## Smaller Inversions and Unleashed Recursion in Coq

## The Braga Method

Jean-François MONIN

The Braga method is joint work with Dominique Larchey-Wendling

## Coq material and references

## Small inversions

http://home/jf/www/Proof/Small_inversions/2021/

## The Braga method

https://github.com/DmxLarchey/The-Braga-Method
Dominique Larchey-Wendling and Jean-François Monin.
The Braga Method: Extracting Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8, pages 305-386.
In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.
Proof and Computation II: From Proof Theory and Univalent Mathematics to
Program Extraction and Verification.
World Scientific, September 2021.

## Topics

## Unleashed recursion

Write partially/non terminating functional programs in Coq
To be extracted in OCaml exactly as desired

## Key ingredient : small inversions

- From V0 (2010-2013) to V1 (2017): V1 quite simple
- Less simple in recursive programs, issue solved with V2 (2018-2020)
- Beat Coq standard inversion (V0, V1) in case of dependent types including with the Braga method (V3, 2021)


## Empty inductive types and looping forever

## Kind of basic case

## Recursive programs in Type Theory

Basically, only total functions as programs

- Termination certificate needed at definition time
- But termination may depend on partial correctness (and conversely)
- Partially terminating functions make sense
- Extraction: partial functions allowed in target language


## OCaml and Coq are

## Functional programming languages

- Functions as ordinary values
- Recursion
- Algebraic types
- Static type-checking (and type inference)
- Polymorphism


## Algebraic types

## Construction

- cartesian products $=$ juxtaposition of $n$ things
- sums (disjoint unions) $=$ choice between $m$ cases distinguished by a unique name (constructor)


## Ideal for tree-like structures

- Lists, binary (search) trees), etc.
- Abstract Syntax Trees
- Rule-based semantics
- Proof-trees


## Algebraic types

## Construction

- cartesian products $=$ juxtaposition of $n$ things
- sums (disjoint unions) $=$ choice between $m$ cases distinguished by a unique name (constructor)


## Ideal for tree-like structures

- Lists, binary (search) trees), etc.
- Abstract Syntax Trees
- Rule-based semantics
- Proof-trees

Analyzed by a central weapon
PATTERN MATCHING on constructors

## OCaml and Coq: differences

## In OCaml only

- primitive data types (int, char, etc.)
- imperative features
- exceptions - inhabit any type
- non terminating computations - inhabit any type


## In Coq only

- Computations on types; types have a type (called a universe)
- Dependent types :
the type of an expression may depend on
the value of another expression
Example: lists having a given length
- Algebraic types with zero cases (empty in the empty environment)
- Special universe Prop dedicated to proof-trees


## Recursion in Coq (more generally: type theory)

## Limited to structural recursion

in order to ensure termination

## Not that serious

- Not a theoretical issue (e.g., inductive definition of WF relations)
- In practice: various tricks
- Precisely the point of the Braga method


## Explicit/implicit terms

## OCaml and Coq: explicit definitions

Explicit code for data types and functions

Coq only: interactive mode

- step-by-step development of functions driven by types
- Using tactics
- interactive building... and interactive reading!
- Hidden code, visible specification
- Especially convenient when dealing with dependent types


## Special universe for assertions: Prop

## Dedicated to Coq proof-trees

- Proofs are native
- $t: P$ means that $t$ is a proof of $P$
- The "empty" type in Prop is just False $(\perp)$

Consistency forbids exceptions and non-terminating computations

- A proof of $P \Rightarrow Q$ is seen as a function (program) with a proof of $P$ in input and proof of $Q$ in output.
Actual notation: $P \rightarrow Q$
- A proof of $\forall x: A, Q x$ is seen as a function (program) with a value $x$ : $A$ in input and providing a proof of $Q x$.
- Remark $\quad Q: A \rightarrow$ Prop

Predicates are just dependent types

## Computations on proof trees

## Lemma elimination

Lemma many_primes : $\forall \mathrm{n}$ : nat, $\exists \mathrm{p}:$ nat, $\mathrm{n} \leq \mathrm{p} \wedge$ prime p . Proof of the statement

Theorem thm1 : some other statement Proof using (many_primes 1960) and (many_primes $24^{3}$ )

Can be computed into
Theorem thm1 : some other statement
Proof including specific proofs

$$
\text { of } \quad \exists \mathrm{p}: \text { nat, } 1960 \leq \mathrm{p} \wedge \text { prime } \mathrm{p}
$$

and $\exists \mathrm{p}$ : nat, $24^{3} \leq \mathrm{p} \wedge$ prime p .

## Computations on proof trees

## Provides meaning

to reasoning by case analysis

Not performed in practice
We don't care

Excepted for reducing recursive functions
when the structurally decreasing argument is in Prop

## Computations on proof trees

## Provides meaning

to reasoning by case analysis

Not performed in practice
We don't care

Excepted for reducing recursive functions
when the structurally decreasing argument is in Prop

## From OCaml to Coq and conversely: summary

## Formal reasoning boils down to <br> data and computation presented by proof trees

Coq provides a uniform framework dealing in the same way with

- typed programs
- proofs of properties


## From OCaml to Cog and conversely: extraction (1/2)

## Cog

Fixpoint minlist l : list A (n: non_empty l) : \{y : A | mem y l $\wedge \forall x$, mem x $l \rightarrow x \leq y\}:=$ match 1 with
| [] $\quad \Rightarrow$ something for this absurd case | $\mathrm{x}:: \mathrm{l} \Rightarrow$ code computing y and proofs end

## The proof tree needs not to be computed for computing the result

## OCaml

let rec minlist $1: \alpha$ list $: \alpha=$ match 1 with
| [] -> assert false
| x :: l -> code computing y only
end

## From OCaml to Coq and conversely: extraction (1/2)

## Coq

Fixpoint minlist l : list A (n: non_empty l) : \{y : A | mem y l $\wedge \forall x$, mem x $1 \rightarrow \mathrm{x} \leq \mathrm{y}\}:=$ match 1 with
| [] $\quad \Rightarrow$ something for this absurd case | $\mathrm{x}:: \mathrm{l} \Rightarrow$ code computing y and proofs end

The proof tree needs not to be computed for computing the result y

## OCaml

let rec minlist l : $\alpha$ list : $\alpha=$ match 1 with
| [] -> assert false
| x :: l -> code computing y only
end

## From OCaml to Coq and conversely: extraction (2/2)

## Separation between

- "real" data (and fonctions on them)
- (logical) knowledge or reasoning about them


## No information leakage between Prop and Type

- Statically ensured by a constraint on pattern-matching
- Some debattable exceptions


## Terms in Prop can be erased

- From Coq to compilable functional languages (OCaml, Haskell,...)
- Aka dead-code elimination, "never executed asserts"
- An elegant way to provide correct-by-construction programs


## The Braga method (first presented at Types'18, Braga)

In type theory ( $\mathrm{CIC}++$ ): only total functions

- Termination certificate (TC) needed at definition time
- Many possible types for the TC: any (recursive) inductive type Issues to be considered before writing the function itself

Studying partial correctness properties is useful

- before getting knowledge
- or even in order to get knowledge on termination Concrete example: first order unification
$\rightarrow$ Egg and chicken problem
Partially terminating functions make sense
- WF relation are then a too strong requirement
- TC interpreted as a domain argument

Extraction: partial functions allowed in target language

## LISP viz ML style

## LISP

$$
\begin{aligned}
& \text { if } l=[] \text { then } 0 \\
& \text { else } f 1(\text { head } 1)+f 2(\text { tail } 1)
\end{aligned}
$$

Proof obligations to ensure that head and tail are called with a non-empty argument : (
$\qquad$

## LISP viz ML style

## LISP

$$
\begin{aligned}
& \text { if } 1=[] \text { then } 0 \\
& \text { else } f 1(\text { head } 1)+f 2(\text { tail } 1)
\end{aligned}
$$

Proof obligations to ensure that head and tail are called with a non-empty argument :(

## ML

```
match l with
| [] -> 0
| h :: t -> f1 h + f2 t
```

Type checking does the job :)

## Easy dependent pattern matching

Definition deptyp n : Type := match n with
| $0 \Rightarrow$ bool
| $1 \Rightarrow$ nat
| _ $\Rightarrow$ unit
end.


