
Using BIP for Modeling and Verification of Networked Systems–

A Case Study on TinyOS-based Networks

Ananda Basu, Laurent Mounier, Marc Poulhiès, Jacques Pulou, Joseph Sifakis

{basu, mounier, poulhies, sifakis }@imag.fr, jacques.pulou@orange-ftgroup.com

Abstract

Complex heterogeneous systems such as networked systems, composed of hardware and software,

are validated by simulation of physical or virtual prototypes. The main obstacle for the application of

verification techniques, which are successfully applied tocomplex software or hardware, is the lack of

methods for building global models faithfully representing their behavior.

We apply a model construction methodology using theBehavior-Interaction-Priority(BIP) component

framework, to TinyOS-based networks. The methodology consists in building the model of a node as

the composition of a model extracted from a nesC program describing the application, and models of

TinyOS components. Models for networks are obtained by composition of models for nodes by using

connectors implementing different types of radio channels. This opens the way for enhanced analysis

and early error detection by using verification techniques.

1 Introduction

Modeling and verification techniques have been successfully applied to complex software or hard-

ware. Currently, validation of complex heterogeneous systems such as networked systems, is carried out



by simulation or testing of prototype implementations. Existing verification techniques could be applied

to heterogeneous systems, provided that we have methods forbuilding executable models faithfully rep-

resenting their behavior. The construction of such models by composition of models of the application

software and of the underlying execution platform is a scientific and technical challenge.

A main difficulty for jointly modeling an application software and its execution infrastructure, is that

they adopt very different execution models and views. In component-based software, components are

mainly used for structuring functions and associated data.Interactions between components are point-

to-point (e.g. function calls) through binding interface specifications.This view is far from a system-

oriented view needed to model execution mechanisms and their interaction with the external environ-

ment. For instance, programs in the nesC language used for programming TinyOS-based applications

[6], are sets of components and relations betweenprovidedandusedinterfaces. This programmer’s

view is not sufficient for determining the interactions between the application software and TinyOS

which manages entities such as tasks, commands and events byapplying specific scheduling rules.

Wireless sensor networks are complex component-based systems with rich dynamics subject to strong

extra-functional requirements. Their design involves thecomposition of a variety of hardware and soft-

ware components developed with different methodologies and tools. We have a limited understanding

on how specific component features impact the global behavior. To cope with complexity and enhance

understanding, it is important to consider wireless sensornetworks as the composition of a relatively

small set of functions, services and components by using incremental structuring principles. The main

obstacle for this is the lack of modeling frameworks encompassing heterogeneity. Most simulation en-

vironments use simulation software built in a more or less adhoc manner, by integrating the application

code in specific platforms [8, 7, 11, 9, 5]. They can be useful for debugging purposes but they are not

adequate for a more thorough exploration of a network’s non-deterministic dynamics.

We apply to TinyOS-based networks, a model construction methodology for building heterogeneous

real-time systems. This opens the way for enhanced analysisand early error detection by using verifi-

cations techniques. The methodology is not specific to TinyOS, and we believe, can be adapted to net-

worked systems, in general. It uses theBehavior-Interaction-Priority(BIP) component framework [2].

2



BIP consists of a language for modeling component-based systems and associated execution/simulation

and verification tools. It has sound theoretical foundations based on operational semantics implemented

by a dedicated execution/simulation platform.

For a given sensor node, a global BIP model is built by composing BIP models for its application

software and for TinyOS. The latter is obtained by composingcontrollers for the execution of tasks,

events, radio and hardware devices. The models for application software are generated automatically

from nesC programs by a translator (shown in figure 1) which takes annotated nesC code as input and

generates the corresponding BIP components and connectors. BIP models can be analyzed by using

powerful state space exploration techniques offered by theIF toolset [4, 3].

Translator

BIP Engine

C++ code

nesC

BIP compiler

BIP Model
(Appln+TinyOS)

Library of 
TinyOS

components 
in BIP

IF Platform

IF

Figure 1. The modeling flow.

The methodology presented is characterized as follows:

• A global model for the network is built by composition of BIP components modeling the application

software as well as operating system and radio features. This is a main difference with existing simula-

tion approaches, directly using TinyOS and C code generatedby the nesC compiler. The BIP model for

the TinyOS is an abstract machine driving the execution of the BIP model, obtained by translation of the

application software written in nesC.

