
TYPES 2022 Abstracts 28th International Conference on Types for Proofs and Programs

Small inversions for smaller inversions
Jean-François Monin∗

Abstract

We describe recent improvements on small inversions, a technique presented earlier as
a possible alternative to Coq standard inversion.

Many proofs relying on inductive definitions require so-called inversion steps in order to
exploit the information contained in a hypothesis H : Ra0 . . . an, where R is a dependent
inductive relation (or type) applied to actual parameters a0 . . . an. In Coq, such steps are usually
performed using a powerful tactic called inversion. In previous work [MS13], we proposed an
alternative lightweight approach, which is not automated (in contrast with Coq inversion)
but provides a better understanding on what happens, a full control on the proof script and
smaller proof terms. In particular, no additional (proof of) equalities are introduced. Moreover,
there are situations involving dependent types where standard inversion fails whereas small
inversion succeeds. In all approaches, inversion is essentially a complex dependent pattern
matching on H. In [MS13], this is handled using auxiliary functions.

However, we discovered later that standard inversion has an additional important advan-
tage on the previous version of small inversions: it provides syntactically strict subterms of H
which can directly be used in recursive calls of a fixpoint definition. In the Braga method de-
signed with D. Larchey-Wendling [LWM18, LM21], we showed how clear and explicit subterms
of H can be recovered using projections πR defined with a dependent pattern matching similar
to small inversions – let us call them smaller inversions.

We present here an improvement on small inversions, where auxiliary functions are replaced
with auxiliary inductive types which are easier to understand and to use. The new small
inversion is more powerful: it can handle goals involving terms with occurrences of H. Such
goals naturally arise in direct proofs of partial correctness properties of functions – for instance,
but not only, fixpoints obtained by the Braga method. Standard inversion turns out to be
very often unusable there.

As a foretaste, consider a reference function for OCaml fold_left – efficiency is then
irrelevant here – honestly defined by a right to left traversal of its list argument. To this effect
we introduce an auxiliary non-recursive dependent data type rl l with two constructors: Nilr
of type rl [] – reflecting the empty list – and Consr of type rl (u + : z) – where u + : z is
the catenation of a list u and a single element z. Following the Braga method, we first define
an inductive domain Dlist for termination certificates. Here Dlist contains Nilr, as well as
Consr u z whenever l2r u, the reflection of u, is itself in Dlist. Given d : Dlist (Consr u z)
we then define the projection π d which provides its structurally smaller component of type
Dlist (l2r u), allowing us to easily define fixpoints such as foldl_ref below, where b0 and f
are respectively an initial value and a function to be folded, and rew d is an administrative
rewriting step transforming l2r (u +: z) into Consr u z.

Fixpoint foldl_ref l (d: Dlist (l2r l)): B :=
match l2r l in rl l return Dlist (l2r l) → B with
| Nilr => λ d, b0
| Consr u z => λ d, f (foldl_ref u (π (rew d))) z
end d.

Reasoning on such functions commonly requires inversion steps on d. For instance we would
like to prove that the actual standard tail-recursive algorithm returns the same result as

∗ Verimag, Université Grenoble Alpes, CNRS, Grenoble INP



Small inversions for smaller inversions J-F. Monin

foldl_ref. But we already get an issue with a much more elementary fact, stating that for any
d : Dlist Nilr, we have foldl_ref [] d = b0: this turns out to be out of reach of Coq standard
inversion. In [LM21], this issue is circumvented by replacing the former definition of foldl_ref
by an enriched program which returns an inhabitant of {b : B | Gfoldl l b} instead of just B,
where Gfoldl is a suitable characteristic relation. With our small inversion described below, we
can directly reason on foldl_ref as defined above. More details and additional examples are
available at https://www-verimag.imag.fr/~monin/Proof/Small_inversions/2022 .

For a more general situation, consider an inductive relation R : T0 → T1 . . . → Tn → Sort,
where Sort is a sort (e.g., Prop or Type). Whatever the technology to be used, the key point
is that inversion makes sense when:

• at least one type among T0, T1 . . . Tn, say T0, is itself an inductive type; without loss of
generality we consider here that there is exactly one such type; below we write T for
T1 . . . Tn;

• in the hypothesis H to be inverted, the corresponding actual parameter a0 : T0 has a
specialized shape σ, corresponding to a pattern C args starting with a constructor C of
T0 (in many cases, args are just variables).

In general, only a subset of the constructors of R are compatible with the shape of a0. Inversion
then proceeds by simultaneous pattern-matching on H and a0, in order to select the relevant
cases of R.

We proceed as follows. For each shape of interest σ we derive from the definition of T0
an inductive specialized version T0σ of T0. T0σ is a copy-paste of the relevant (compatible
with σ) constructors of T0, with appropriate modifications: the variables x1 . . . xσ of σ become
parameters of T0σ ; the type of T0σ x1 . . . xσ is ∀ a : T, R σ a → Sort (it is empty for absurd
cases). We then define, by dependent pattern matching on r, the function Rinv y0 y of type
∀ r : R y0 y, (match y0 with . . . | σi ⇒ T0σi

x1 . . . xσi
| . . . end) r.

The main argument of Rinv is r (its other arguments y0 y will be left implicit). An obvious
requirement on the shapes σi occuring in the above pattern matching is that they cover T0.
Inverting H is then just a pattern matching on Rinv H, whose type reduces to the relevant T0σi .
Possible occurrences of H in the goal are correctly dealt with for free thanks to the additional
argument r of T0σ.

In this version, the components of H are not considered as subterms of H because they
are repackaged in a constructor of T0σ. In the Braga method, where the subterm property is
needed, an argument of type R y0 y can be added to T0σ and its final argument uses of πR σ
instead of σ. Even if the sort of T0 is Prop, we can then obtain a fully general recursion principle
T0_rect – an improvement on [LM21] which is limited to proof irrelevant statements.

References
[LM21] Dominique Larchey-Wendling and Jean-François Monin. The Braga Method: Extracting

Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8, pages 305–386.
World Scientific, September 2021.

[LWM18] Dominique Larchey-Wendling and Jean-François Monin. Simulating Induction-Recursion
for Partial Algorithms. In 24th International Conference on Types for Proofs and Pro-
grams,TYPES 2018, Braga, Portugal, June 2018.

[MS13] Jean-François Monin and Xiaomu Shi. Handcrafted Inversions Made Operational on Oper-
ational Semantics. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving, pages 338–353. Springer, 2013.

2

https://www-verimag.imag.fr/~monin/Proof/Small_inversions/2022

