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Coq material and references

Small inversions

http://home/jf/www/Proof/Small_inversions/2021/

The Braga method

https://github.com/DmxLarchey/The-Braga-Method

Dominique Larchey-Wendling and Jean-François Monin.

The Braga Method: Extracting Certified Algorithms from Complex Recursive
Schemes in Coq, chapter 8, pages 305–386.

In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.

Proof and Computation II: From Proof Theory and Univalent Mathematics to
Program Extraction and Verification.

World Scientific, September 2021.
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Topics

Unleashed recursion

Write partially/non terminating functional programs in Coq
To be extracted in OCaml exactly as desired

Key ingredient : small inversions

From V0 (2010-2013) to V1 (2017): V1 quite simple

Less simple in recursive programs, issue solved with V2 (2018-2020)

Beat Coq standard inversion (V0, V1) in case of dependent types
including with the Braga method (V3, 2021)

Empty inductive types and looping forever

Kind of basic case
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Recursive programs in Type Theory

Basically, only total functions as programs

Termination certificate needed at definition time

But termination may depend on partial correctness (and conversely)

Partially terminating functions make sense

Extraction: partial functions allowed in target language
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OCaml and Coq are

Functional programming languages

Functions as ordinary values

Recursion

Algebraic types

Static type-checking (and type inference)

Polymorphism
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Algebraic types

Construction

cartesian products = juxtaposition of n things

sums (disjoint unions) =
choice between m cases distinguished by a unique name (constructor)

Ideal for tree-like structures

Lists, binary (search) trees), etc.

Abstract Syntax Trees

Rule-based semantics

Proof-trees

Analyzed by a central weapon

PATTERN MATCHING on constructors
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OCaml and Coq: differences

In OCaml only

primitive data types (int, char, etc.)

imperative features

exceptions – inhabit any type

non terminating computations – inhabit any type

In Coq only

Computations on types; types have a type (called a universe)

Dependent types :
the type of an expression may depend on
the value of another expression

Example: lists having a given length

Algebraic types with zero cases (empty in the empty environment)

Special universe Prop dedicated to proof-trees
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Recursion in Coq (more generally: type theory)

Limited to structural recursion

in order to ensure termination

Not that serious

Not a theoretical issue (e.g., inductive definition of WF relations)

In practice: various tricks

Precisely the point of the Braga method
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Explicit/implicit terms

OCaml and Coq: explicit definitions

Explicit code for data types and functions

Coq only: interactive mode

step-by-step development of functions driven by types

Using tactics

interactive building... and interactive reading!

Hidden code, visible specification

Especially convenient when dealing with dependent types
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Special universe for assertions: Prop

Dedicated to Coq proof-trees

Proofs are native

t : P means that t is a proof of P

The “empty” type in Prop is just False (⊥)
Consistency forbids exceptions and non-terminating computations

A proof of P ⇒ Q is seen as a function (program) with
a proof of P in input and proof of Q in output.
Actual notation: P → Q

A proof of ∀x : A,Q x is seen as a function (program) with
a value x : A in input and providing a proof of Q x .

Remark Q : A→ Prop

Predicates are just dependent types
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Computations on proof trees

Lemma elimination

Lemma many_primes : ∀ n: nat, ∃ p: nat, n ≤ p ∧ prime p.

Proof of the statement

Theorem thm1 : some other statement

Proof using (many_primes 1960) and (many_primes 243)

Can be computed into

Theorem thm1 : some other statement

Proof including specific proofs

of ∃ p: nat, 1960 ≤ p ∧ prime p

and ∃ p: nat, 243 ≤ p ∧ prime p.
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Computations on proof trees

Provides meaning

to reasoning by case analysis

Not performed in practice

We don’t care

Excepted for reducing recursive functions

when the structurally decreasing argument is in Prop
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From OCaml to Coq and conversely: summary

Formal reasoning boils down to

data and computation
presented by proof trees

Coq provides a uniform framework dealing in the same way with

typed programs

proofs of properties
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From OCaml to Coq and conversely: extraction (1/2)

Coq

Fixpoint minlist l : list A (n: non_empty l) :

{y : A | mem y l ∧ ∀x, mem x l → x ≤ y} :=

match l with
| [] ⇒ something for this absurd case

| x :: l ⇒ code computing y and proofs

end

The proof tree needs not to be computed for computing the result y

OCaml
let rec minlist l : α list : α =

match l with
| [] -> assert false

| x :: l -> code computing y only

end

Famous use
CompCert
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From OCaml to Coq and conversely: extraction (2/2)

Separation between

“real” data (and fonctions on them)

(logical) knowledge or reasoning about them

No information leakage between Prop and Type

Statically ensured by a constraint on pattern-matching

Some debattable exceptions

Terms in Prop can be erased

From Coq to compilable functional languages (OCaml, Haskell,...)