• A significant difference with existing simulation approaches, is that the obtained BIP models are

non-deterministic and fully characterize the behavior of the wireless sensor network. Furthermore, these

models have a well-defined notion of state. They can be verified by using state space exploration tech-

niques e.g., model-checking. Even if due to inherent limitations, complete verification of complex net-

works is intractable, verification is very useful for systematic debugging and early error detection.

3



• Another important difference is incremental model construction of BIP models [10]. Incrementality

means that the global model is obtained by progressively composing its atomic components. This allows

preservation of the structure through translation into BIP. That is, it is possible to identify in the global

model all its atomic components and their interactions. This allows in particular, to study the impact of

changes of a component’s behavior or structure on the globalbehavior and its properties.

The paper makes the following three main contributions.

• It provides a methodology for building global and faithful models for heterogeneous networked

systems.

• It allows a better understanding of the interplay between platform-dependent and platform-independent

features. The model of a node is the composition of an abstract machine modeling TinyOS, and a

system-oriented model of its application software.

• It provides a single framework supporting both behavioral verification and simulation of net-

worked systems. A comparison on common benchmarks with state-of-the-art simulation envi-

ronments, shows that this is possible without significant performance degradation.

The paper is structured as follows. Section 2 provides a succinct presentation of BIP, the underlying

modeling methodology and supporting tools. An informal presentation of nesC and its semantics is

given in Section 3. Section 4 describes the modeling principle for nesC programs. Section 5 describes

the modeling principle for TinyOS. The global model construction is explained in Section 6, as the

composition between application and TinyOS components. Wepresent experimental results for three

examples in Section 7 and conclude in Section 8.

2 The BIP component framework

BIP1[2] is a software framework for modeling heterogeneous real-time components. The BIP compo-

nent model is the superposition of three layers: the lower layer describes thebehaviorof a component

1BIP stands forBehavior, Interaction, Priorityand can be downloaded:
http://www-verimag.imag.fr/˜async/BIP/bip.html .

4



as a set oftransitions(i.e a finite state automaton extended with data); the intermediate layer includes

connectorsdescribing theinteractionsbetween transitions of the layer underneath; the upper layer con-

sists of a set ofpriority rules used to describe scheduling policies for interactions. Such a layering offers

a clear separation between component behavior and structure of a system (interactions and priorities).

The BIP framework consists of a language and a toolset including a frontend for editing and parsing

BIP programs and a dedicated platform for the model validation. The platform consists of an Engine

and software infrastructure for executing models. It allows state space exploration and provides access

to model-checking tools of the IF toolset [4, 3]. This permits to validate BIP models and ensure that they

meet properties such as deadlock-freedom, state invariants and schedulability.

The BIP language allows hierarchical construction ofcompound componentsfrom atomicones by

using connectors and priorities.

An atomiccomponent consists of a set ofportsused for the synchronization with other components, a

set of transitions and a set of local variables. Transitionsdescribe the behavior of the component. They

are represented as a labeled relation betweencontrol states. A transition is labeled with a portp, a guard

g and a functionf written in C. The guardg is a boolean expression on local variables and the function

is a block of C code. Wheng is true,f is executed if an interaction involvingp occurs.

Interactions between components are specified byconnectors. A connector is a list of ports of atomic

components which may interact. For instance,(task1.call, task2.begin, task3.begin) is a con-

nector relating respectively the portscall , begin , begin of instancestask1 , task2 , task3 of a generic

componentTask , as shown in figure 2(a). To determine the interactions of a connector, its ports have

the synchronization attributescompleteor incomplete, represented graphically by a triangle and a bullet,

respectively. A connector defines a set of interactions defined by the following rules:

• If all the ports of a connector are incomplete then synchronization is byrendezvous. That is, only one

interaction is possible, the interaction including all theports of the connector.

• If a connector has one complete port then synchronization isby broadcast. That is, the complete port

may synchronize with the other ports of the connector. The possible interactions are the non empty

sublists containing this complete port.

5



call

begin

call

begin

(a) (b)

task1

task2

task3

task2

task3

task1

begin begin

Figure 2. BIP port types and connectors.

In figure 2(a), all the ports are incomplete, so the only feasible interaction is the rendezvous(task1.call,

task2.begin, task3.begin) .

