Say it intensionally

Jean-François MONIN

More than two decades ago

Olivier Danvy: Functional unparsing

Journal of Functional Programming, 8(6): 621–625 1998

"Unparsing" just means sprintf

A dirty-looking function provided in the C language and in OCaml

More than two decades ago

Olivier Danvy: Functional unparsing

Journal of Functional Programming, 8(6): 621–625 1998

"Unparsing" just means sprintf

A dirty-looking function provided in the C language and in OCaml

More than two decades ago

Olivier Danvy: Functional unparsing

Journal of Functional Programming, 8(6): 621–625 1998

"Unparsing" just means sprintf

A dirty-looking function provided in the C language and in OCaml

sprintf

The following code

sprintf "The %s is %i %s." "distance" 10 "meters"

returns the string

"The distance is 10 meters."

The first argument is called the format

The number of following arguments and their types depend on the format

sprintf

The following code

```
sprintf "The %s is %i %s." "distance" 10 "meters"
```

returns the string

"The distance is 10 meters."

The first argument is called the *format*.

The number of following arguments and their types depend on the format.

Functional sprintf

"The %s is %i %s."

With dependent types

The format is implemented by a *list* of directives, using a suitable sum type of directives.

```
[Lit "The "; String; Lit " is "; Int; String; Lit "."]
```

J-F. Monin Intensionally

Functional sprintf

"The %s is %i %s."

With dependent types

The format is implemented by a *list* of directives, using a suitable sum type of directives.

```
[Lit "The "; String; Lit " is "; Int; String; Lit "."]
```

Danvy' trick

The format is implemented by a function

```
lit "The " o str o lit " is " o sint o str o lit "."
lit := fun s k a -> k (a ++ s)
str := fun k a s -> k (a ++ s)
```

sprintfk := fun f -> f id ""

Functional sprintf

"The %s is %i %s."

With dependent types

The format is implemented by a *list* of directives, using a suitable sum type of directives.

```
[Lit "The "; String; Lit " is "; Int; String; Lit "."]
```

Danvy' trick

The format is implemented by a function

```
lit "The " o str o lit " is " o sint o str o lit "."
lit := fun s k a -> k (a ++ s)
str := fun k a s -> k (a ++ s)
sprintfk := fun f -> f id ""
```

Exercise: prove that sprintf does the job (*)

```
r_sprintf (1 : list directive) : string -> type_of 1
kformat (1 : list directive) :
    (string -> string) -> (string -> type_of 1)
```

By induction on the format 1

```
\forall a, r\_sprintf l a = kformat l id a
```

FAILS!

```
(fun x -> r_sprintf l (a ++ x))
= (fun x -> kformat l string id (a ++ x))
```

Extensionality?

(*) JFM, TPHOL'2004

```
r_sprintf (1 : list directive) : string -> type_of 1
kformat (1 : list directive) :
    (string -> string) -> (string -> type_of 1)
```

By induction on the format 1

$$\forall a, r_sprintf l a = kformat l id a$$

FAILS!

```
(fun x -> r_sprintf l (a ++ x))
= (fun x -> kformat l string id (a ++ x))
```

Extensionality?

(*) JFM, TPHOL'2004

```
r_sprintf (l : list directive) : string -> type_of l
kformat (l : list directive) :
    (string -> string) -> (string -> type_of l)
```

By induction on the format 1

 $\forall a, r_sprintf l a = kformat l id a$

FAILS!

```
(fun x -> r_sprintf l (a ++ x))
= (fun x -> kformat l string id (a ++ x))
```

Extensionality?

(*) JFM, TPHOL'2004

What is a function (from A to B)?

In Set Theory

- A special relation subset of $A \times B$ with unicity of output
- A set f of pairs (a, b) such that $\forall a b_1 b_2$, $(a, b_1) \in f$ and $(a, b_2) \in f$ implies $b_1 = b_2$.

What is $b_1 = b_2$?

- What is equality ?
- A relation?
- A function??

What is a function (from A to B)?

In Set Theory

- A special relation subset of $A \times B$ with unicity of output
- A set f of pairs (a, b)such that $\forall a b_1 b_2$, $(a, b_1) \in f$ and $(a, b_2) \in f$ implies $b_1 = b_2$.

What is $b_1 = b_2$?

- What is equality ?
- A relation?
- A function??

What is a function (from A to B)?

In Set Theory

- A special relation subset of $A \times B$ with unicity of output
- A set f of pairs (a, b) such that $\forall a b_1 b_2$, $(a, b_1) \in f$ and $(a, b_2) \in f$ implies $b_1 = b_2$.

What is $b_1 = b_2$?

- What is equality ?
- A relation?
- A function??

Leibniz principle

- b_1 can be replaced by b_2 everywhere
- In particular, at its first occurrence in the sentence " b_1 can be replaced by b_1 everywhere"
- We get symmetry

J-F. Monin Intensionally 25 April 2024 7/1

Leibniz principle

- b_1 can be replaced by b_2 everywhere
- In particular, at its first occurrence in the sentence
 "b₁ can be replaced by b₁ everywhere"
- We get symmetry

What is $f_1 = f_2$?