Aka dead-code elimination, “never executed asserts”

An elegant way to provide correct-by-construction programs

J-F. Monin small inversions & recursion June 2021 15 / 71



The Braga method (first presented at Types’18, Braga)

In type theory (CIC++): only total functions

Termination certificate (TC) needed at definition time

Many possible types for the TC: any (recursive) inductive type
Issues to be considered before writing the function itself

Studying partial correctness properties is useful

before getting knowledge

or even in order to get knowledge on termination
Concrete example: first order unification

→ Egg and chicken problem

Partially terminating functions make sense

WF relation are then a too strong requirement

TC interpreted as a domain argument

Extraction: partial functions allowed in target language
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LISP viz ML style

LISP

if l = [] then 0

else f1 (head l) + f2 (tail l)

Proof obligations to ensure that head and tail are called with a
non-empty argument :(

ML

match l with
| [] -> 0

| h :: t -> f1 h + f2 t

Type checking does the job :)
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Easy dependent pattern matching

Generalization is mandatory

Definition deptyp n : Type :=

match n with
| O ⇒ bool

| 1 ⇒ nat

| _ ⇒ unit

end.

Definition fct1 n : deptyp n :=

match n return deptyp n with
| O ⇒ false

| 1 ⇒ 3

| _ ⇒ tt (* () in OCaml *)

end.

Definition fct2 n : deptyp (n*n) :=

match n*n as n2 return deptyp n2 with
| O ⇒ false

| 1 ⇒ 3

| _ ⇒ tt

end.
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Implicative dependent pattern-matching : Trojan horses

Trojan horse, general idea

Carry information (here: G) to be revealed after coming into the place.
The type of G (for guard) depends on the case.

Definition is_cons l : Prop :=

match l with :: ⇒ > | _ ⇒ ⊥ end.

Definition head l : is_cons l → X :=

match l with
| x :: t ⇒ λG, x

| _ ⇒ λG, match G with end
end.
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LISP (terrible) style with embedded proofs

Definition is_nil (l : list X) : bool :=

match l with
| [] ⇒ true

| _ :: _ ⇒ false

end.

Lemma nil_false : is_nil [] = false -> ⊥.

Definition head (l : list X) : is_nil l = false -> X :=

match l with
| x :: l ⇒ λ G, x

| _ ⇒ λ G, match nil_false G with end
end.

Definition LISP_style l : nat :=

(if is_nil l as b return (is_nil l = b -> nat)

then λ (pre : is_nil l = true) , 0

else λ (pre : is_nil l = false),

f1 (head l pre) + f2 (tail l pre)

) eq_refl.
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Universal realizer

Usual universal realizer: exception

let univ : α = assert false

Another universal realizer: loop

let rec loop x = loop x
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Loops in an inconsistent environment in Coq

Section sec_absurd.

Variable X : Type.

Variable f: ⊥.

(* An arbitrary inductive proposition *)

Definition P: Prop := >.

Let Fixpoint loop (x:P) : X := loop (match f with end).

Hypothesis p: P.

Definition Floop_P : X := loop p.

End sec_absurd.
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Loops with an absurd parameter in Coq

The same in 2 lines (with > for P)

Definition Floop_T (X: Type) (f: ⊥) : X :=

(fix loop (_:>) := loop (match f with end)) I.

The same in 2 shorter lines (with ⊥ for P)

Definition Floop_F (X: Type) : ⊥ -> X :=

fix loop f := loop (match f with end).

An additional concrete parameter for better extraction

Definition Floop (X: Type) : ⊥ -> X :=

(fix loop t (f:⊥) := loop tt (match f with end)) tt.
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Removing loops at extraction

Definition Fexc {X: Type} (f: ⊥) : X :=

match Floop Empty_set f with end.

Empty set = empty informative inductive type

Floop Empty set f has type Empty set

At Coq level, no leakage from Prop to Type

match whatever with end

extracted at OCaml level as assert false

Floop (params) considered as dead code → canceled
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Inversion, simple example

Inductively defined semantics
Inductive eval : te -> val -> Prop :=

| E_Const : forall n,

eval (Te_const n) (Nval n)

| E_Plus : forall t1 t2 n1 n2,

eval t1 (Nval n1) ->

eval t2 (Nval n2) ->

eval (Te_plus t1 t2) (Nval (n1 + n2)).