In figure 2(b), ascall is complete andbegin ports are incomplete, the feasible interactions are

(task1.call ), (task1.call , task2.begin ), (task1.call , task3.begin ) and (task1.call , task2.begin ,

task3.begin ).

In BIP, it is possible to associate with an interaction an activation condition (guard) and a data transfer

function both written in C. The interaction is possible if components are ready to communicate through

its ports and its activation condition is true. Its execution starts with the computation of data transfer

function followed by notification of its completion to the interacting components.

3 The nesC programming model – informal semantics

We briefly present nesC, an extension of C used to develop TinyOS applications [6].

nesC applications are built by writing and assemblingcomponents, representing either software (e.g., a

protocol layer) or hardware (e.g., radio devices, timers, sensors). Componentsprovideanduseinterfaces,

which are groups of services. Interfaces containcommandsandevents.

The providers of an interface implement the commands (by means ofcommand handlers), while the

users implement the events (by means ofevent handlers). This distinction between commands and

events within the same interface, allows to properly implement the so-calledsplit phasemechanism: the

execution of a non atomic operation (e.g., sending a packet)is split into two distinct phases, a command

call to request the operation, and an event reception indicating its termination.

It is also possible to use deferred computation mechanisms called tasks. A nesC application is there-

6



fore written in C code, extended with a few extra primitives,i.e., call a command,signalan event, and

posta task.

There are two types of components in nesC:modulesandconfigurations. Modules provide applica-

tion code, implementing one or more interfaces. Configurations are used to wire components together.

Note that the wiring relation between components is not point to point. In particular, a command call

performed by a component can be bound to several Command handlers provided by other components.

After a call, the caller waits for completion ofall the activated callees. Return values are then merged by

using a combination function. Event signaling by software components is handled in a similar manner.

Execution of nesC applications is handled by a two-level TinyOS scheduler.

The first level manages task execution, for background computations. The TinyOS scheduler follows

a strict FIFO policy for tasks: pending tasks are stored in a FIFO queue, and a task cannot be preempted

by another task. Posting a task is a non-blocking operation that returns immediately. A return value

indicates either a successful or an unsuccessful post operation (e.g., when the task queue is full).

The second scheduling level is used for event execution. Events represent either hardware interrupts,

or indicate the completion of a given requested service. Execution of an event handler ispreemptive:

when an event is received, its corresponding event handler(s) is/are immediately activated, interrupting

the current computation (which could be either a task, or another event handler). The suspended execu-

tion will resume at the end of event handler execution. Note that this policy may lead to code re-entrance

(e.g., when an instance of an event handler preempts anotherinstance of the same event handler).

Sections 4, 5, 6 present three steps for the construction of aglobal sensor network model in BIP:

1) generation of BIP components from user-defined nesC components, 2) instantiation of predefined

BIP components modeling TinyOS, radio and sensors and 3) composition of these components by using

connectors modeling communication links.

7



4 Modeling user-defined nesC components

We use a translator that takes annotated non re-entrant nesCcode as input and generates the corre-

sponding BIP components and connectors. Annotations are used to extract the structure characterized

by the set of atomic components and the connectors between them. The modeling of the behavior of the

atomic components is left to the user.

The method consists in transforming implementations of theCommands, Events and Tasks in a nesC

program into atomic BIP components representing Command handlers, Event handlers, and Task han-

dlers, respectively. The non re-entrancy limitation can beovercome by using richer models in BIP. It is

possible to detect re-entrance in BIP models by using verification tools.

EXE

beg

call

ret

IDLE

beg 
fin

post

pre

res

sigack

SUSP

resprefin

call ret post

ID

sig ack

id t

Figure 3. A nesC module in BIP.

A generic BIP model for atomic components is shown in figure 3.The interface consists of a set of

ports with associated types. The behavior is specified by thecontrol statesIDLE, SUSPandEXEwith

transitions between them labeled by ports corresponding torespective actions.EXE is a macro state and

is further decomposed into states and transitions depending on the specific behavior of the particular

component.

The ports are classified in two groups:

8



• The first consists of the portsbeg, fin, preandres labeling the transitions for beginning, finishing,

preempting and resuming execution of a component. These ports may be used in interactions between the

component and TinyOS or in interactions implementing call/return mechanisms for Command handlers.

They areincompleteas they require triggering from other components.

