
Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion) 1

Designing a CPU model:
from a pseudo-formal document to fast code

Frédéric Blanqui, Claude Helmstetter, Vania Joloboff,
Jean-François Monin, Xiaomu Shi

INRIA - LIAMA - FORMES

http://formes.asia/

Saturday, January 22, 2011

http://www.inrialpes.fr/vasy
http://www.inrialpes.fr/vasy

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Functional simulators of Systems-on-Chip

Functional full-system models (instruction-accurate):
 allows fast simulation of the real embedded software
 allows verification of system-level properties
 used as golden model for hardware verification
 loosely timed, because of low level code using “timeouts”

Abstraction level: functional full-system models are:
 less abstract than “Software Development Kit”, used for the

development of applications (e.g., IPhone SDK)
• use native simulation => cannot simulate low level code

 more abstract than time-accurate models, used for performance
evaluation

• more accurate => simulations are slower

2

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The open-source SimSoC simulator

 SimSoC: Simulator of Systems-on-Chip
 Based on SystemC and OSCI TLM-2.0.1 (Loosely-Timed level)
 Library of component models

• many processors models: ARM, PowerPC, MIPS (with GDB servers)
• Bus, memory, timers, interrupt controllers, UARTs, Ethernet, etc

 Many platforms (complete enough to boot Linux):
• 2 models of SoC based on ARMv5
• 1 model of SoC based on PowerPC (dual-core)

 Distributed as open-source
• libraries under LGPL license
• programs under GPL license

http://gforge.inria.fr/projects/simsoc/

3

Saturday, January 22, 2011

http://gforge.inria.fr/simsoc/
http://gforge.inria.fr/simsoc/

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Development of simulators

Developing a simulator is costly: ~50.000 lines of code
 Some parts can be reused (if norms are respected)
Processors are the most complicated parts

 more and more instructions in new instructions sets
 bottleneck for simulation speed, so optimizations are needed

4

Bus: 260 lines of code

Processor
> 10,000 LoC

Memory
400 LoC

UART
800 LoC

Ethernet card
2600 LoC

Interrupt controller
600 LoC

Serial Flash
600 LoC

Timers
360 LoC

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Generation of an ARMv6 ISS

The code of an Instruction Set Simulator (ISS) is repetitive
1st idea: generate the code of the ISS from an in-memory

description
 Apply transformations and analysis before code generation

Reference manuals contains pseudo-formal parts:
 The semantics of each instruction is described by pseudo-code
 Instruction syntax, instruction encoding

2nd idea: extract automatically the formal description
from the reference manual

Application to the ARMv6 instruction set
 Note: SimSoC provides an hand-written ARMv5 ISS

5

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

6

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The pseudo-formal parts of the manual

Many parts of the instruction descriptions can be extracted

Other parts (English text) are either:
 ignored (e.g., examples, instruction usage, etc)
 interpreted manually and injected into the OCaml analyser and

generator (e.g., validity constraints such as “W ⇒ Rn != PC”)

 interpreted manually and included in C/C++ libraries
(e.g., saturated arithmetic, memory model, etc)

7

 DDI 01001 ARM Instructions

ARM DDI 0100I Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-11

Operation

if ConditionPassed(cond) then
if L == 1 then

LR = address of the instruction after the branch instruction
PC = PC + (SignExtend_30(signed_immed_24) << 2)

Usage

Use BL to perform a subroutine call. The return from subroutine is achieved by copying R14 to the PC.
Typically, this is done by one of the following methods:

• Executing a BX R14 instruction, on architecture versions that support that instruction.

• Executing a MOV PC,R14 instruction.

• Storing a group of registers and R14 to the stack on subroutine entry, using an instruction of the form:

STMFD R13!,{<registers>,R14}

and then restoring the register values and returning with an instruction of the form:

LDMFD R13!,{<registers>,PC}

To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) must:

1. Form the base address for this branch instruction. This is the address of the instruction, plus 8. In
other words, this base address is equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always a multiple
of four, because all ARM instructions are word-aligned.

3. If the byte offset is outside the range 33554432 to 33554428, use an alternative code-generation
strategy or produce an error as appropriate.

4. Otherwise, set the signed_immed_24 field of the instruction to bits{25:2] of the byte offset.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

ARM Instructions

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100I

A4.1.5 B, BL

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.

2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately 32MB (see Usage on
page A4-11 for precise range).

Architecture version

All.

Exceptions

None.

31 28 27 26 25 24 23 0

cond 1 0 1 L signed_immed_24

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Automatic extraction

Automatic extraction avoids a manual step
 manual translation could introduce errors
 the extractor code is ad hoc but its development is simple

 Issues
 the pseudo-code contains ambiguities

• type information
• ordering of side-effects
• exceptions not described in the code

 the pseudo-code contains bugs (in document ref. DDI 01001)
• syntax errors (e.g., unclosed parenthesis)
• code not conform with the textual description

(e.g., condition check missing in CLZ,
 wrong assignment at the end of LDRBT)

8

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Transformations and optimizations

Transformations fixing ambiguities
 Transform “CarryFrom(A+B)” in “CarryFromAdd(A,B)”
 Correct the addressing mode of SRS and RFE
 Move the base register write-back to a proper place

Optimizations
 Flattening: given some instructions I1,..,In and the related

addressing modes M1,..,Mk, we generate n×k instructions IiMj
• Append the code, merge the binary encoding and the assembly syntax

 Pre-computation of static sub-expression
• some sub-expressions can be computed at decode-time instead of

execution time (e.g., “NbOfSetBitsIn(reg_list)*4”)