Two goals

e : eval (Te_plus (Te_const 1) (Te_const 2)) v

==============================================

v = Nval 3

e : eval (Te_div0 (Te_const 1)) v

=================================

3 = 5
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Inversion

Purpose

Extract the information contained in a hypothesis H of type T

where T is an inductive relation

with some inductive arguments

Expectations

Only relevant cases (constructors) for T are kept

In the remaining cases, decompose H into its components

Essentially : (subtle) case analysis on H

Simultaneous case analysis on H and its arguments

game on dependent pattern-matching
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Inversion technologies

Standard tactic of Coq: fully automated [Cornes & Terrasse, 1995 ; Murthy?]

Improved over the years, very impressive black box

lack of control

big underlying terms

failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin & Shi 2013]

Flexible approach with several variants

Developed for a big experiment with CompCert

Attempts towards automation (Braibant, Boutillier)

Made clearer with recent unpublished improvements

Other improvements needed for the Braga method
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A real example with CompCert C semantics (2013)

H:eval_expr (Genv.globalenv prog_adc) e m RV

(Ecall (Evalof (Evar copy_StatusRegister T14) T14)

(Econs

(Eaddrof

(Efield (Ederef (Evalof (Evar proc T3) T3) T6)

adc_compcert.cpsr T7) T8)

(Econs

(Ecall (Evalof (Evar spsr T15) T15)

(Econs (Evalof (Evar proc T3) T3) Enil) T8)

Enil))

T12) t m’ a’

==========================================================

proc_state_related m’ e st’

inv H. inv H4. inv H9. inv H5. inv H4. inv H5.

inv H15. inv H4. inv H5. inv H14. inv H4. inv H3.

inv H15. inv H5. inv H4. inv H5. inv H21. inv H13.

...
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Practical issues with Coq standard inversion

Behavior not easy to predict
number of cases, number and type of components

Many additional equalities to be rewritten

Scripts depend on the versions of Coq
(and of CompCert for the previous case study)

Heavy machinery generating gigantic underlying proof terms

Underlying reasoning somewhat mysterious

Fails in situations with dependent types
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Small Inversions V0: absurd Cases

e : eval (Te_div0 (Te_const 1)) v

=================================

3 = 5

pose (diag t :=

match t with

| Te_div0 (Te_const 1) => 3 = 5

| _ => True

end).

change (diag (Te_div0 (Te_const 1))).

destruct e; simpl; exact I.
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A more modular variant

Definition inv_eval_1_div0 t v (e: eval t v) :=

let diag t :=

match t with

| Te_div0 n => ∀ X: Prop, X

| _ => True

end

in match e in eval t v return diag t with

| E_Const n => I

| E_Plus _ _ n1 n2 H1 H2 => I

end.

e : eval (Te_div0 (Te_const 1)) v

=================================

3 = 5

apply (inv_eval_1_div0 e).
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Small Inversions V0: diagonalization function

yields the premises of focused constructor

independent from specific conclusion

takes bindings into account

For constructor E Plus:

diag t v := match t with

| Te_plus tc1 tc2 =>

∀ X: te -> Prop,

(∀ n1 n2, eval tc1 (Nval n1) ->

eval tc2 (Nval n2) ->

X (Nval (n1 + n2))) -> X v

| _ => True

end

No additional equality
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Small inversions V1, with auxiliary inductive types

Receipe

Given an inductive relation rel : Tx → Ty1 → ... Prop

with “input” argument x : Tx, define:

For each input case (constructor C) in Tx,
an auxiliary inductive relation of type Ty1 → ... Prop

by copy and paste of relevant telescopes of rel

No recursion

A dispatch function rel’ from x : Tx to Ty1 → ... Prop

by pattern matching on x

A trivial proof rel rel’ : rel implies rel’

Usage

Given a hypothesis R : rel (C...) expr 1...

invoke a pattern matching on rel rel’ R

Boils down to the relevant aux. inductive relation corresponding to (C...)
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Small inversion V1, for dependent (data) types

Complement of receipe

When R occurs as an argument in the goal (usually happens for dependent
data types rather than relations), we need also the converse rel’ rel of
rel rel’ (trivial as well), and a proof of rel’ rel (rel rel’ R) = R.

Then rewrite the occurrences of R with rel’ rel (rel rel’ R) before
the pattern-matching on rel rel’ R.

To be completed, or see script:
http://www-verimag.imag.fr/~monin/Proof/Small_inversions/2021/
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Small inversion V1, example (1/4)

Inductive eval : te → val → Prop :=

| E_Const : ∀ n,

eval (Te_const n) (Nval n)

| E_Plus : ∀ t1 t2 n1 n2,

eval t1 (Nval n1) → eval t2 (Nval n2) →
eval (Te_plus t1 t2) (Nval (n1 + n2)).

Inductive eval_Const’ n : val → Prop :=

| E_Const’ : eval_Const’ n (Nval n).

Inductive eval_Plus’ t1 t2 : val → Prop :=

| E_Plus’ : ∀ n1 n2,

eval t1 (Nval n1) → eval t2 (Nval n2) →
eval_Plus’ t1 t2 (Nval (n1 + n2)).