• The second consists of the portscall, ret, sig, ack, postlabeling the transitions for call and return of

commands, signaling and acknowledgment of events and posting of tasks. The portscall andsig are of

typecompleteas they are triggers of broadcast connectors.

A generated component also contains, in addition to specificlocal variables, generic variables repre-

senting its unique identifier (ID), the identifier of a callee (id) and the identifier of a posted Task (t).

5 Modeling TinyOS in BIP

Our TinyOS model is the composition of two sets of components: 1) schedulers for Events and Tasks,

2) models for hardware components representing Timers, Sensors and Radio.

5.1 Scheduler modeling

We use two schedulers to model the two-level scheduling mechanism of TinyOS.

TheEvent Scheduler(figure 4(a)) is responsible for the management of events generated by hardware

components. When a hardware-generated evente is received through the portsig , the scheduler first

preempts any running component by synchronizing through the port pre and stacks theid’s of the

preempted components received . Then, it triggers the execution of the Event handlers identified bye

by broadcastinge through the portbeg . From stateBUSY1, theEvent Schedulercan either be triggered

by a new hardware generated signal (portsig ), or by a finish notification (portfin ). In the first case,

it preempts the currently running component, in the second case, depending on the state of the stack

(empty or not), it goes toIDLE or toBUSY2from which it resumes the last preempted component.

TheTask Scheduler(figure 4(b)) is responsible for the scheduling of tasks. It treats the tasks in FIFO

order and waits for a task to finish before starting a new one. It has two states:FREE and BUSY,

depending on whether a task is executing or not. In any of these states, it can synchronize through its

9



BUSY FREE

post
fifo.push(t) fin

beg
[fifo ≠φ]
fifo.pop

beg postfin

t

post
fifo.push(t)

fifo
IDLE ACCEPT

sig

fin
[stack≠φ]

id:=stack.pop

eCount--

beg sigfin

e

BUSY1
PREEM

PT
beg

eCount++

sig
pre

stack.push(id)

pre res

id

BUSY2

res
[eCount=0]

fin
[stack=φ]
eCount--

res
[eCount>0]

eCount

stack

id

(a) (b)

Figure 4. Event(a) and Task(b) Schedulers.

port post to receive new task postings. In theBUSYstate, it waits for the currently executing task to

finish and goes back to theFREEstate. It can start a new task only if theEvent Scheduleris IDLE.

5.2 Hardware modeling

5.2.1 Radio Controller

Each node has a radio controller composed of aRadio Sender(figure 5(a)) and aRadio Receiver(fig-

ure 5(b)). We consider a packet level radio model where packet sending is an atomic operation. Sending

a packet is a split-phase mechanism modeled by the Command handlersendand the Event handlersend-

Done. The sendCommand handler is called from the application, and is a request to send a packet

through the radio. It synchronizes with theRadio Senderthrough thesyncsendport which passes the

packet to theRadio Sender. Then, theRadio Senderbroadcasts the packet. This is followed by triggering

the Event handlersendDone.

TheRadio Receiverreceives a packet through thelistenport, and then, it triggers the Event handler

receive.

10



IDLE

SENDFIN

syn_send
broadcast

sig

broadcast

sig syn_send
IDLE

RECV

sig
listen

sig

listen

packet

packet

(a) (b)

Figure 5. Radio controller components.

5.2.2 Timers and sensors

A Timer component is a simple BIP component with a single state and two transitions. One transition is

labeled by portsig to signal an expiration event. The other is labeled by a special porttick and is used to

count time steps. To ensure time consistency, thetick ports of all the Timers are incomplete and strongly

synchronized by using a single connector.

In nesC, Sensors are hardware modules offering interfaces for split-phase operation. The BIP descrip-

tion consists of a model for the Sensor itself, along with themodels for the Command handlergetData

and Event handlerdataReady. The actual value read by the Sensor component can be either arandom

value or a value provided by a model of the environment. The latter can also be explicitly modeled in

BIP.

6 Modeling interaction between the components - the global architecture

In this section we describe the composition of the BIP components using connectors, to build the

model of a node as well as the model of the network by specifying interactions between the nodes.

6.1 Interactions in a node

We explain the principles of construction of BIP model for nodes by using two sets of connectors.

The first set models interactions forcall statements andsignalstatements issued by software. A typical

call statement will generate aCall connector and a set ofReturni connectors as shown in figure 6.