Where f_1 and f_2 : functions from A to B

In Set Theory

 f_1 and f_2 agree on all inputs $\forall a \ b_1 \ b_2, \ (a, b_1) \in f_1 \ \text{and} \ (a, b_2) \in f_2 \ \text{implies} \ b_1 = b_2.$

In practice

Impossible to check (in a brutal way) if A is nat Or worse: if A contains functions from nat to nat, etc.

What is $f_1 = f_2$?

Where f_1 and f_2 : functions from A to B

In Set Theory

 f_1 and f_2 agree on all inputs $\forall a b_1 b_2$, $(a, b_1) \in f_1$ and $(a, b_2) \in f_2$ implies $b_1 = b_2$.

In practice

Impossible to check (in a brutal way) if A is nat Or worse: if A contains functions from nat to nat, etc.

What is $f_1 = f_2$?

Where f_1 and f_2 : functions from A to B

In Set Theory

 f_1 and f_2 agree on all inputs $\forall a \ b_1 \ b_2, \ (a,b_1) \in f_1 \ \text{and} \ (a,b_2) \in f_2 \ \text{implies} \ b_1 = b_2.$

In practice

Impossible to check (in a brutal way) if A is nat

Or worse: if A contains functions from nat to nat, etc.

- Let
 - f be some function
 - usual composition \circ defined by $g \circ f := \lambda x. g(fx)$
- Consider $f_1 := f \circ (f \circ f)$ and $f_2 := (f \circ f) \circ f$
- By reduction $f_1 := \lambda x. f(f(fx))$ and $f_2 := \lambda x. f(f(fx))$

Theorem 1

 f_1 and f_2 are the same program

Corollary 2

 f_1 and f_2 are extensionally equal

- Let
 - f be some function
 - usual composition \circ defined by $g \circ f := \lambda x. g(fx)$
- Consider $f_1 := f \circ (f \circ f)$ and $f_2 := (f \circ f) \circ f$

J-F. Monin Intensionally

- Let
 - f be some function
 - usual composition \circ defined by $g \circ f := \lambda x. g(fx)$
- Consider $f_1 := f \circ (f \circ f)$ and $f_2 := (f \circ f) \circ f$
- By reduction $f_1 := \lambda x. f(f(fx))$ and $f_2 := \lambda x. f(f(fx))$

Theorem 1

 f_1 and f_2 are the same program

Corollary 2

 f_1 and f_2 are extensionally equal

- Let
 - f be some function
 - usual composition \circ defined by $g \circ f := \lambda x. g(fx)$
- Consider $f_1 := f \circ (f \circ f)$ and $f_2 := (f \circ f) \circ f$
- By reduction $f_1 := \lambda x$. f(f(fx)) and $f_2 := \lambda x$. f(f(fx))

Theorem 1

 f_1 and f_2 are the same program

Corollary 2

 f_1 and f_2 are extensionally equal

(Leibniz) equality between (functional) programs

Finitist answers provided by computer science

without functional extensionality

- Same code
- Same code up to preliminary reductions (static execution at compile time)

J-F. Monin Intensionally 25 April 2024 10 / 13

(Leibniz) equality between (functional) programs

Finitist answers provided by computer science

without functional extensionality

- Same code
- Same code up to preliminary reductions (static execution at compile time)

I-F. Monin Intensionally 25 April 2024 10 / 13

(Leibniz) equality between (functional) programs

Finitist answers provided by computer science

without functional extensionality

- Same code
- Same code up to preliminary reductions (static execution at compile time)

J-F. Monin Intensionally 25 April 2024 10 / 13

Exercise: prove that sprintfk does the job

By induction on the format 1

 $\forall a, r_sprintf l a = kformat l id a$

FAILS

By very short induction on the format 1

r_sprintf l = kformat l id

WORKS:

Key hint

```
fun a x \rightarrow r_{sprintf} l (a ++ x)
```

= some_suitable_higher_order_function (r_sprintf 1)

Exercise: prove that sprintfk does the job

By induction on the format 1

 $\forall a, r_sprintf l a = kformat l id a$

FAILS

By very short induction on the format 1

r_sprintf l = kformat l id

WORKS:)

Key hint:

```
fun a x -> r_sprintf l (a ++ x)
```

= some_suitable_higher_order_function (r_sprintf 1)

Exercise: prove that sprintfk does the job

By induction on the format 1

 $\forall a, r_sprintf l a = kformat l id a$

FAILS

By very short induction on the format 1

r_sprintf l = kformat l id

WORKS:)

Key hint:

```
fun a x \rightarrow r_sprintf l (a ++ x)
```

= some_suitable_higher_order_function (r_sprintf 1)

Many simpler examples on ordinary lists

Easier to understand with the following version of app, called φ

$$\varphi$$
 u := id φ (x :: u) := (cons x) \circ (φ u)

φ is a (computational) morphism

$$\varphi$$
 (u ++ v) == φ u $\circ \varphi$ v

```
rev u := id
rev (x :: u) := (rev u) \circ (cons x)
```

This definition makes no use of app, and is linear time complexity

J-F. Monin

25 April 2024

Intensionally

Receipt

- write the simple minded definition with app
- \bullet replace app by \circ

J-F. Monin Intensionally 25 April 2024 13 / 13