Definition eval’ : te → val → Prop := fun t =>

match t with
| Te_const n => eval_Const’ n

| Te_plus t1 t2 => eval_Plus’ t1 t2

end.
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| Te_const n => eval_Const’ n

| Te_plus t1 t2 => eval_Plus’ t1 t2

end.
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Small inversion V1, example (2/4)

Definition eval_eval’ {t v} : eval t v → eval’ t v.

Proof. intro e; destruct e; constructor; assumption. Qed.

Definition eval_eval’_bavard {t v} : eval t v → eval’ t v := λ e,

match e in eval t0 v0 return eval’ t0 v0 with
| E_Const n (* t0 := Te_const n, v0 := Nval n *)

=> E_Const’ n : (eval_Const’ n) (Nval n)

| E_Plus t1 t2 n1 n2 e1 e2 (* t0 := Te_plus t1 t2, v0 := Nval (n1 + n2) *)

=> E_Plus’ t1 t2 n1 n2 e1 e2 : (eval_Plus’ t1 t2) (Nval (n1 + n2))

end.
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Small inversion V1, example (3/4)

Inductive eval_Const’ n : val → Prop :=

| E_Const’ : eval_Const’ n (Nval n).

Inductive eval_Plus’ t1 t2 : val → Prop :=

| E_Plus’ : ∀ n1 n2,

eval t1 (Nval n1) → eval t2 (Nval n2) →
eval_Plus’ t1 t2 (Nval (n1 + n2)).

e : eval (Te_const 1) v

=======================

v = Nval 1

destruct (eval_eval’ e).

e : eval (Te_plus (Te_const 1) (Te_const 0)) v

==============================================

v = Nval 1

destruct (eval_eval’ e) as [n1 n2 e1 e2].

No additional equality
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Small inversion V1, example (4/4)

Inductive eval_Const_1_2 n : nat → Prop :=

| E_Const’’ : eval_Const_1_2 n n.

Inductive eval_Plus_1_2 t1 t2 : nat → Prop :=

| E_Plus’’ : ∀ n1 n2,

eval t1 (Nval n1) → eval t2 (Nval n2) ->

eval_Plus_1_2 t1 t2 (n1 + n2).

Definition eval_1_2 : te → val → Prop := fun t v =>

match t, v with

| Te_const c, Nval n => eval_Const_1_2 c n

| Te_plus t1 t2, Nval n => eval_Plus_1_2 t1 t2 n

| _, _ => False

end.

Definition eval_eval_1_2 {t v} : eval t v → eval_1_2 t v :=
fun e =>

match e with

| E_Const n => E_Const’’ n

| E_Plus t1 t2 n1 n2 e1 e2 => E_Plus’’ t1 t2 n1 n2 e1 e2

end.
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Small inversions V1, how/why it works

Separation of concerns

The usually complicated pattern-matching working on R is
decomposed and isolated in rel’ and rel rel’

Pattern-matching is very powerful in Type Theory

Relevant bindings
automatically performed in the course of pattern-matching

A single pattern-matching
= multiple simultaneous rewrite steps for free

No additional rewrite in scripts

Using equalities and rewrite = complications + steps backwards

J-F. Monin small inversions & recursion June 2021 39 / 71



Small inversions V1, how/why it works

Separation of concerns

The usually complicated pattern-matching working on R is
decomposed and isolated in rel’ and rel rel’

Pattern-matching is very powerful in Type Theory

Relevant bindings
automatically performed in the course of pattern-matching

A single pattern-matching
= multiple simultaneous rewrite steps for free

No additional rewrite in scripts

Using equalities and rewrite = complications + steps backwards

J-F. Monin small inversions & recursion June 2021 39 / 71



Coq inversion viz small inversions V1 (1/2)

∀ v ,P v -> eval (Te_const 1) v -> v = Nval 1.

Small inversions V1
(fun (v : val) (p : P v) (e : eval (Te_const 1) v) =>

(let e0 : eval_1 (Te_const 1) v := eval_eval_1 e in

match e0 in (eval_Const_1 _ v0) return (eval (Te_const 1) v0 -> P v0 -> v0 = Nval 1) with

| E_Const’ _ => fun (_ : eval (Te_const 1) (Nval 1)) (_ : P (Nval 1)) => eq_refl

end e) p)