11



The Call connector is abroadcastconnecting thecall port of the caller (c) to thebegports of the

possible callees (p, q, r). The componentc may call eitherp and q jointly leading to the interaction

(c.call, p.beg, q.beg ), or callr leading to the interaction (c.call, r.beg ).

The selection of interactions is by using activation conditions involving comparisons between callee

identifiers (ID) and the calling identifier (id).

call
ret

beg fin

beg fin

beg fin

p

q

r

c

Return1

Call

Return2

Figure 6. BIP connectors for a nesC call command.

TheReturni connectors synchronize thefin ports of the callees to theret port of the caller.

The signal statements representing software event signalling are handled exactly in the same man-

ner as thecall statements explained above. However, signals representing hardware events are treated

separately and are processed by the event scheduler.

prei resi fin i begibegi fin i prei resi

beg1 fin1 pre1 res1

Tasks handler

begfinpre res

Event Scheduler

beg fin
Task 

Scheduler

pre1 res1

Command 
handler

sig1
Signal1

sig

TB
egin

E
B

eg
in

Preempt

Resume

TF
inish

i E
F

in
is

h 1

Timer/
Sensor

TF
inish

1

pre1 res1 fin1 beg1

Event handler

prei resi

sigi Signal i

E
F

in
is

h i

Figure 7. The global architecture in BIP.

12



The second set of connectors deal with interactions betweenBIP components for the application and

BIP components for TinyOS (see figure 7).

The connectorsTBeginandEBegindeal respectively with interactions between Tasks handlers/Task

Scheduler and Event handlers/Event Scheduler. The connectorsTFinishi andEFinishi are used by Tasks

and Event handlers to notify their completion. ThePreemptconnector triggers preemption of the appli-

cation components. TheResumeconnector is used to resume execution of the last suspended component.

The connectorsSignali are used to signal any hardware-generated events.

Task posting is through connectors between the portpostof the Task Scheduler and the portspostof

software components (not shown in the figure).

6.2 Interactions between nodes - Radio Links

Radio links are modelled as BIP connectors linking the portsbroadcastand listenof the radio con-

troller. We consider networks with static topology and use only one connector perbroadcastport. This

connector links thebroadcastport with all the receivers, through theirlisten port. For each connec-

tor, activation conditions depending on the distance between sender and receiver are used to define the

feasible interactions. More complex activation conditions allow modelling lossy links.

7 Experimental results

We consider 3 examples:BlinkTask, SenseToLedsandSenderReceiver.

The first example illustrates the utilization of verification techniques. The two others compare our

method to specific state-of-the-art simulation methods. One would expect that the use of a general

purpose modeling technique instead of a specific one, well-tuned for a particular execution platform,

would have a strongly negative impact on performance. Furthermore, the use of rich (non-deterministic)

models instead of deterministic ones, could also have a similar effect. Experimental results show no

significant performance degradation.

BlinkTask[1] describes a node with a variablestaterepresenting the state of its LED. This variable is

shared between the Taskprocessing, which reads it, and the Event handlerTimer.fired(), which modifies

13



it. For BlinkTaskwe generated a timed BIP model with 4 user-defined atomic components, 3 TinyOS

components (2 schedulers and 1 Timer) and 11 connectors. Exhaustive state space exploration allows

detecting error states where a new timer interrupt arrives while the Taskprocessingis still being ex-

ecuted. Traces leading to such error states can be obtained by modeling anObservercomponent in

BIP, keeping track of the sequence of interactions of the node. As an example, the analyzed state graph

has 28,701 states and 46,197 transitions for the following execution time intervals:Timerperiod[50, 50],

Timer.fired()[2, 9], Leds.redOn()[2, 7], Leds.redOff()[2, 7], processing()[20, 32]. The selected values en-

sure a correct behavior of the example. However, changing the timer period to values less than[48, 48]

leads to error states as detected by theobserver.

The second example isSenseToLeds[1] which is a node sampling data from a photo Sensor and dis-

playing them in the LEDs. Its nesC code consists of 4 components. The translation to BIP produces 8

user-defined components, 4 TinyOS components (2 schedulers, 1 Timer and 1 Sensor), and 21 connec-

tors.