## Easy dependent pattern matching

$$
\begin{aligned}
& \text { Definition deptyp } \mathrm{n}: \text { Type }:= \\
& \begin{array}{l}
\text { match } \mathrm{n} \text { with } \\
\mid 0 \Rightarrow \text { bool } \\
\text { | } 1 \Rightarrow \text { nat } \\
\text { | } \quad \Rightarrow \text { unit } \\
\text { end. }
\end{array} \\
& \text { match } \mathrm{n} \text { feturn deptyp } \mathrm{n}:= \\
& \text { | } 0 \Rightarrow \text { false } \\
& \text { with } 1 \Rightarrow 3 \\
& \text { | }-\Rightarrow \text { tt (* () in OCaml *) }
\end{aligned}
$$

## Easy dependent pattern matching

Definition deptyp n : Type := match n with
| $0 \Rightarrow$ bool
| $1 \Rightarrow$ nat
| _ $\Rightarrow$ unit
end.

Definition fct1 n : deptyp n := match n return deptyp n with | $0 \Rightarrow$ false
| $1 \Rightarrow 3$
| _ $\Rightarrow$ tt (* () in OCaml *) end.

## Easy dependent pattern matching

Definition deptyp n : Type := match n with
| $0 \Rightarrow$ bool
| $1 \Rightarrow$ nat
| _ $\Rightarrow$ unit
end.

Definition fct1 n : deptyp n := match n return deptyp n with | $0 \Rightarrow$ false
| $1 \Rightarrow 3$
| _ $\Rightarrow$ tt (* () in OCaml *) end.

Definition fct2 n : deptyp (n*n) := match $n * n$ return deptyp with
| $0 \Rightarrow$ false
| $1 \Rightarrow 3$
| _ $\Rightarrow \mathrm{tt}$ end.

## Easy dependent pattern matching

## Generalization is mandatory

Definition deptyp n : Type := match n with
| $0 \Rightarrow$ bool
| $1 \Rightarrow$ nat
| _ $\Rightarrow$ unit
end.

Definition fct1 n : deptyp n := match n return deptyp n with | $0 \Rightarrow$ false
| $1 \Rightarrow 3$
| _ $\Rightarrow$ tt (* () in OCaml *) end.

Definition fct2 n : deptyp ( $\mathrm{n} * \mathrm{n}$ ) := match $n * n$ as $n 2$ return deptyp $n 2$ with | $0 \Rightarrow$ false
| $1 \Rightarrow 3$
| _ $\Rightarrow \mathrm{tt}$ end.

## Implicative dependent pattern-matching : Trojan horses

## Trojan horse, general idea

Carry information (here: $G$ ) to be revealed after coming into the place. The type of G (for guard) depends on the case.

Definition is_cons l : Prop := match 1 with $:: \Rightarrow \top \mid \quad \_\Rightarrow \perp$ end.

Definition head l : is_cons l $\rightarrow \mathrm{X}:=$ match 1 with
| $\mathrm{x}: \mathrm{t} \Rightarrow \lambda \mathrm{G}, \mathrm{x}$
| _ $\quad \Rightarrow \lambda G$, match $G$ with end
end.

## LISP (terrible) style with embedded proofs

Definition is_nil (l : list X) : bool := match 1 with

```
    | [] }=>\mathrm{ true
    | _ :: _ = false
    end.
```

Lemma nil_false : is_nil [] = false -> $\perp$.
Definition head (l : list X) : is_nil l = false -> X := match 1 with
| x : : $1 \Rightarrow \lambda \mathrm{G}, \mathrm{x}$
| _ $\quad \Rightarrow \lambda$ G, match nil_false $G$ with end end.

Definition LISP_style l : nat :=
(if is_nil l as b return (is_nil l = b -> nat)
then $\lambda$ (pre : is_nil l = true) , 0
else $\lambda$ (pre : is_nil l = false),
f1 (head l pre) + f2 (tail l pre)
) eq_refl.

## Universal realizer

# Usual universal realizer: exception <br> let univ : $\alpha=$ assert false 



## Universal realizer

## Usual universal realizer: exception <br> let univ : $\alpha=$ assert false

Another universal realizer: loop
let rec loop $\mathrm{x}=$ loop x

## Loops in an inconsistent environment in Coq

Section sec_absurd.

Variable X : Type.
Variable f: $\perp$.
(* An arbitrary inductive proposition *)
Definition P: Prop := $\top$.
Let Fixpoint loop (x:P) : X := loop (match $f$ with end).
Hypothesis p: P.
Definition Floop_P : X := loop p.

End sec_absurd.

## Loops with an absurd parameter in Coq

```
The same in 2 lines (with \(T\) for \(P\) )
Definition Floop_T (X: Type) (f: \(\perp\) ) : X := (fix loop (_: \(\dagger\) ) := loop (match \(f\) with end)) I.
```


## Loops with an absurd parameter in Coq

```
The same in 2 lines (with T for P)
Definition Floop_T (X: Type) (f: \perp) : X :=
    (fix loop (_:T) := loop (match f with end)) I.
```


## The same in 2 shorter lines (with $\perp$ for P )

Definition Floop_F (X: Type) : $\perp$-> X := fix loop $f$ := loop (match $f$ with end).

## Loops with an absurd parameter in Coq

The same in 2 lines (with $T$ for $P$ )
Definition Floop_T (X: Type) (f: $\perp$ ) : X :=
(fix loop (_:T) := loop (match $f$ with end)) I.

The same in 2 shorter lines (with $\perp$ for P )
Definition Floop_F (X: Type) : $\perp$-> X := fix loop $f$ := loop (match $f$ with end).

An additional concrete parameter for better extraction
Definition Floop (X: Type) : $\perp$-> X :=
(fix loop $t(f: \perp):=$ loop tt (match $f$ with end)) tt.

## Removing loops at extraction

Definition Fexc $\{\mathrm{X}:$ Type $\}(\mathrm{f}: ~ \perp$ ) : X := match Floop Empty_set $f$ with end.

Empty_set $=$ empty informative inductive type
Floop Empty_set f has type Empty_set
At Coq level, no leakage from Prop to Type
match whatever with end
extracted at OCaml level as assert false
Floop (params) considered as dead code $\rightarrow$ canceled

## Inversion, simple example

## Inductively defined semantics

```
Inductive eval : te -> val -> Prop :=
    | E_Const : forall n,
        eval (Te_const n) (Nval n)
    | E_Plus : forall t1 t2 n1 n2,
    eval t1 (Nval n1) ->
    eval t2 (Nval n2) ->
    eval (Te_plus t1 t2) (Nval (n1 + n2)).
```

```
Two goals
e : eval (Te_plus (Te_const 1) (Te_const 2)) v
==================================================
v = Nval 3
e : eval (Te_div0 (Te_const 1)) v
=====================================
3=5
```


## Inversion

## Purpose

Extract the information contained in a hypothesis $H$ of type $T$

- where $T$ is an inductive relation
- with some inductive arguments


## Expectations

- Only relevant cases (constructors) for $T$ are kept
- In the remaining cases, decompose $H$ into its components


## Essentially : (subtle) case analysis on $H$

- Simultaneous case analysis on $H$ and its arguments
- game on dependent pattern-matching


## Inversion technologies

Standard tactic of Coq: fully automated [Cornes \& Terrasse, 1995 ; Murthy?]

- Improved over the years, very impressive black box
- lack of control
- big underlying terms
- failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin \& Shi 2013]

- Flexible approach with several variants
- Developed for a big experiment with CompCert
- Attempts towards automation (Braibant, Boutillier)
- Made clearer with recent unpublished improvements
- Other improvements needed for the Braga method


## A real example with CompCert C semantics (2013)

```
H:eval_expr (Genv.globalenv prog_adc) e m RV
    (Ecall (Evalof (Evar copy_StatusRegister T14) T14)
        (Econs
            (Eaddrof
                (Efield (Ederef (Evalof (Evar proc T3) T3) T6)
                adc_compcert.cpsr T7) T8)
            (Econs
            (Ecall (Evalof (Evar spsr T15) T15)
            (Econs (Evalof (Evar proc T3) T3) Enil) T8)
                Enil))
```

T12) $t m^{\prime} a^{\prime}$
proc_state_related m' e st'
inv H. inv H4. inv H9. inv H5. inv H4. inv H5.
inv H15. inv H4. inv H5. inv H14. inv H4. inv H3.
inv H15. inv H5. inv H4. inv H5. inv H21. inv H13.