Coq inversion (2021)
(fun (v : val) (_ : P v) (e : eval (Te_const 1) v) =>

let H : Te_const 1 = Te_const 1 -> v = v -> v = Nval 1 :=

match e in (eval t v0) return (t = Te_const 1 -> v0 = v -> v = Nval 1) with

| E_Const n =>

fun (H : Te_const n = Te_const 1) (H0 : Nval n = v) =>

(fun H1 : Te_const n = Te_const 1 =>

let H2 : n = 1 :=

f_equal (fun e0 : te => match e0 with

| Te_const n0 => n0

| Te_plus _ _ => n

end) H1 in

(fun H3 : n = 1 =>

let H4 : n = 1 := H3 in

eq_ind_r (fun n0 : nat => Nval n0 = v -> v = Nval 1)

(fun H5 : Nval 1 = v =>

let H6 : Nval 1 = v := H5 in

eq_ind (Nval 1) (fun v0 : val => v0 = Nval 1) eq_refl v H6) H4) H2) H H0
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Coq inversion viz small inversions V1 (2/2)

(fun (v : val) (_ : P v) (e : eval (Te_const 1) v) =>

let H : Te_const 1 = Te_const 1 -> v = v -> v = Nval 1 :=

match e in (eval t v0) return (t = Te_const 1 -> v0 = v -> v = Nval 1) with

| E_Const n =>

fun (H : Te_const n = Te_const 1) (H0 : Nval n = v) =>

(fun H1 : Te_const n = Te_const 1 =>

let H2 : n = 1 :=

f_equal (fun e0 : te => match e0 with

| Te_const n0 => n0

| Te_plus _ _ => n

end) H1 in

(fun H3 : n = 1 =>

let H4 : n = 1 := H3 in

eq_ind_r (fun n0 : nat => Nval n0 = v -> v = Nval 1)

(fun H5 : Nval 1 = v =>

let H6 : Nval 1 = v := H5 in

eq_ind (Nval 1) (fun v0 : val => v0 = Nval 1) eq_refl v H6) H4) H2) H H0

| E_Plus t1 t2 n1 n2 H H0 =>

fun (H1 : Te_plus t1 t2 = Te_const 1) (H2 : Nval (n1 + n2) = v) =>

(fun H3 : Te_plus t1 t2 = Te_const 1 =>

let H4 : False :=

eq_ind (Te_plus t1 t2)

(fun e0 : te => match e0 with

| Te_const _ => False

| Te_plus _ _ => True

end) I (Te_const 1) H3 in

False_ind (Nval (n1 + n2) = v -> eval t1 (Nval n1) -> eval t2 (Nval n2) -> v = Nval 1)

H4) H1 H2 H H0

end in

H eq_refl eq_refl)
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Small inversions from V1 to full V0

Full V0 can be seen as a purely functional translation of V1

Continuation Passing Style / polymorphic lambda-calculus
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Beating Coq inversion: on dependent types (1/4)

Bounded natural numbers – or finite sets t n of size n

Inductive t : nat → Set :=

| FO {n} : t (S n)

| FS {n} : t n → t (S n).

Even bounded numbers
Inductive even : forall {n}, t n → Prop :=

| even_0 {n} : even (@FO n)

| even_SS {n} (i: t n) : even i → even (FS (FS i)).

Issues on lemmas such as
∀ n (i: t n), even (FS (FS i)) → even i.

∀ n m (i: t n) (j: t m),

even (Fplus i j) → even i → even j.
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Beating Coq inversion: on dependent types (2/4)

Inductive even0: Prop :=

| even_0’ : even0.

Inductive evenSS {n} (i: t n) : Prop :=

| even_SS’ : even i → evenSS i.

Definition even’ : ∀ {n}, t n → Prop := fun n i =>

match i with
| FO => even0

| FS (FS i) => evenSS i

| _ => ⊥
end.

Definition even_even’ {n} {i: t n} (e : even i) : even’ i :=
match e with
| even_0 => even_0’

| even_SS i e => even_SS’ i e

end.
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Beating Coq inversion: on dependent types (2/4)
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Beating Coq inversion: on dependent types (3/4)

Fixpoint lift1 m {n} (i : t n) : t (m + n) :=

match i in t n return t (m + n) with
| FO => t_n_Sm FO

| FS i => t_n_Sm (FS (lift1 m i)

end.

Fixpoint Fplus {n m : nat} (i : t n) (j : t m) : t (n + m) :=

match i with
| @FO n => lift1 (S n) j

| FS i => FS (Fplus i j)

end.
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Beating Coq inversion: on dependent types (4/4)

i : t n ; j : t m

eij : even (FS (FS (Fplus i j)))

ei : even i

IHei : even (Fplus i j) → even j

Coq inversion eij; subst (* FAILURE! *)

i0 : t (n + m)

H1 : even i0

H0 : existT (fun n : nat => t n) (n + m) i0 =

existT (fun n : nat => t n) (n + m) (Fplus i j)

============================

even j

destruct (even even’ eij) as [eij’]

eij’ : even (Fplus i j)