We consider a network ofSenseToLedsnodes without radio links. We show in figure 8, simulation

times as a function of the number of nodes for a virtual run time of 300 seconds, considering a 4 Hz timer

on each node. We performed the tests on an AMD Athlon XP 2800+,1Gb of RAM running GNU/Linux.

The execution time for the network increased linearly with the number of nodes, as expected.

The third exampleSenderReceiveris a network of senders and receivers, with lossless channels and

static topology. Each sender is connected to a fixed number ofreceiversy. Each receiver has a unique

sender (no collision). The sender nodes execute theCntToLedsAndRfm[1] nesC program, and the re-

ceiver nodes execute theRfmToLeds[1] program. Figure 9 shows real execution times for 300 virtual

seconds considering a 4 Hz timer on each node, as a function ofthe number of sendersx and the number

of receivers per sendery.

14



Figure 8. SenseToLedsexample.

8 Conclusion

Currently, validation of complex heterogeneous systems: such as networked systems, is carried out

by simulation or testing of prototype implementations. Verification techniques such as model-checking

and static analysis are already successfully used for software or hardware. They could be extended to

heterogeneous systems, provided that we have methods for building executable models for these systems.

The paper applies to TinyOS, a methodology for modeling and verification of networked systems. The

methodology is based on the use of the BIP component framework which encompasses description of

heterogeneous real-time systems. It allows the construction of global models obtained as the composition

of models of nodes. These are obtained by composition of models of the application software and of the

execution platform.

The methodology is general and can be applied to building global models of heterogeneous systems.

It consists in modeling the execution platform as an abstract machine driving the execution of the appli-

cation software. For this, a formalization of the language in which application software is written must

be provided, in terms of the primitives offered by the platform. This is certainly not an easy task. The

formalization should be made at the right abstraction level. Computation granularity should be chosen

15



Figure 9. SenderReceiverexample.

so as to include in the model all the events which are relevantfor the properties to be verified. Further-

more, to keep model complexity low, it should ignore computation sequences not involving such events.

For instance, for the verification of synchronization and resource properties, it should assemble atomic

sequences of code. The model generation methodology applied to nesC, can be adapted to any language

used for programming applications. Its parser can be adequately engineered to identify in the source

code, constructs generating relevant events and determinecomputation granularity. This can be used for

(compositionally) generating BIP code.

We spent two man×months for developing the methodology for TinyOS. For otherplatforms, much

more effort would be needed for feature componentization atthe right abstraction level. Such an in-

vestment seems to be the only way for overcoming current limitations of model-based design and for

designing systems of guaranteed quality.

Currently, behavioral aspects of networks are validated using specific simulation environments built

in some ad hoc manner and integrating application code, protocols and platforms. Our approach allows

the use of a single modeling framework supporting a disciplined system construction methodology. It

allows the systematic construction of global models spanning all possible system execution sequences.

The results show that using such a non-specific framework andrich models does not entail significant

performance overhead. The advantages are numerous, including enhanced analysis and verification as

16



well as comparison of implementations of the same application on different platforms.

References

[1] http://www.tinyos.net/.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-Time Components in BIP. InSEFM06,

IEEE Computer Society.

[3] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation Environment for Component-Based Real-Time

Systems. CAV02.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. InSchool on Formal Methods for the

Design of Computer, Communication and Software Systems, September 2004.

[5] E. A. L. Elaine Cheong and Y. Zhao. Joint modeling and design of wireless networks and sensor node

software. Technical Report UCB/EECS-2006-150, EECS Department, University of California, Berkeley,

November 2006.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.Culler. The nesc language: A holistic

approach to networked embedded systems. InSIGPLAN Conference on Programming Language Design

and Implementation, 2003.

[7] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and T. Schoellhammer. A

system for simulation, emulation and deployement of heterogeneous sensor networks. In2nd International

Conference on Embedded Networked Sensor Systems. ACM Press, 2004.

[8] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation of entire tinyos applica-

tions. InSenSys ’03: 1st international conference on Embedded networked sensor systems, pages 126–137.

ACM Press.

[9] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras.ATEMU: A Fine-grained Sensor Network

Simulator. InProceedings of SECON, 2004.

[10] J. Sifakis. A framework for component-based construction. In SEFM05, pages 293-300, pages 293–300.

IEEE Computer Society.

[11] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scalable Sensor Network Simulation with Precise Timing.

In IPSN 05, 2005.

17