## Practical issues with Coq standard inversion

- Behavior not easy to predict number of cases, number and type of components
- Many additional equalities to be rewritten
- Scripts depend on the versions of Coq (and of CompCert for the previous case study)
- Heavy machinery generating gigantic underlying proof terms
- Underlying reasoning somewhat mysterious
- Fails in situations with dependent types


## Small Inversions V0: absurd Cases

$$
\begin{aligned}
& \mathrm{e} \text { : eval (Te_div0 (Te_const 1)) v } \\
& ================================= \\
& 3=5
\end{aligned}
$$

pose (diag t :=
match t with
| Te_div0 (Te_const 1) => $3=5$
| _ => True
end).
change (diag (Te_div0 (Te_const 1))). destruct e; simpl; exact I.

## A more modular variant

```
Definition inv_eval_1_div0 t v (e: eval t v) :=
    let diag t :=
    match t with
        | Te_div0 n => \forall X: Prop, X
        | _ => True
    end
    in match e in eval t v return diag t with
    | E_Const n => I
    | E_Plus _ _ n1 n2 H1 H2 => I
    end.
```

e : eval (Te_div0 (Te_const 1)) v
===================================120
$3=5$
apply (inv_eval_1_div0 e).

## Small Inversions V0: diagonalization function

- yields the premises of focused constructor
- independent from specific conclusion
- takes bindings into account

For constructor E_Plus:

```
diag t v := match t with
    | Te_plus tc1 tc2 =>
        X: te -> Prop,
            (\forall n1 n2, eval tc1 (Nval n1) ->
                                    eval tc2 (Nval n2) ->
                                    X (Nval (n1 + n2))) -> X v
    | _ => True
end
```

No ADDITIONAL EQUALITY

## Small Inversions V0: diagonalization function

- yields the premises of focused constructor
- independent from specific conclusion

For constructor E_Plus:

```
diag t v := match t with
    | Te_plus tc1 tc2 =>
        X: te -> Prop,
            (\forall n1 n2, eval tc1 (Nval n1) ->
                                    eval tc2 (Nval n2) ->
                                    X (Nval (n1 + n2))) -> X v
    | _ => True
end
```

No ADDITIONAL EQUALITY

## Small Inversions V0: diagonalization function

- yields the premises of focused constructor
- independent from specific conclusion
- takes bindings into account

For constructor E_Plus:

```
diag t v := match t with
    | Te_plus tc1 tc2 =>
        X: te -> Prop,
            (\forall n1 n2, eval tc1 (Nval n1) ->
                                    eval tc2 (Nval n2) ->
                                    X (Nval (n1 + n2))) -> X v
    | _ => True
end
```

No ADDITIONAL EQUALITY

## Small inversions V1, with auxiliary inductive types

## Receipe

Given an inductive relation rel : Tx $\rightarrow$ Ty1 $\rightarrow \ldots$ Prop with "input" argument x : Tx, define:

- For each input case (constructor C) in Tx, an auxiliary inductive relation of type Ty1 $\rightarrow$... Prop by copy and paste of relevant telescopes of rel No recursion
- A dispatch function rel' from $\mathrm{x}: \mathrm{Tx}$ to Ty1 $\rightarrow \ldots$ Prop by pattern matching on x
- A trivial proof rel_rel' : rel implies rel'

Given a hypothesis
invoke a pattern matc hing on
Boils down to the relevant aux. inductive relation corresponding to

## Small inversions V1, with auxiliary inductive types

## Receipe

Given an inductive relation rel : Tx $\rightarrow$ Ty1 $\rightarrow \ldots$ Prop with "input" argument x : Tx, define:

- For each input case (constructor C) in Tx, an auxiliary inductive relation of type Ty1 $\rightarrow$... Prop by copy and paste of relevant telescopes of rel No recursion
- A dispatch function rel' from $\mathrm{x}: \mathrm{Tx}$ to Ty1 $\rightarrow$... Prop by pattern matching on x
- A trivial proof rel_rel' : rel implies rel'


## Usage

- Given a hypothesis R : rel (C...) expr_1... invoke a pattern matching on rel_rel' $R$
- Boils down to the relevant aux. inductive relation corresponding to (C...)


## Small inversion V1, for dependent (data) types

## Complement of receipe

When $R$ occurs as an argument in the goal (usually happens for dependent data types rather than relations), we need also the converse rel' rel of rel_rel' (trivial as well), and a proof of rel'_rel (rel_rel' R) = R.

Then rewrite the occurrences of $R$ with rel' rel (rel_rel' $R$ ) before the pattern-matching on rel_rel' R.

To be completed, or see script:
http://www-verimag.imag.fr/~monin/Proof/Small_inversions/2021/

## Small inversion V1, example (1/4)

```
Inductive eval : te \(\rightarrow\) val \(\rightarrow\) Prop :=
    | E_Const : \(\forall \mathrm{n}\),
        eval (Te_const n) (Nval n)
    | E_Plus : \(\forall\) t1 t2 n1 n2,
        eval t1 (Nval n1) \(\rightarrow\) eval t2 (Nval n2) \(\rightarrow\)
        eval (Te_plus t1 t2) (Nval (n1 + n2)).
```

Inductive
Inductive

## Small inversion V1, example (1/4)

```
Inductive eval : te \(\rightarrow\) val \(\rightarrow\) Prop :=
    | E_Const : \(\forall \mathrm{n}\),
        eval (Te_const n) (Nval n)
    E_Plus : \(\forall\) t1 t2 n1 n2,
        eval t1 (Nval n1) \(\rightarrow\) eval t2 (Nval n2) \(\rightarrow\)
        eval (Te_plus t1 t2) (Nval (n1 + n2)).
```

Inductive eval_Const' n : val $\rightarrow$ Prop :=
| E_Const' : eval_Const' n (Nval n).

## Definition eval' : te $\rightarrow$ val $\rightarrow$ Prop := fun $t=>$

match t with

## Small inversion V1, example (1/4)

```
Inductive eval : te \(\rightarrow\) val \(\rightarrow\) Prop :=
    | E_Const : \(\forall \mathrm{n}\),
        eval (Te_const n) (Nval n)
    | E_Plus : \(\forall\) t1 t2 n1 n2,
    eval t1 (Nval n1) \(\rightarrow\) eval t2 (Nval n2) \(\rightarrow\)
    eval (Te_plus t1 t2) (Nval (n1 + n2)).
```

Inductive eval_Const' n : val $\rightarrow$ Prop :=
| E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val $\rightarrow$ Prop :=
| E_Plus' : $\forall \mathrm{n} 1 \mathrm{n} 2$,
eval t1 (Nval n1) $\rightarrow$ eval t2 (Nval n2) $\rightarrow$
eval_Plus' t1 t2 (Nval (n1 + n2)).

## Small inversion V1, example (1/4)

```
Inductive eval : te }->\mathrm{ val }->\mathrm{ Prop :=
    | E_Const : }\forall\textrm{n}\mathrm{ ,
        eval (Te_const n) (Nval n)
    | E_Plus : }\forall\mathrm{ t1 t2 n1 n2,
    eval t1 (Nval n1) }->\mathrm{ eval t2 (Nval n2) }
    eval (Te_plus t1 t2) (Nval (n1 + n2)).
Inductive eval_Const' n : val }->\mathrm{ Prop :=
    | E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val }->\mathrm{ Prop :=
    E_Plus' : \forall n1 n2,
        eval t1 (Nval n1) }->\mathrm{ eval t2 (Nval n2) }
        eval_Plus' t1 t2 (Nval (n1 + n2)).
```

Definition eval' : te $\rightarrow$ val $\rightarrow$ Prop $:=$ fun $\mathrm{t}=>$
match t with
| Te_const n => eval_Const' n
| Te_plus t1 t2 => eval_Plus' t1 t2
end.

## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval t v $\rightarrow$ eval' t v.

## Definition eval_eval

```
match e with
| E_Const
=> E_Const' n
| E_Plus t1 t2 n1 n2 e1 e2
=> E_Plus' t1 t2 n1 n2 e1 e2
```

end

## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval $\mathrm{t} v \rightarrow$ eval' $\mathrm{t} v$. Proof. intro e; destruct e; constructor; assumption. Qed.

