandenapdovided by other components.
After a call, the caller waits for completion afl the activated callees. Return values are then merged by
using a combination function. Event signaling by softwasmponents is handled in a similar manner.

Execution of nesC applications is handled by a two-leveyD8 scheduler.

The first level manages task execution, for background ceatipus. The TinyOS scheduler follows
a strict FIFO policy for tasks: pending tasks are stored ifF®Fjueue, and a task cannot be preempted
by another task. Posting a task is a non-blocking operatiahreturns immediately. A return value
indicates either a successful or an unsuccessful posttope(a.g., when the task queue is full).

The second scheduling level is used for event executionnt&vepresent either hardware interrupts,
or indicate the completion of a given requested service.ctxen of an event handler geemptive
when an event is received, its corresponding event hasjlisfare immediately activated, interrupting
the current computation (which could be either a task, otlareevent handler). The suspended execu-
tion will resume at the end of event handler execution. Niod¢ this policy may lead to code re-entrance
(e.g., when an instance of an event handler preempts ariothence of the same event handler).

Sections 4, 5, 6 present three steps for the constructiongbdlaal sensor network model in BIP:
1) generation of BIP components from user-defined nesC coemgs, 2) instantiation of predefined
BIP components modeling TinyOS, radio and sensors and 3pasition of these components by using

connectors modeling communication links.

4 Modeling user-defined nesC components

We use a translator that takes annotated non re-entrantguekCas input and generates the corre-
sponding BIP components and connectors. Annotations & tasextract the structure characterized

by the set of atomic components and the connectors between fhhe modeling of the behavior of the

atomic components is left to the user.

The method consists in transforming implementations of@bmmands, Events and Tasks in a nesC
program into atomic BIP components representing Commandlées, Event handlers, and Task han-

dlers, respectively. The non re-entrancy limitation cambercome by using richer models in BIP. It is

possible to detect re-entrance in BIP models by using vatifin tools.

A generic BIP model for atomic components is shown in figurdBe interface consists of a set of
ports with associated types. The behavior is specified bgah&ol statedDLE, SUSPand EXE with
transitions between them labeled by ports correspondingsieective action€£XEis a macro state and

is further decomposed into states and transitions depgratirthe specific behavior of the particular

component.

—A—@ A—©@

call ret

fin

beg fin

pre res

o ©

Figure 3. A nesC module in BIP.

The ports are classified in two groups:

e The first consists of the portseg, fin, preandreslabeling the transitions for beginning, finishing,
preempting and resuming execution of acomponent. Thesemay be used in interactions between the
component and TinyOS or in interactions implementing c&tlirn mechanisms for Command handlers.
They areincompleteas they require triggering from other components.

e The second consists of the poctl, ret, sig, ack, podabeling the transitions for call and return of
commands, signaling and acknowledgment of events andngostitasks. The portsall andsig are of
typecompleteas they are triggers of broadcast connectors.

A generated component also contains, in addition to spdoial variables, generic variables repre-

senting its unique identifietd), the identifier of a calleed) and the identifier of a posted Tagi (

5 Modeling TinyOS in BIP

Our TinyOS model is the composition of two sets of componehtschedulers for Events and Tasks,

2) models for hardware components representing Timersde@and Radio.
5.1 Scheduler modeling

We use two schedulers to model the two-level scheduling ar@sm of TinyOS.

The Event Scheduldffigure 4(a)) is responsible for the management of eventsrgésd by hardware
components. When a hardware-generated exénteceived through the posig , the scheduler first
preempts any running component by synchronizing throughptirt pre and stacks thed’s of the
preempted components received . Then, it triggers the érecof the Event handlers identified gy
by broadcasting through the porbeg. From statdBUSY 1 theEvent Scheduleran either be triggered
by a new hardware generated signal ([sgt), or by a finish notification (porfin). In the first case,
it preempts the currently running component, in the secase cdepending on the state of the stack
(empty or not), it goes ttDLE or to BUSY2from which it resumes the last preempted component.

TheTask Scheduleffigure 4(b)) is responsible for the scheduling of tasksteats the tasks in FIFO
order and waits for a task to finish before starting a new oriehas two statesFREE and BUSY,

depending on whether a task is executing or not. In any oktl&ses, it can synchronize through its

9

A @ A A @

beg fin pre res Si9 i acount
res _ I A ® P
[eCount=0)/ -\ _Sig beg fin _post -
- post _ P id

(a) (b)
Figure 4. Event(a) and Task(b) Schedulers.

port postto receive new task postings. In tB&JSY state, it waits for the currently executing task to

finish and goes back to tHeREEstate. It can start a new task only if tegent Schedulas IDLE.
5.2 Hardware modeling

5.2.1 Radio Controller

Each node has a radio controller composed Blaglio Sende(figure 5(a)) and &adio Receive(fig-
ure 5(b)). We consider a packet level radio model where pgaekaling is an atomic operation. Sending
a packet is a split-phase mechanism modeled by the Commanéehsendand the Event handlesend-
Done ThesendCommand handler is called from the application, and is aesgto send a packet
through the radio. It synchronizes with tRadio Sendethrough thesyncsendport which passes the
packet to thd&kadio SenderThen, theRadio Sendebroadcasts the packet. This is followed by triggering
the Event handlesendDone

The Radio Receivereceives a packet through thstenport, and then, it triggers the Event handler

receive

10

broadcast
v

(a)

Figure 5. Radio controller components.