 Specialize instructions, using feedback from the simulator

9

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Instruction specialization

An ARM instruction such as “ADD”,
 checks the condition field, to decide whether the instruction

must be executed or skipped
 checks the S bit, to decide whether the flags must be updated

Most of the time (as known by running testbeds):
 “ADD” is used with “S=false” and “condition=always”

A specialized instruction “ADD_S0_Always” is generated
 the AST is duplicated
 the condition check is removed
 S is replaced by false
 That’s simple using OCaml

10

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

11

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Generation of a fast ISS

Generated components:
 The types used to store an instruction after decoding.
 Two decoders: one for the main ARM instruction set and another

for the Thumb instruction set.
 The semantics functions, corresponding to the extracted and

optimized pseudo-code.
 The ASM printers, used to print debug traces.
 The “may_branch” predicate that detects basic block terminators

(i.e., branch instructions).

12

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

The “may_branch” predicate

Fast simulation requires to recognize “basic blocks”
 basic block = sequence of instructions always executed in a row

(i.e., only the last instruction may be a branch)

ARM architecture: PC = the general purpose register R15
 => there are a lot of branch instructions (e.g., ADD R15, R0, #8)
 an “ADD <rD>, <Rn>, <oper.>” instruction may branch if “d==15”

For each instruction, the code is analyzed to deduce the
“may_branch” condition (e.g., “d==15”)
 Fully automatic for most instructions
 Some special cases are managed by hand (e.g., LDM instruction)

13

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: decoder tests

A decoder test =
 a binary word
 + the corresponding instruction (e.g., in assembly syntax)

Can be generated using the same internal representation
 we have developed a random test generator

Results:
 1 serious bug (BKPT not recognized)
 2 minors bugs (in printers) found

14

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: Coq specification

Generation of a formal Coq specification (done)
 based on the same internal representation
 no optimizations are applied
 allows to simulate simple tests

• extremely slow, because the code is tailored to formal proof

 Long-term goal: (!ongoing work!)
 Evaluate whether a proof assistant such as Coq can be used to

improve the confidence in virtual prototypes
 Idea: prove that the C code used in the ISS is equivalent to the

Coq code
 Work not finished; still too early to say whether it will succeed.

15

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

More outputs: ARM ➞ LLVM translator

 LLVM: library including an optimizing runtime compiler
Compiling frequently executed ARM code to optimized

native code allows to speed up the simulations
Part of the ARM to LLVM translator is generated from the

same internal representation

16

fetch decode execute

MEMORY
binary instruction & data

INSTRUCTION CACHE
executable representation

cached?

inv
ali

da
te

OPTIMIZER
1. translate to LLVM

2. optimize
3. compile to native code

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Outline & Architecture overview

17

ARMv6.pdf
DDI 01001 pdftotext

arm_v6.txt

patch & extract patch & extractpatch & extract

ASM syntax pseudo-codeIS encoding

merge & preprocess

internal OCaml representation
ASTs + encoding tables + token lists

optimizationsCoq code
generator

code generator

fast ISS
(C/C++)

specification
(Coq code)

equiv. proof
(further work)

integrated in

test generator

decoder tests

SimSoC

ISS

MMU

memory &
peripherals

(C++/SystemC)

ARM
v6

profiling
data

 Introduction
Extraction
Transformations
Generation
Experiments
Conclusion

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

ISS validation

 ISS first validated and debugged using unitary tests
Decoder validated using the automatically generated tests
Next, after integration of the ISS into SimSoC

 Linux boot on the STMicroelectronics SPEArPlus600 SoC
• a few bugs found (e.g., in case of memory exception)

 Linux boot on the Texas Instrument AM1707 SoC
• no more bugs

18

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

ISS performances

3 benchmarks
 loop (extremely simple), sorting (pretty simple), crypto (more

complex)
 compiled with different compilations flags (O0/O3, thumb mode)
 tested using 3 computers: Linux 32, Linux 64, MacOSX (64)
 benchmarks compatible with ARMv5

 Compared to our previous ARMv5 hand-written ISS
(without using LLVM)
 on Linux 64: 107 Mi/s vs. 103 Mi/s (+4.3 %)
 on Linux 32: 78 Mi/s vs. 84 Mi/s (-6.8 %)
 on MacOSX: 92 Mi/s vs. 88 Mi/s (+4.5 %)

19

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Reusability: SH4 (!ongoing work!)

Question: Is the framework reusable for another
architecture?

We (Frédéric Blanqui and Frédéric Tuong) have started the
same work for the SH4 architecure

 In the SH4 reference manual
 no problem for syntax and binary encoding
 the instruction semantics are described by C-like code (>90% is

real C code)

Method:
 new extraction code, new parser (based on G.C.Necula parser)
 same OCaml internal representations (same ASTs, same coding

tables, etc)

20

Saturday, January 22, 2011

Claude Helmstetter (from INRIA-LIAMA-FORMES) 2011-01-22, at Rapido’11 (Heraklion)

Conclusion

Development cost
 developing the generation framework is likely longer than

developing one simple ISS
 Refactoring the ISS is a lot faster if it has been generated from

the presented framework
 Adding one new output is a lot easier with this framework

Documentation uses “pseudo-code”. Why not “code”?
Using code:
 Easier to generate ISS, tests, etc
 Allow to validate the documentation

The generated code is distributed (in SimSoC 0.7.1)
 the generator will be.

21

Saturday, January 22, 2011