## Definition eval_eval



## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval t v $\rightarrow$ eval' t v. Proof. intro e; destruct e; constructor; assumption. Qed.

```
Definition eval_eval' {t v} : eval t v }->\mathrm{ eval' t v := 
match e in eval to vo return eval' to vo with
    | E_Const n
    => E_Const' n
    | E_Plus t1 t2 n1 n2 e1 e2
    =>> E_Plus' t1 t2 n1 n2 e1 e2
    end.
```


## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval t v $\rightarrow$ eval' t v. Proof. intro e; destruct e; constructor; assumption. Qed.

Definition eval_eval'_bavard \{t v\} : eval t v $\rightarrow$ eval' t v := $\lambda \mathrm{e}$, match $e$ in eval $t_{0} v_{0}$ return eval' $t_{0} v_{0}$ with
| E_Const $n$
=> E_Const' $n$
| E_Plus t1 t2 n1 n2 e1 e2
$\Rightarrow$ E_Plus' t1 t2 n1 n2 e1 e2
end.

## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval t v $\rightarrow$ eval' t v. Proof. intro e; destruct e; constructor; assumption. Qed.

Definition eval_eval'_bavard \{t v\} : eval t v $\rightarrow$ eval' $\mathrm{t} v:=\lambda e$, match $e$ in eval $t_{0} v_{0}$ return eval' $t_{0} v_{0}$ with
| E_Const $n$ (* $t_{0}:=T e_{-}$const $\left.n, v_{0}:=N v a l n *\right)$
=> E_Const' n : (eval_Const' n) (Nval n)
| E_Plus t1 t2 n1 n2 e1 e2
=> E_Plus' t1 t2 n1 n2 e1 e2
end.

## Small inversion V1, example (2/4)

Definition eval_eval' \{t v\} : eval t v $\rightarrow$ eval' t v. Proof. intro e; destruct e; constructor; assumption. Qed.

Definition eval_eval'_bavard \{t v\} : eval t v $\rightarrow$ eval' t v := $\lambda e$, match $e$ in eval $t_{0} v_{0}$ return eval' $t_{0} v_{0}$ with
| E_Const $n$ (* $t_{0}:=T e_{-}$const $\left.n, v_{0}:=N v a l n *\right)$
=> E_Const' n : (eval_Const' n) (Nval n)
| E_Plus t1 t2 n1 n2 e1 e2 ( $* t_{0}:=$ Te_plus t1 t2, $\mathrm{v}_{0}:=\operatorname{Nval}(\mathrm{n} 1+\mathrm{n} 2) *$ ) $\Rightarrow$ E_Plus' t1 t2 n1 n2 e1 e2 : (eval_Plus' t1 t2) (Nval (n1 + n2)) end.

## Small inversion V1，example（3／4）

## Inductive eval＿Const＇ n ：val $\rightarrow$ Prop ：＝ <br> E＿Const＇：eval＿Const＇n（Nval n）

e ：eval（Te＿const 1）v
ニニニニニニニニニニニニニニニニニニニニニニニ v＝Nval 1

## Small inversion V1, example (3/4)

Inductive eval_Const' n : val $\rightarrow$ Prop := | E_Const' : eval_Const' n (Nval n).

```
e : eval (Te_const 1) v
========================
v = Nval 1
```


## Small inversion V1, example (3/4)

```
Inductive eval_Const' n : val \(\rightarrow\) Prop :=
    | E_Const' : eval_Const' n (Nval n).
```

Inductive eval_Plus' t1 t2 : val $\rightarrow$ Prop
$\mid$ E_Plus' $^{\prime}: \forall$ n1 n2,
$\quad$ eval t1 (Nval n1) $\rightarrow$ eval t2 (N)
eval_Plus' t1 t2 (Nval $(\mathrm{n} 1+\mathrm{n} 2))$.
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).

## Small inversion V1，example（3／4）

```
Inductive eval_Const' n : val }->\mathrm{ Prop :=
    | E_Const' : eval_Const' n (Nval n).
```

Inductive eval_Plus' t1 t2 : val $\rightarrow$ Prop
$\mid$ E_Plus' : $\forall$ n1 n2,
eval t1 (Nval n1) $\rightarrow$ eval t2 (N)
eval_Plus' t1 t2 (Nval (n1 $+\mathrm{n} 2)$ ).
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
v = Nval 1

## Small inversion V1, example (3/4)

```
Inductive eval_Const' n : val }->\mathrm{ Prop :=
    E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val }->\mathrm{ Prop :=
    eval_Plus' t1 t2 (Nval (n1 + n2)).
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
v = Nval 1
```


## Small inversion V1，example（3／4）

```
Inductive eval_Const' n : val \(\rightarrow\) Prop :=
    E_Const' : eval_Const' \(n\) (Nval n).
Inductive eval_Plus' t1 t2 : val \(\rightarrow\) Prop :=
    eval_Plus' t1 t2 (Nval (n1 + n2)).
e : eval (Te_const 1) v
=======================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
v = Nval 1
destruct (eval_eval' e)
```


## Small inversion V1，example（3／4）

```
Inductive eval_Const' n : val \(\rightarrow\) Prop :=
    E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val \(\rightarrow\) Prop :=
    | E_Plus' : \(\forall\) n1 n2,
        eval t1 (Nval n1) \(\rightarrow\) eval t2 (Nval n2) \(\rightarrow\)
        eval_Plus' t1 t2 (Nval (n1 + n2)).
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ
v = Nval 1
destruct (eval_eval' e)
```


## Small inversion V1, example (3/4)

```
Inductive eval_Const' n : val }->\mathrm{ Prop :=
    E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val }->\mathrm{ Prop :=
    | E_Plus' : \forall n1 n2,
        eval t1 (Nval n1) }->\mathrm{ eval t2 (Nval n2) }
        eval_Plus' t1 t2 (Nval (n1 + n2)).
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
==================================================
v = Nval 1
destruct (eval_eval' e) as [n1 n2 e1 e2].
```


## Small inversion V1, example (3/4)

```
Inductive eval_Const' n : val }->\mathrm{ Prop :=
    E_Const' : eval_Const' n (Nval n).
Inductive eval_Plus' t1 t2 : val }->\mathrm{ Prop :=
    | E_Plus' : \forall n1 n2,
        eval t1 (Nval n1) }->\mathrm{ eval t2 (Nval n2) }
        eval_Plus' t1 t2 (Nval (n1 + n2)).
e : eval (Te_const 1) v
========================
v = Nval 1
destruct (eval_eval' e).
e : eval (Te_plus (Te_const 1) (Te_const 0)) v
=================================================
v = Nval 1
destruct (eval_eval' e) as [n1 n2 e1 e2].
    No ADDITIONAL EQUALITY
```


## Small inversion V1, example (4/4)

Inductive eval_Const_1_2 n : nat $\rightarrow$ Prop := | E_Const', : eval_Const_1_2 n n. Inductive eval_Plus_1_2 t1 t2 : nat $\rightarrow$ Prop :=
| E_Plus'' : $\forall \mathrm{n} 1 \mathrm{n} 2$,
eval t1 (Nval n1) $\rightarrow$ eval t2 (Nval n2) ->
eval_Plus_1_2 t1 t2 (n1 + n2).

Definition eval_1_2 : te $\rightarrow$ val $\rightarrow$ Prop := fun t v =>
match $t$, $v$ with
| Te_const c, Nval n => eval_Const_1_2 c n | Te_plus t1 t2, Nval n => eval_Plus_1_2 t1 t2 n | _, _ => False end.

Definition eval_eval_1_2 \{t v\} : eval t v $\rightarrow$ eval_1_2 t v :=
fun e =>
match e with
| E_Const n => E_Const', $n$
| E_Plus t1 t2 n1 n2 e1 e2 => E_Plus' ' t1 t2 n1 n2 e1 e2 end.