5.2.2 Timers and sensors

A Timer component is a simple BIP component with a singleestaid two transitions. One transition is
labeled by porsigto signal an expiration event. The other is labeled by a spporttick and is used to
count time steps. To ensure time consistencytitkgoorts of all the Timers are incomplete and strongly
synchronized by using a single connector.

In nesC, Sensors are hardware modules offering interfacepht-phase operation. The BIP descrip-
tion consists of a model for the Sensor itself, along withrtieels for the Command handigetData
and Event handledlataReady The actual value read by the Sensor component can be eithadam
value or a value provided by a model of the environment. Thterl@an also be explicitly modeled in

BIP.

6 Modeling interaction between the components - the globalrahitecture

In this section we describe the composition of the BIP coneptsiusing connectors, to build the

model of a node as well as the model of the network by spegfyiteractions between the nodes.
6.1 Interactions in a node

We explain the principles of construction of BIP model fodes by using two sets of connectors.
The first set models interactions fall statements argsignalstatements issued by software. A typical

call statement will generate@all connector and a set dicturn; connectors as shown in figure 6.

11

The Call connector is @roadcastconnecting thecall port of the caller €) to thebegports of the
possible calleesp(q,r). The component may call eitherp and g jointly leading to the interaction
(c.call, p.beg, g.beg), or callr leading to the interactiorc(call, r.beg).

The selection of interactions is by using activation caodg involving comparisons between callee

Y
beg fin
q
beg fin
Call
e
Return g fin

Return,

identifiers (D) and the calling identifier:{).

Figure 6. BIP connectors for a nesC call command.

The Return; connectors synchronize tfia ports of the callees to thet port of the caller.
The signal statements representing software event signalling ardl&éarexactly in the same man-

ner as thecall statements explained above. However, signals repregemiirdware events are treated

separately and are processed by the event scheduler.

Tasks handler
be fin re re
91. 1 p.el S

fin q ‘reﬁ

Event handler

sig,
Timer/
Sensor

pre res fin beg

sig
Event Scheduler

Task
Scheduler

Figure 7. The global architecture in BIP.

12

The second set of connectors deal with interactions betB#eromponents for the application and
BIP components for TinyOS (see figure 7).

The connectordBeginand EBegindeal respectively with interactions between Tasks hasflask
Scheduler and Event handlers/Event Scheduler. The cansééinish andEFinish, are used by Tasks
and Event handlers to notify their completion. TPeempiconnector triggers preemption of the appli-
cation components. THeesumeonnector is used to resume execution of the last suspeondgabment.
The connectorSignal are used to signal any hardware-generated events.

Task posting is through connectors between the postof the Task Scheduler and the popisstof

software components (not shown in the figure).
6.2 Interactions between nodes - Radio Links

Radio links are modelled as BIP connectors linking the por&dcastandlisten of the radio con-
troller. We consider networks with static topology and usly @ne connector pdsroadcastport. This
connector links théroadcastport with all the receivers, through thdisten port. For each connec-
tor, activation conditions depending on the distance betwsender and receiver are used to define the

feasible interactions. More complex activation condii@tiow modelling lossy links.

7 Experimental results

We consider 3 exampleBlinkTask SenseToLedsndSenderReceiver

The first example illustrates the utilization of verificatitechniques. The two others compare our
method to specific state-of-the-art simulation methods.e @ould expect that the use of a general
purpose modeling technique instead of a specific one, we#d for a particular execution platform,
would have a strongly negative impact on performance. Euambre, the use of rich (non-deterministic)
models instead of deterministic ones, could also have daimifect. Experimental results show no
significant performance degradation.

BlinkTask1] describes a node with a variatdtaterepresenting the state of its LED. This variable is

shared between the Tapkocessingwhich reads it, and the Event handlemer.fired() which modifies

13

it. For BlinkTaskwe generated a timed BIP model with 4 user-defined atomic coents, 3 TinyOS
components (2 schedulers and 1 Timer) and 11 connectorsauBtibe state space exploration allows
detecting error states where a new timer interrupt arriveevthe Taskprocessings still being ex-
ecuted. Traces leading to such error states can be obtaynetbleling anObservercomponent in
BIP, keeping track of the sequence of interactions of theend@ an example, the analyzed state graph
has 28,701 states and 46,197 transitions for the followkegetion time intervalsTimerperiod[50, 50],
Timer.fired()[2, 9], Leds.redOn()2, 7], Leds.redOff(}2, 7], processing()20, 32]. The selected values en-
sure a correct behavior of the example. However, chang@gitier period to values less thas, 48]
leads to error states as detected bydhserver

The second example 8enseToLefis] which is a node sampling data from a photo Sensor and dis-
playing them in the LEDs. Its nesC code consists of 4 compsndrhe translation to BIP produces 8
user-defined components, 4 TinyOS components (2 schedil@mner and 1 Sensor), and 21 connec-
tors.