============================

even j
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============================

even j

destruct (even even’ eij) as [eij’]

eij’ : even (Fplus i j)

============================

even j
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Coq inversion viz small inversions V1 (1/4)

Small inversions V1
(fun (n m : nat) (i : t n) (j : t m) (eij : even (Fplus i j)) (ei : even i) =>

even_ind (fun (n0 : nat) (i0 : t n0) => even (Fplus i0 j) -> even j)

(fun (n0 : nat) (eij0 : even (Fplus FO j)) => even_lift1 (S n0) eij0)

(fun (n0 : nat) (i0 : t n0) (ei0 : even i0) (IHei : even (Fplus i0 j) -> even j)

(eij0 : even (Fplus (FS (FS i0)) j)) =>

let e : even’ (FS (FS (Fplus i0 j))) := even_even’ eij0 in

match e with

| even_SS’ _ eij’ => _

end) n i ei eij)

Coq inversion (2021)
(fun (n m : nat) (i : t n) (j : t m) (eij : even (Fplus i j)) (ei : even i) =>

even_ind (fun (n0 : nat) (i0 : t n0) => even (Fplus i0 j) -> even j)

(fun (n0 : nat) (eij0 : even (Fplus FO j)) => even_lift1 (S n0) eij0)

(fun (n0 : nat) (i0 : t n0) (ei0 : even i0) (IHei : even (Fplus i0 j) -> even j)

(eij0 : even (Fplus (FS (FS i0)) j)) =>

let H :

S (S (n0 + m)) = S (S (n0 + m)) ->

existT (fun n1 : nat => t n1) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) =

existT (fun n1 : nat => t n1) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) ->

even j :=

match

eij0 in (@even n1 t0)

return

(n1 = S (S (n0 + m)) ->

existT (fun n2 : nat => t n2) n1 t0 =
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Coq inversion viz small inversions V1 (2/4)

existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) ->

even j)

with

| @even_0 n1 =>

fun (H : S n1 = S (S (n0 + m)))

(H0 : existT (fun n2 : nat => t n2) (S n1) FO =

existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j)))) =>

(fun H1 : S n1 = S (S (n0 + m)) =>

let H2 : n1 = S (n0 + m) :=

f_equal (fun e : nat => match e with

| 0 => n1

| S n2 => n2

end) H1 in

(fun H3 : n1 = S (n0 + m) =>

let H4 : n1 = S (n0 + m) := H3 in

eq_ind_r

(fun n2 : nat =>

existT (fun n3 : nat => t n3) (S n2) FO =

existT (fun n3 : nat => t n3) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) ->

even j)

(fun

H5 : existT (fun n2 : nat => t n2) (S (S (n0 + m))) FO =

existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) =>

let H6 : False :=

eq_ind (existT (fun n2 : nat => t n2) (S (S (n0 + m))) FO)

(fun e : n2 : nat & t n2 =>

let (x, t0) := e in match t0 with

| FO => True

| FS _ => False

end) I

(existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j)))) H5 in

False_ind (even j) H6) H4) H2) H H0
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Coq inversion viz small inversions V1 (3/4)

| @even_SS n1 i1 H =>

fun (H0 : S (S n1) = S (S (n0 + m)))

(H1 : existT (fun n2 : nat => t n2) (S (S n1)) (FS (FS i1)) =

existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j)))) =>

(fun H2 : S (S n1) = S (S (n0 + m)) =>

let H3 : n1 = n0 + m :=

f_equal (fun e : nat => match e with

| S (S n3) => n3

| _ => n1

end) H2 in

(fun H4 : n1 = n0 + m =>

(let H5 : n1 = n0 + m := H4 in

eq_ind_r

(fun n2 : nat =>

forall i2 : t n2,

existT (fun n3 : nat => t n3) (S (S n2)) (FS (FS i2)) =

existT (fun n3 : nat => t n3) (S (S (n0 + m))) (FS (FS (Fplus i0 j))) ->

even i2 -> even j)

(fun (i2 : t (n0 + m))

(H6 : existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS i2)) =

existT (fun n2 : nat => t n2) (S (S (n0 + m))) (FS (FS (Fplus i0 j))))

=>

let H7 :

existT (fun n2 : nat => t n2) (n0 + m) i2 =

existT (fun n2 : nat => t n2) (n0 + m) (Fplus i0 j) :=

f_equal

(fun e : n2 : nat & t n2 =>

let (x, t0) := e in

match t0 with

| FO => existT (fun n3 : nat => t n3) (n0 + m) i2

| FS FO => existT (fun n4 : nat => t n4) (n0 + m) i2

| FS (@FS n3 t2) => existT (fun n4 : nat => t n4) n3 t2
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Coq inversion viz small inversions V1 (4/4)

end) H6 in

(fun

(H8 : existT (fun n2 : nat => t n2) (n0 + m) i2 =

existT (fun n2 : nat => t n2) (n0 + m) (Fplus i0 j))