## Small inversions V1, how/why it works

## Separation of concerns

The usually complicated pattern-matching working on $R$ is decomposed and isolated in rel' and rel_rel'

> Relevant bindings
> automatically performed in the course of pattern-matching A single pattern-matching
> $=$ multiple simultaneous rewrite steps for free No additional rewrite in scripts

> Using equalities and rewrite $=$ complications + steps backwards

## Small inversions V1, how/why it works

## Separation of concerns

The usually complicated pattern-matching working on R is decomposed and isolated in rel' and rel_rel'

## Pattern-matching is very powerful in Type Theory

- Relevant bindings automatically performed in the course of pattern-matching
- A single pattern-matching
$=$ multiple simultaneous rewrite steps for free
- No additional rewrite in scripts
- Using equalities and rewrite = complications + steps backwards


## Coq inversion viz small inversions V1 (1/2)

$$
\forall \mathrm{v}, \mathrm{P} \text { v -> eval (Te_const 1) v -> v = Nval } 1 .
$$

## Small inversions V1

```
(fun (v : val) (p : P v) (e : eval (Te_const 1) v) =>
    (let e0 : eval_1 (Te_const 1) v := eval_eval_1 e in
    match e0 in (eval_Const_1 _ v0) return (eval (Te_const 1) v0 -> P v0 -> v0 = Nval 1) with
    | E_Const' _ => fun (_ : eval (Te_const 1) (Nval 1)) (_ : P (Nval 1)) => eq_refl
    end e) p)
```


## Coq inversion viz small inversions V1 (1/2)

$$
\forall \text { v ,P v -> eval (Te_const 1) v -> v = Nval } 1 .
$$

## Small inversions V1

```
(fun (v : val) (p : P v) (e : eval (Te_const 1) v) =>
    (let e0 : eval_1 (Te_const 1) v := eval_eval_1 e in
    match e0 in (eval_Const_1 _ v0) return (eval (Te_const 1) v0 -> P v0 -> v0 = Nval 1) with
        | E_Const' _ => fun (_ : eval (Te_const 1) (Nval 1)) (_ : P (Nval 1)) => eq_refl
    end e) p)
```


## Coq inversion (2021)

```
(fun (v : val) (_ : P v) (e : eval (Te_const 1) v) =>
    let H : Te_const 1 = Te_const 1 -> v = v -> v = Nval 1 :=
        match e in (eval t v0) return (t = Te_const 1 -> v0 = v -> v = Nval 1) with
        | E_Const n =>
            fun (H : Te_const n = Te_const 1) (HO : Nval n = v) =>
            (fun H1 : Te_const n = Te_const 1 =>
            let H2 : n = 1 :=
                f_equal (fun e0 : te => match e0 with
                        | Te_const n0 => n0
                            | Te_plus _ _ => n
                            end) H1 in
            (fun H3 : n = 1 =>
                let H4 : n = 1 := H3 in
                eq_ind_r (fun n0 : nat => Nval n0 = v >> v = Nval 1)
                        (fun H5 : Nval 1 = v =>
                        let H6 : Nval 1 = v := H5 in
                eq_ind (Nval 1) (fun v0 : val => vO = Nval 1) eq_refl v H6) H4) H2) H HO
            J-F. Monin

\section*{Coq inversion viz small inversions V1 (2/2)}
```

(fun (v : val) (_ : P v) (e : eval (Te_const 1) v) =>
let H : Te_const 1 = Te_const 1 -> v = v >> v = Nval 1 :=
match e in (eval t v0) return (t = Te_const 1 -> v0 = v -> v = Nval 1) with
| E_Const n =>
fun (H : Te_const n = Te_const 1) (HO : Nval n = v) =>
(fun H1 : Te_const n = Te_const 1 =>
let H2 : n = 1 :=
f_equal (fun e0 : te => match e0 with
| Te_const n0 => n0
| Te_plus _ _ => n
end) H1 in
(fun H3 : n = 1 =>
let H4 : n = 1 := H3 in
eq_ind_r (fun n0 : nat => Nval n0 = v >> v = Nval 1)
(fun H5 : Nval 1 = v =>
let H6 : Nval 1 = v := H5 in
eq_ind (Nval 1) (fun v0 : val => v0 = Nval 1) eq_refl v H6) H4) H2) H H0
| E_Plus t1 t2 n1 n2 H HO =>
fun (H1 : Te_plus t1 t2 = Te_const 1) (H2 : Nval (n1 + n2) = v) =>
(fun H3 : Te_plus t1 t2 = Te_const 1 =>
let H4 : False :=
eq_ind (Te_plus t1 t2)
(fun e0 : te => match e0 with
| Te_const _ => False
| Te_plus _ _ => True
end) I (Te_const 1) H3 in
False_ind (Nval (n1 + n2) = v >> eval t1 (Nval n1) -> eval t2 (Nval n2) -> v = Nval 1)
H4) H1 H2 H HO
end in
H eq_refl eq_refl)

```

\section*{Small inversions from V1 to full V0}

Full V0 can be seen as a purely functional translation of V1
Continuation Passing Style / polymorphic lambda-calculus

\section*{Beating Coq inversion: on dependent types (1/4)}

Bounded natural numbers - or finite sets t n of size n Inductive \(t\) : nat \(\rightarrow\) Set :=
| FO \{n\} : t (S n)
| \(\mathrm{FS}\{\mathrm{n}\}: \mathrm{t} \mathrm{n} \rightarrow \mathrm{t}(\mathrm{S} \mathrm{n})\).

\section*{Beating Coq inversion: on dependent types (1/4)}

Bounded natural numbers - or finite sets t n of size n
Inductive \(t\) : nat \(\rightarrow\) Set :=
| FO \{n\} : t (S n)
| \(\mathrm{FS}\{\mathrm{n}\}: \mathrm{t} \mathrm{n} \rightarrow \mathrm{t}(\mathrm{S} \mathrm{n})\).

Even bounded numbers
Inductive even : forall \{n\}, t \(\mathrm{n} \rightarrow\) Prop :=
| even_0 \{n\} : even (@FO n)
| even_SS \{n\} (i: t n) : even i \(\rightarrow\) even (FS (FS i)).

\section*{Beating Coq inversion: on dependent types (1/4)}

Bounded natural numbers - or finite sets t n of size n
Inductive \(t\) : nat \(\rightarrow\) Set :=
| FO \{n\} : t (S n)
| \(\mathrm{FS}\{\mathrm{n}\}: \mathrm{t} \mathrm{n} \rightarrow \mathrm{t}(\mathrm{S} \mathrm{n})\).

\section*{Even bounded numbers}
```

Inductive even : forall {n}, t n -> Prop :=
| even_0 {n} : even (@FO n)
| even_SS {n} (i: t n) : even i }->\mathrm{ even (FS (FS i)).

```

\section*{Issues on lemmas such as}
```

n (i: t n), even (FS (FS i)) }->\mathrm{ even i.
| m (i: t n) (j: t m),
even (Fplus i j) }->\mathrm{ even i }->\mathrm{ even j.

```

\section*{Beating Coq inversion: on dependent types (2/4)}


Definition even' : \(\forall\{\mathrm{n}\}\), \(\mathrm{t} \mathrm{n} \rightarrow\) Prop :=
match i with
end.
Definition even_even' \{n\} \{i: t n\} (e : even i) : even' i := match e with | even_0 | even_SS i e> even_SS' ie end

\section*{Beating Coq inversion: on dependent types (2/4)}

Inductive even0: Prop := | even_0' : even0.

Inductive evenSS \{n\} (i: t n) : Prop := | even_SS' : even i \(\rightarrow\) evenSS i.

Definition even' : \(\forall\{n\}\), \(\mathrm{t} \mathrm{n} \rightarrow\) Prop \(:=\) fun n i \(\Rightarrow\)
match i with
\begin{tabular}{ll} 
| FO & \(\Rightarrow\) even0 \\
| FS (FS i) & \(\Rightarrow\) evenSS i \\
ind. & \\
end &
\end{tabular}

Definition even_even' \{n\} \{i: t n\} (e : even i) : even' i := match e with | even_0 \(\quad\) > even_0
\(\qquad\)
end

\section*{Beating Coq inversion: on dependent types (2/4)}

Inductive even0: Prop := | even_O' : even0.

Inductive evenSS \{n\} (i: t n) : Prop := | even_SS' : even i \(\rightarrow\) evenSS i.

Definition even' : \(\forall\{\mathrm{n}\}\), \(\mathrm{t} \mathrm{n} \rightarrow\) Prop \(:=\) fun n i \(\Rightarrow\)
match i with
\begin{tabular}{ll} 
| FO & \(\Rightarrow\) even0 \\
|FS (FS i) & \(\Rightarrow\) evenSS i \\
I & \\
end. &
\end{tabular}

Definition even_even' \{n\} \{i: t n\} (e : even i) : even' i := match e with
```

    | even_0 => even_0'
    | even_SS i e => even_SS' i e
    ```
    end.