We consider a network ddenseTolLedsodes without radio links. We show in figure 8, simulation
times as a function of the number of nodes for a virtual ruretofi300 seconds, considering a 4 Hz timer
on each node. We performed the tests on an AMD Athlon XP 280Gb,0f RAM running GNU/Linux.
The execution time for the network increased linearly wité humber of nodes, as expected.

The third examplé&enderReceivas a network of senders and receivers, with lossless chaiamel
static topology. Each sender is connected to a fixed numbmercefversy. Each receiver has a unique
sender (no collision). The sender nodes executelimdoledsAndRffh] nesC program, and the re-
ceiver nodes execute tiRfmToLedd] program. Figure 9 shows real execution times for 300uairt
seconds considering a 4 Hz timer on each node, as a functtbe aimber of sendetisand the number

of receivers per sendegr

14

708

666 -

oe8 -

468 -

368 -

208 -

166 -

simulation time in secs. for 300 virtual secs.

a 58 188 158 288 258
number of nodes

Figure 8. SenseTolLedsample.

8 Conclusion

Currently, validation of complex heterogeneous systerash s networked systems, is carried out
by simulation or testing of prototype implementations. ifeation techniques such as model-checking
and static analysis are already successfully used for acétar hardware. They could be extended to
heterogeneous systems, provided that we have methodslftingwexecutable models for these systems.

The paper applies to TinyOS, a methodology for modeling andigation of networked systems. The
methodology is based on the use of the BIP component frankewfoich encompasses description of
heterogeneous real-time systems. It allows the consbruofiglobal models obtained as the composition
of models of nodes. These are obtained by composition of lmadéhe application software and of the
execution platform.

The methodology is general and can be applied to buildingajlmodels of heterogeneous systems.
It consists in modeling the execution platform as an absimachine driving the execution of the appli-
cation software. For this, a formalization of the language/hich application software is written must
be provided, in terms of the primitives offered by the platio This is certainly not an easy task. The

formalization should be made at the right abstraction le@aimputation granularity should be chosen

15

Simulation time in secs.
for 300 virtual secs.

988
808 -
7ee -
6e8 -
588 -
488 -
388 -
288 -
iee -

a

25

18 -
number of receivers 55 8 number of
per sender (y) senders (x)

Figure 9. SenderReceiveaixample.

so as to include in the model all the events which are relefearihe properties to be verified. Further-
more, to keep model complexity low, it should ignore compatasequences not involving such events.
For instance, for the verification of synchronization angbrece properties, it should assemble atomic
sequences of code. The model generation methodology dpplreesC, can be adapted to any language
used for programming applications. Its parser can be adelguangineered to identify in the source
code, constructs generating relevant events and detegoimputation granularity. This can be used for
(compositionally) generating BIP code.

We spent two marmonths for developing the methodology for TinyOS. For othletforms, much
more effort would be needed for feature componentizatiathatright abstraction level. Such an in-
vestment seems to be the only way for overcoming currentdions of model-based design and for
designing systems of guaranteed quality.

Currently, behavioral aspects of networks are validatéaguspecific simulation environments built
in some ad hoc manner and integrating application codeopotdt and platforms. Our approach allows
the use of a single modeling framework supporting a disogalisystem construction methodology. It
allows the systematic construction of global models spanall possible system execution sequences.
The results show that using such a non-specific frameworkrighdnodels does not entail significant

performance overhead. The advantages are numerous,imgleichanced analysis and verification as

16

well as comparison of implementations of the same apptinain different platforms.

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

http://www.tinyos.net/.

A. Basu, M. Bozga, and J. Sifakis. Modeling HeterogereeBeal-Time Components in BIP. BEFMO06,
IEEE Computer Society

M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation Eronment for Component-Based Real-Time
Systems. CAV02.

M. Bozga, S. Graf, |. Ober, I. Ober, and J. Sifakis. The BolBet. InSchool on Formal Methods for the
Design of Computer, Communication and Software Syst8eptember 2004.

E. A. L. Elaine Cheong and Y. Zhao. Joint modeling and giesif wireless networks and sensor node
software. Technical Report UCB/EECS-2006-150, EECS Deyant, University of California, Berkeley,
November 2006.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, anddller. The nesc language: A holistic
approach to networked embedded systemsSIBPLAN Conference on Programming Language Design
and Implementatiar2003.

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, DrifsE. Osterweil, and T. Schoellhammer. A
system for simulation, emulation and deployement of hgemeous sensor networks. 2nd International
Conference on Embedded Networked Sensor Syst€bhd Press, 2004.

P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accarahd scalable simulation of entire tinyos applica-
tions. InSenSys '03: 1st international conference on Embedded netddaensor systemgages 126—-137.

ACM Press.

[9] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. BarASEMU: A Fine-grained Sensor Network

[10]

[11]

Simulator. InProceedings of SECQIR004.

J. Sifakis. A framework for component-based constaict In SEFMO05, pages 293-30@pages 293-300.
IEEE Computer Society.

B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: ScataBensor Network Simulation with Precise Timing.

In IPSN 05 2005.

17