(H9 : even i2) =>

_ ) H7) H5) i1)

H3) H0 H1 H

end in

H eq_refl eq_refl) n i ei eij)
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Small inversions, summary

Until this slide

V0 (2010-2013): light but headache maker
pseudo-impredicative auxiliary definition pattern-matching on types

V1: easier
auxiliary inductive + pattern-matching

Using inversions in recursive programs, next slides

Issue solved with V2 & V3: (pattern-matching)n
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Recursive programs

Number of steps

Given

A function g : X → X

A halting test function b : X → bool

An initial value x : X

Compute the minimum n such that b (gn x) = true

let rec ns x = if b x then 0 else 1 + ns (g x)

let rec nsa x n = if b x then n else nsa (g x) (1 + n)

Equivalent ?

Does nsa x 0 always return the same value as ns x?
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Looks ridiculously impossible in Coq

Write Coq programs for ns and nsa

Such that they are extracted exactly as expected

Reason about them

Issue

No clue about the (identical) termination of ns and nsa
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Braga method, 1st idea : inductive domain + projections

Inductive characterization of the domain of ns and nsa

Inductive Dns (x: X) : Prop :=

| Dns_tr : b x = true → Dns x

| Dns_fa : b x = false → Dns (g x) → Dns x.

Target

Fixpoint fct x (D : Dns x) {struct D} : N :=

match b x with

| true ⇒ . . .

| false ⇒ . . . fct (g x) (proj D) . . .

end.

With (proj D) < D
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Requirement on the projection

Inductive characterization of the domain of ns and nsa

Inductive Dns (x: X) : Prop :=

| Dns_tr : b x = true → Dns x

| Dns_fa : b x = false → Dns (g x) → Dns x.

(proj D) defined for all x such that b x = false

Definition prj_Dns x (E: b x = false) (D: Dns x): Dns (g x) :=

match D with

| Dns_tr _ E’ => match false_true E E’ with end
| Dns_fa _ _ D => D

end.

Lemma false_true x : x = false -> x = true -> ⊥.
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Recursive programs using Trojan horses

Fixpoint ns x (D: Dns x) : nat :=

match b x as bx return b x = bx → _ with
| true => λ E, 0

| false => λ E, S (ns (g x) (prj_Dns E D))

end eq_refl.

Fixpoint nsa x (n: nat) (D: Dns x) : nat :=

match b x as bx return b x = bx → _ with
| true => λ E, n

| false => λ E, nsa (g x) (S n) (prj_Dns E D)

end eq_refl.
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2nd idea of the Braga method: input-output graph

Inductive Gns (x: X) : nat → Prop :=

| in_grns_0 : b x = true → x 7−→ns 0

| in_grns_1 o: b x = false → g x 7−→ns o → x 7−→ns S o

where "x 7−→ns o" := (Gns x o).

Fixpoint ns_pwc x (D: Dns x) : {o | x 7−→ns o}.
Proof. refine(

match b x as bx return b x = bx → _ with
| true => λ E, exist _ 0 _

| false => λ E, let (o,Go) := ns_pwc (g x) (prj_Dns E D)

in exist _ (S o) _

end eq_refl).

- constructor 1; exact E.

- constructor 2; assumption.
Defined.
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Remarks about inversion

prj_Dns is a special case of inversion

The previous inversion technique does not provide structurally smaller
terms : the different components of a constructor have to be
recovered one by one

It can still be used here, in order to prove that Gns is deterministic

Coq automated inversion provide structurally smaller terms!
...when it works

J-F. Monin small inversions & recursion June 2021 58 / 71



Remarks about inversion

prj_Dns is a special case of inversion

The previous inversion technique does not provide structurally smaller
terms : the different components of a constructor have to be
recovered one by one

It can still be used here, in order to prove that Gns is deterministic

Coq automated inversion provide structurally smaller terms!
...when it works

J-F. Monin small inversions & recursion June 2021 58 / 71



Braga method for LISP / ML style programs

The previous example (ns and nsa) happens to be closer to the LISP
style. The guard used as a Trojan horse is typically an equality to be used
to get ⊥ in absurd cases.