\section*{Beating Coq inversion: on dependent types (3/4)}

Fixpoint Fplus \{n m : nat\} (i : t n) (j : t m) : t (n + m) := match i with
```

| @FO n => jifti (S n) j
| FS i => FS (Fplus i j)
end.

```

\section*{Beating Coq inversion: on dependent types \((3 / 4)\)}
```

Fixpoint lift1 m \{n\} (i : t n) : t (m +n ) : =
match $i$ in $t n$ return $t(m+n)$ with
| FO => t_n_Sm FO
| FS i => t_n_Sm (FS (lift1 m i)
end.

```

Fixpoint Fplus \(\{\mathrm{n} m\) : nat \((\mathrm{i}: \mathrm{t} \mathrm{n})(\mathrm{j}: \mathrm{t} \mathrm{m}): \mathrm{t}(\mathrm{n}+\mathrm{m}):=\) match i with | @FO n => lift1 (S n) j | FS i \(\Rightarrow\) FS (Fplus i j) end.

\section*{Beating Coq inversion: on dependent types (4/4)}
```

i : t n ; j : t m
eij : even (FS (FS (Fplus i j)))
ei : even i
IHei : even (Fplus i j) }->\mathrm{ even j

```

\section*{Beating Coq inversion: on dependent types (4/4)}
```

i : t n ; j : t m
eij : even (FS (FS (Fplus i j)))
ei : even i
IHei : even (Fplus i j) }->\mathrm{ even j

```
(* FAILURE! *)
even j

\section*{Beating Coq inversion: on dependent types (4/4)}
\(\mathrm{i}: \mathrm{t} \mathrm{n}\); \(\mathrm{j}: \mathrm{t} \mathrm{m}\)
eij : even (FS (FS (Fplus i j)))
ei : even i
IHei : even (Fplus i j) \(\rightarrow\) even \(j\)

\section*{Coq inversion eij; subst (* FAILURE! *)}
```

i0 : t (n+m)
H1 : even io
HO : existT (fun n : nat => t n) (n+m) iO =
existT (fun n : nat => t n) ( }n+m\mathrm{ ) (Fplus i j)
even j

```

\section*{Beating Coq inversion: on dependent types (4/4)}
i : t n ; j : t m
eij : even (FS (FS (Fplus i j)))
ei : even i
IHei : even (Fplus i j) \(\rightarrow\) even \(j\)

\section*{Coq inversion eij; subst (* FAILURE! *)}
```

i0 : t (n+m)
H1 : even io
HO : existT (fun n : nat => t n) (n+m) iO =
existT (fun n : nat => t n) (n +m) (Fplus i j)
============================
even j

```
destruct (even_even' eij) as [eij']
eij' : even (Fplus i j)
===========================
even \(j\)

\section*{Coq inversion viz small inversions V1 (1/4)}

\section*{Small inversions V1}
```

(fun (n m : nat) (i : t n) (j : t m) (eij : even (Fplus i j)) (ei : even i) =>
even_ind (fun (n0 : nat) (i0 : t n0) => even (Fplus iO j) -> even j)
(fun (n0 : nat) (eij0 : even (Fplus FO j)) => even_lift1 (S n0) eij0)
(fun (n0 : nat) (i0 : t n0) (eiO : even iO) (IHei : even (Fplus iO j) -> even j)
(eij0 : even (Fplus (FS (FS iO)) j)) =>
let e : even' (FS (FS (Fplus iO j))) := even_even' eij0 in
match e with
| even_SS' _ eij' => _
end) n i ei eij)

```

\section*{Coq inversion viz small inversions V1 (1/4)}

\section*{Small inversions V1}
```

(fun (n m : nat) (i : t n) (j : t m) (eij : even (Fplus i j)) (ei : even i) =>
even_ind (fun (nO : nat) (i0 : t n0) => even (Fplus iO j) -> even j)
(fun (n0 : nat) (eij0 : even (Fplus FO j)) => even_lift1 (S n0) eij0)
(fun (n0 : nat) (i0 : t n0) (eiO : even iO) (IHei : even (Fplus iO j) -> even j)
(eijO : even (Fplus (FS (FS iO)) j)) =>
let e : even' (FS (FS (Fplus iO j))) := even_even' eij0 in
match e with
| even_SS' _ eij' => _
end) n i ei eij)

```

\section*{Coq inversion (2021)}
```

(fun (n m : nat) (i : t n) (j : t m) (eij : even (Fplus i j)) (ei : even i) =>
even_ind (fun (n0 : nat) (i0 : t n0) => even (Fplus iO j) >> even j)
(fun (n0 : nat) (eij0 : even (Fplus FO j)) => even_lift1 (S nO) eij0)
(fun (n0 : nat) (i0 : t n0) (eiO : even iO) (IHei : even (Fplus iO j) -> even j)
(eij0 : even (Fplus (FS (FS iO)) j)) =>
let H:
S (S (n0 + m)) = S (S (n0 + m)) ->
existT (fun n1 : nat => t n1) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) =
existT (fun n1 : nat => t n1) (S (S (n0 + m))) (FS (FS (Fplus iO j))) ->
even j :=
match
eij0 in (@even n1 t0)
return
(n1 = S (S (n0 + m)) ->
existT (fun n2 : nat => t n2) n1 t0 =

```

\section*{Coq inversion viz small inversions V1 (2/4)}
```

    existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus iO j))) ->
    even j)
    with
| @even_0 n1 =>
fun (H:S n1 = S (S (n0 + m)))
(HO : existT (fun n2 : nat => t n2) (S n1) FO =
existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus iO j)))) =>
(fun H1 : S n1 = S (S (n0 + m)) =>
let H2 : n1 = S (n0 + m) :=
f_equal (fun e : nat => match e with
| 0 => n1
| S n2 => n2
end) H1 in
(fun H3 : n1 = S (n0 + m) =>
let H4 : n1 = S (n0 + m) := H3 in
eq_ind_r
(fun n2 : nat =>
existT (fun n3 : nat => t n3) (S n2) FO =
existT (fun n3 : nat => t n3) (S (S (n0 + m))) (FS (FS (Fplus iO j))) ->
even j)
(fun
H5 : existT (fun n2 : nat => t n2) (S (S (n0 + m))) FO =
existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus iO j))) =>
let H6 : False :=
eq_ind (existT (fun n2 : nat => t n2) (S (S (n0 + m))) FO)
(fun e : n2 : nat \& t n2 =>
let (x, t0) := e in match t0 with
| FO => True
| FS _ => False
end) I
(existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus iO j)))) H5 in
False_ind (even j) H6) H4) H2) H H0

```

\section*{Coq inversion viz small inversions V1 (3/4)}
```

| @even_SS n1 i1 H =>
fun (H0 : S (S n1) = S (S (n0 + m)))
(H1 : existT (fun n2 : nat => t n2) (S (S n1)) (FS (FS i1)) =
existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus iO j)))) )
(fun H2 : S (S n1) = S (S (n0 + m)) =>
let H3 : n1 = n0 + m :=
f_equal (fun e : nat => match e with
| { (S n3) => n3
(fun H4 : n1 = n0 + m =>
(let H5 : n1 = n0 +m := H4 in
eq_ind_r
(fun n2 : nat =>
forall i2 : t n2,
existT (fun n3 : nat => t n3) (S (S n2)) (FS (FS i2)) =
existT (fun n3 : nat => t n3) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) ->
even i2 -> even j)
(fun (i2 : t (n0 + m))
(H6 : existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS i2)) =
existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j))))
=>
let H7 :
existT (fun n2 : nat => t n2) (n0 + m) i2 =
existT (fun n2 : nat => t n2) (n0 + m) (Fplus i0 j) :=
f_equal
(fun e : n2 : nat \& t n2 =>
let (x, t0) := e in
match tO with
| FO => existT (fun n3 : nat => t n3) (n0 + m) i2
| FS FO => existT (fun n4 : nat => t n4) (n0 + m) i2
| FS (@FS n3 t2) => existT (fun n4 : nat => t n4) n3 t2

```

\section*{Coq inversion viz small inversions V1 (4/4)}
end) H6 in
(fun
( H 8 : existT (fun n 2 : nat \(\Rightarrow \mathrm{t} \mathrm{n} 2\) ) ( \(\mathrm{n} 0+\mathrm{m}\) ) \(\mathrm{i} 2=\) existT (fun \(n 2\) : nat \(\Rightarrow t \mathrm{n} 2)(\mathrm{n} 0+m)(F p l u s i 0 \mathrm{j})\) )
(H9 : even i2) \(\Rightarrow\)
_ ) H7) H5 (i1)
H3) \(\mathrm{HO} \mathrm{H1} \mathrm{H}\)
end in
H eq_refl eq_refl) n i ei eij)

\section*{Small inversions, summary}

\section*{Until this slide}
- V0 (2010-2013): light but headache maker pseudo-impredicative auxiliary definition pattern-matching on types
- V1: easier auxiliary inductive + pattern-matching

\section*{Using inversions in recursive programs, next slides}

Issue solved with V2 \& V3: (pattern-matching) \({ }^{n}\)

\section*{Recursive programs}

\section*{Number of steps}

\section*{Given}
- A function \(g: X \rightarrow X\)
- A halting test function \(b: X \rightarrow\) bool
- An initial value \(x: X\)

Compute the minimum \(n\) such that \(b\left(g^{n} x\right)=\) true
\[
\begin{aligned}
& \text { let rec } n s x=\text { if } b x \text { then } 0 \text { else } 1+n s(g x) \\
& \text { let rec } n s a x n=\text { if } b \text { then } n \text { else } n s a(g x)(1+n)
\end{aligned}
\]

\section*{Equivalent ?}

Does nsa x 0 always return the same value as \(n s \mathrm{x}\) ?

\section*{Looks ridiculously impossible in Coq}
- Write Coq programs for ns and nsa
- Such that they are extracted exactly as expected
- Reason about them

\section*{Issue}

No clue about the (identical) termination of ns and nsa

\section*{Braga method, 1st idea : inductive domain + projections}

\section*{Inductive characterization of the domain of ns and nsa}

Inductive \(\mathbb{D} n s\) (x: X) : Prop :=
| Dns_tr : b x = true \(\rightarrow \mathbb{D}\) ns x
| Dns_fa : b x = false \(\rightarrow \mathbb{D}\) ns ( g x) \(\rightarrow \mathbb{D}\) ns x .

\section*{Target}

Fixpoint fct x (D : Dns x) \{struct D\} : N := match b x with
\[
\text { | true } \Rightarrow \text {. . . }
\]
| false \(\Rightarrow\). . . fct (g x) (proj D) . . . end.

With (proj D) < D

\section*{Requirement on the projection}

\section*{Inductive characterization of the domain of ns and nsa}

Inductive \(\mathbb{D}\) ns (x: X) : Prop :=
| Dns_tr : b x = true \(\rightarrow \mathbb{D}\) ns x
| Dns_fa : b x = false \(\rightarrow \mathbb{D}\) ns ( g x) \(\rightarrow \mathbb{D}\) ns x .
(proj D) defined for all \(x\) such that \(b x=f a l s e\)
Definition prj_Dns x (E: b x = false) (D: \(\mathbb{D} n s \mathrm{x}\) ): \(\mathbb{D} n s(\mathrm{~g}\) x) := match D with
| Dns_tr _ E' => match false_true E E' with end | Dns_fa _ _ D => D end.

Lemma false_true x : x = false -> x = true -> \(\perp\).

\section*{Recursive programs using Trojan horses}

Fixpoint ns x (D: \(\mathbb{D} n s \mathrm{x})\) : nat := match \(\mathrm{b} x\) as bx return \(\mathrm{b} \mathrm{x}=\mathrm{bx} \rightarrow\) _ with | true \(=>\lambda \mathrm{E}, 0\)
| false => \(\lambda\) E, \(S\left(n s(g x)\left(p r j \_D n s ~ E D\right)\right)\) end eq_refl.
end eq_refl.

\section*{Recursive programs using Trojan horses}

Fixpoint ns x (D: \(\mathbb{D n s} x\) ) : nat := match b x as bx return \(\mathrm{b} \mathrm{x}=\mathrm{bx} \rightarrow\) _ with | true \(=>\lambda \mathrm{E}, 0\)
| false => \(\lambda\) E, \(S\left(n s(g x)\left(p r j \_D n s E D\right)\right)\) end eq_refl.

Fixpoint nsa x (n: nat) (D: \(\mathbb{D}\) ns \(x\) ) : nat := match \(\mathrm{b} x\) as bx return \(\mathrm{b} \mathrm{x}=\mathrm{bx} \rightarrow\) _ with | true \(\Rightarrow \lambda \mathrm{E}, \mathrm{n}\) | false => \(\lambda\) E, nsa ( g x) ( S n) ( \(\mathrm{prj} \mathrm{D}_{\mathrm{D}} \mathrm{Dns}_{\mathrm{E}} \mathrm{D}\) ) end eq_refl.

\section*{2nd idea of the Braga method: input-output graph}

Inductive \(\mathbb{G n s}(\mathrm{x}: \mathrm{X})\) : nat \(\rightarrow\) Prop :=
| in_grns_0 : b x = true \(\rightarrow \mathrm{x} \longmapsto \mathrm{ns} 0\)
| in_grns_1 o: b x = false \(\rightarrow \mathrm{g}\) x \(\longmapsto \mathrm{ns} \circ \rightarrow \mathrm{x} \longmapsto \mathrm{ns}\) S o where "x \(\longmapsto\) ns o" \(:=(\mathbb{G n s} \mathrm{x} 0)\).

Fixpoint ns_pwc x (D: Dns x) : \(\{0 \mid x \longmapsto n s o\}\).
Proof. refine (
match \(\mathrm{b} x\) as bx return \(\mathrm{b} \mathrm{x}=\mathrm{bx} \rightarrow\) _ with
| true \(\Rightarrow \lambda \mathrm{E}\), exist _ \(0_{-}\)
| false \(\Rightarrow \lambda \mathrm{E}\), let (o,Go) \(:=\mathrm{ns} \_\mathrm{pwc}(\mathrm{g} \mathrm{x})\left(\mathrm{prj} \_\mathbb{D} n s \mathrm{E}\right.\) ) in exist _ (S o) _
end eq_refl).
- constructor 1; exact E.
- constructor 2; assumption.

Defined.

\section*{Remarks about inversion}
- prj_ \(\mathbb{D} n s\) is a special case of inversion
- The previous inversion technique does not provide structurally smaller terms : the different components of a constructor have to be recovered one by one
- It can still be used here, in order to prove that \(\mathbb{G n s}\) is deterministic
- Coq automated inversion provide structurally smaller terms!

\section*{Remarks about inversion}
- prj_ \(\mathbb{D} n s\) is a special case of inversion
- The previous inversion technique does not provide structurally smaller terms : the different components of a constructor have to be recovered one by one
- It can still be used here, in order to prove that \(\mathbb{G n s}\) is deterministic
- Coq automated inversion provide structurally smaller terms! ...when it works

\section*{Braga method for LISP / ML style programs}

The previous example (ns and nsa) happens to be closer to the LISP style. The guard used as a Trojan horse is typically an equality to be used to get \(\perp\) in absurd cases.

For ML style programs, we can instead use Trojan horses based on \(\perp\) and \(T\), which can be directly exploited. See below a typical programming pattern.

\section*{Reasoning on fold_left}
```

Functional specification
let rec foldl_ref l = match l with (* fake *)
| [] }->\mathrm{ b0
| u +: z -> f (foldl_ref u) z

```

\section*{Reasoning on fold_left}
```

Functional specification
let rec foldl_ref l = match l with (* fake *)
| [] }->\mathrm{ b0
| u +: z -> f (foldl_ref u) z

```

\section*{Inductive specification}
[] \(\longmapsto f 1\) b0
\[
u+: z \longmapsto f l \text { f b z }
\]

\section*{Reasoning on fold_left}

\section*{Specification}
let rec foldl_ref 1 = match 1 with (* fake *)
| [] \(\rightarrow\) b0
| u +: z \(\rightarrow\) f (foldl_ref u) z

Regular program
type \(\alpha \operatorname{lr}=\) Nilr \(\mid\) Consr of \(\alpha\) list \(* \alpha\)
let rec foldl_ref \(1=\) match \(12 r\) l with
| Nilr \(\rightarrow\) bO
| Consr (u, z) \(\rightarrow\) f (foldl_ref u) z

\section*{Braga version}

Fixpoint foldl_pwc \(1(\mathrm{D}: \mathbb{D} 1 z \mathrm{l}):\{\mathrm{b} \mid \mathrm{l} \longmapsto \mathrm{fl} \mathrm{b}\}\). Proof. gen_help l G_foldl ; apply up_llP in D; revert D. refine ( match 12 r 1 with | Nilr \(\Rightarrow \lambda \mathrm{D}\), exist _ bO _
| Consr u z \(\Rightarrow \lambda \mathrm{D}\), let (b, Cb ) := foldl_pwc u ( \(\pi \mathbb{D} 1 z \mathrm{D}\) ) in exist _ (f b z) _
end).
- apply T ; constructor 1.
- apply T ; constructor 2 ; exact Cb .