For ML style programs, we can instead use Trojan horses
based on ⊥ and >, which can be directly exploited.
See below a typical programming pattern.
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Reasoning on fold left

Functional specification

let rec foldl_ref l = match l with (* fake *)

| [] → b0

| u +: z → f (foldl_ref u) z

Inductive specification

u 7−→fl b

------------- --------------------

[] 7−→fl b0 u +: z 7−→fl f b z
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Reasoning on fold left

Specification

let rec foldl_ref l = match l with (* fake *)

| [] → b0

| u +: z → f (foldl_ref u) z

Regular program

type α lr = Nilr | Consr of α list ∗ α

let rec foldl_ref l = match l2r l with
| Nilr → b0

| Consr (u, z) → f (foldl_ref u) z
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Braga version

Fixpoint foldl_pwc l (D : Dlz l) : {b | l 7−→fl b}.
Proof.

gen_help l G_foldl ; apply up_llP in D; revert D.

refine ( match l2r l with
| Nilr ⇒ λD T, exist _ b0 _

| Consr u z ⇒ λD T,

let (b, Cb ) := foldl_pwc u (πDlz D)

in exist _ (f b z) _

end).
- apply T ; constructor 1.

- apply T ; constructor 2; exact Cb .

Qed.
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Correctness of standard fold left

Easy

Use foldl f b (u +: z) = f (foldl f b u) z

No use of associativity of append
(append is not in the vocabulary)
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Projection – Common programming pattern for ML style programs

Dlz u Dlr (l2r l)

--------- --------------- ------------

Dlr Nilr Dlr (Consr u z) Dlz l

Projection for second rule

Let π_Dlr {u z} (D: Dlr (Consr u z)) : Dlz u :=

match D in Dlr r return
let g := match r with Consr u z => > | _ => ⊥ end in
let u := match r with Consr u z => u | _ => u end in
g → Dlz u with

| Dlr_Consr u z D => λ G, D

| _ => λ G, match G with end (* < D as well *)

end I (* proof of > *) .

The guard G:g filters the relevant shape.
The u component in the type of D has to be recovered
from r in the general type of D.

The original u is just a light suitable default value for
this computation.
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Limitation of the previous trick

Need for a default value in functions such as pred, tail,
or the inlined function of previous slide:

let u := match r with Consr u z => u | _ => u end in

Fortunately, something like the original u on previous slide is always
available when dealing with usual (non-dependent) algebraic types.

Provides a cheap solution.

This trick is used in Coq automated inversion.

But it is no longer the case with inductive families, such as bounded
natural numbers above, vectors, etc.
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Other approaches

Ad-hoc

O (or FO) for (bounded) nats
The simplest thing to do in handcrafted approaches

General

match something-reducing-to-a-proof-of-⊥ with end

Suspicious subsingleton elimination, should be avoided

Can be circumvented using loops
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Beating again Coq inversion: on dependent types (1/3)

Fixpoint half n (i: t n) (D: even i) {struct D} : nat :=

match i with

| FO => λ D, 0

| FS i =>

match i return even (FS i) -> nat with

| FO => λ D, Fexc (even_even’ D)

| FS i => λ D, S (half i (π even D))

end

end D.

Definition π even {n} {i: t n} (D: even (FS (FS i))) : even i :=

match D in even j return ∀ G: shape j, even (fpred2 j G) with

| even_SS i e => λ G, e

| _ => λ G, match G with end

end I.
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Beating again Coq inversion: on dependent types (2/3)

Definition pr2 n : sh n -> nat :=

match n with

| S (S x) => λ G, x

| _ => λ G, Fexc G

end.

Definition fpred2 {m} (j: t m) : ∀ G : shape j, t (pr2 m (shape_sh G)) :=

match j in t m return ∀ G: shape j, t (pr2 m (shape_sh G)) with

| FS j =>

match j in t m return ∀ G: shape (FS j), t (pr2 (S m) (shape_sh G)) with

| FS j => λ G, j

| _ => λ G, Fexc G

end

| _ => λ G, Fexc G

end.
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Beating again Coq inversion: on dependent types (3/3)

Definition shape {n} (i: t n) : Prop :=

match i with FS (FS i) => > | _ => ⊥ end.

Definition sh n : Prop :=

match n with S (S n) => > | _ => ⊥ end.

Lemma shape_sh_inter n (i : t n): shape i -> sh n.

Proof. destruct i as [ | n1 [ | n2 i]]; intro G; now case G. Qed.

(* Explicit term *)

Definition shape_sh n i: t n : shape i -> sh n :=

match i in t n return shape i -> sh n with

| FO => λ G, match G with end

| FS i =>

match i in t n return shape (FS i) -> sh (S n) with

| FO => λ G, match G with end

| FS i => λ G, I

end

end.
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Embedded recursion

Examples :

f91
Paulson’s normalisation of if-then-else expressions
first-order unification

G is used inside D, hence has to be defined first

J-F. Monin small inversions & recursion June 2021 70 / 71



Variants of the Braga method

Accessibility binary relation
instead of custom inductive domain predicate

Simulating induction-recursion instead of reasoning on G
Inductive-recursive equations are derived from G for a deterministic G
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