Qed.

\section*{Correctness of standard fold_left}

\section*{Easy}

Use \(\quad\) fold \(\mathrm{fb}(\mathrm{u}+: \mathrm{z})=\mathrm{f}(\) foldl \(\mathrm{f} b \mathrm{u}) \mathrm{z}\)
No use of associativity of append (append is not in the vocabulary)

\section*{Projection - Common programming pattern for ML style programs}
\begin{tabular}{|c|c|c|}
\hline & \(\mathbb{D} 1 \mathrm{z} \mathrm{u}\) & \(\mathbb{D} 1 \mathrm{r}(12 \mathrm{rl})\) \\
\hline \(\mathbb{D} 1 \mathrm{r}\) Nilr & (Consr u z) & \(\mathbb{D} 1\) z 1 \\
\hline
\end{tabular}

Projection for second rule
```

Let \pi_\mathbb{Dlr {u z} (D: DDlr (Consr u z)) : \mathbb{Dlz u :=}}=\mathbf{=}

```
    match \(D\) in \(\mathbb{D} 1 r \mathrm{r}\)


\section*{Projection - Common programming pattern for ML style programs}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\(\mathbb{D} 1\) u l} \\
\hline \(\mathbb{D} 1 \mathrm{r}\) Nilr & \(\mathbb{D} 1 \mathrm{r}\) (Consr u z) & \(\mathbb{D} 1 z 1\) & \\
\hline \multicolumn{4}{|c|}{Projection for second rule} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{```
Let }\mp@subsup{\pi}{_}{}\mathbb{D}lr {u z} (D: \mathbb{Dlr (Consr u z)) : \mathbb{Dlz u :=}
    match D in \mathbb{Dlr r return}
        let g := match r with Consr u z => \top | _ => \perp end in
        let u := match r with Consr ur z => u | _ => end in
            with
    | Dlr_Consr u z D => \lambda G, D
                => \lambda G, match G with end (*< D as well *)
    end I (* proof of T *).
```}} \\
\hline & & & \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
The guard G:g filters the relevant shape. \\
The u component in the type of D has to be recovered from \(x\) in the general type of \(D\). The original u is just a light suitable default value for this computation.
\end{tabular}} \\
\hline J-F. Monin & small inversions \& r & June 2021 & \\
\hline
\end{tabular}

\section*{Projection - Common programming pattern for ML style programs}


\section*{Projection - Common programming pattern for ML style programs}


\section*{Limitation of the previous trick}

Need for a default value in functions such as pred, tail, or the inlined function of previous slide:
let \(u\) := match \(r\) with Consr u z => u | _ => u end in
Fortunately, something like the original u on previous slide is always available when dealing with usual (non-dependent) algebraic types.

Provides a cheap solution.
This trick is used in Coq automated inversion.

\section*{Limitation of the previous trick}

Need for a default value in functions such as pred, tail, or the inlined function of previous slide:
let \(u\) := match \(r\) with Consr u z => u | _ => u end in
Fortunately, something like the original u on previous slide is always available when dealing with usual (non-dependent) algebraic types.

Provides a cheap solution.
This trick is used in Coq automated inversion.
But it is no longer the case with inductive families, such as bounded natural numbers above, vectors, etc.

\section*{Other approaches}
```

Ad-hoc
0 (or FO) for (bounded) nats
The simplest thing to do in handcrafted approaches

```
match something-reducing-to-a-proof-of- \(\perp\) with end
Suspicious subsingleton elimination, should be avoided

Can be circumvented using loops

\section*{Other approaches}
```

Ad-hoc
0 (or FO) for (bounded) nats
The simplest thing to do in handcrafted approaches

```

\section*{General}
match something-reducing-to-a-proof-of- \(\perp\) with end
Suspicious subsingleton elimination, should be avoided
Can be circumvented using loops

\section*{Beating again Coq inversion: on dependent types \((1 / 3)\)}
```

Fixpoint half n (i: t n) (D: even i) {struct D} : nat :=
match i with
| FO => \lambda D, 0
FS i =>
match i return even (FS i) -> nat with
| FO => \lambda D, Fexc (even_even' D)
| FS i => \lambda D, S (half i ( }\pi\mathrm{ _even D))
end
end D.

```

\section*{Beating again Coq inversion: on dependent types \((1 / 3)\)}
```

Fixpoint half n (i: t n) (D: even i) {struct D} : nat :=
match i with
| FO => \lambda D, 0
| FS i =>
match i return even (FS i) -> nat with
| FO => \lambda D, Fexc (even_even' D)
| FS i => \lambda D, S (half i ( }\pi\mathrm{ _even D))
end
end D.

```
Definition \(\pi_{\text {_even }}\{\mathrm{n}\}\) \{i: t n\(\}\) (D: even (FS (FS i))) : even i :=
    match \(D\) in even \(j\) return \(\forall G\) : shape \(j\), even (fpred2 \(j G\) ) with
    | even_SS i e \(\Rightarrow \lambda G\), e
    | _ \(\quad=>\quad \lambda\), match \(G\) with end
    end \(I\).

\section*{Beating again Coq inversion: on dependent types (2/3)}

Definition pr2 n : sh \(n \rightarrow\) nat \(:=\)
match \(n\) with
\(\mid \mathrm{S}(\mathrm{S} x) \Rightarrow \lambda \mathrm{G}, \mathrm{x}\)
| _ \(\quad \Rightarrow \lambda G\), Fexc \(G\)
end.

Definition fpred2 \(\{\mathrm{m}\}(\mathrm{j}: \mathrm{t} \mathrm{m}): \forall \mathrm{G}:\) shape \(j, \mathrm{t}(\mathrm{pr} 2 \mathrm{~m}(\) shape_sh \(G)):=\) match \(j\) in \(t m\) return \(\forall G\) : shape \(j\), \(t\) (pr2 m (shape_sh G)) with
| FS j =>
match \(j\) in \(t m\) return \(\forall G: \operatorname{shape}(F S j), t(p r 2(S m)\) (shape_sh G)) wit | FS j \(\Rightarrow \lambda \mathrm{G}, \mathrm{j}\)
| \(\quad \Rightarrow \lambda G\), Fexc \(G\)
end
| _ \(\Rightarrow \lambda \mathrm{G}, \underline{\text { Fexc }} \mathrm{G}\) end.

\section*{Beating again Coq inversion: on dependent types \((3 / 3)\)}
```

Definition shape {n} (i: t n) : Prop :=
match i with FS (FS i) => \ | _ => \perp end.
Definition sh n : Prop :=
match n with S (S n) => T | _ => \perp end.
Lemma shape_sh_inter n (i : t n): shape i -> sh n.
Proof. destruct i as [ | n1 [ | n2 i]]; intro G; now case G. Qed.
(* Explicit term *)
Definition shape_sh n i: t n : shape i -> sh n :=
match i in t n return shape i -> sh n with
| FO => \lambda G, match G with end
| FS i =>
match i in t n return shape (FS i) -> sh (S n) with
| FO => \lambda G, match G with end
| FS i => \lambda G, I
end
end.

```

\section*{Embedded recursion}
- Examples :
- f91
- Paulson's normalisation of if-then-else expressions
- first-order unification
- \(\mathbb{G}\) is used inside \(\mathbb{D}\), hence has to be defined first

\section*{Variants of the Braga method}
- Accessibility binary relation instead of custom inductive domain predicate
- Simulating induction-recursion instead of reasoning on \(\mathbb{G}\) Inductive-recursive equations are derived from \(\mathbb{G}\) for a deterministic \(\mathbb{G}\)```

