Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

Pierre Corbineau, Basile Gros and Jean-Frangois Monin

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions: a case
study in MetaCoq programming

Pierre Corbineau', Basile Gros', and Jean-Francois Monin'

1Univ. Grenoble Alpes, CNRS, Grenoble INP*, VERIMAG, 38000 Grenoble, France

The Coq proof assistant is particularly powerful and relevant for defining and
working on inductive types and properties. A common proof pattern is inversion
reasoning on those inductive properties, where one seeks to deconstruct the last
step of the proof of a given statement.

Many languages exist to automate reasoning in Coq. Among them, MetaCoq
is built to inspect, manipulate and reason on internal Coq representations, and
reinterpret them as new Coq objects. It allows to combine those operations into
powerful meta-programs that are expressed in the Coq language itself.

In this article, we present how we used MetaCoq to automate the definition
of new Coq objects as part of our work on proxy-based small inversions, an
alternative to the inversion tactic. We discuss the relevance of using MetaCoq
for this approach, and we sum up the lessons learned in the process, with the
hope that it might be helpful to other users of MetaCoq.

To illustrate and demonstrate our work, we provide the source code of our
MetaCoq program, together with a set of examples.

1 Introduction

Coq is an interactive proof assistant [?] used in particular to prove the correction of software
and to verify mathematical proofs. Its implementation is based on the Calculus of Inductive
Constructions (CIC). Coq allows the definition of algebraic and functional types in CIC,
and properties on those types. The user can interact with the proof engine to write proofs
of theorems, that the kernel checks automatically when completed. Coq has been used to
complete several significant achievements in formalized mathematics and certified computer
software, among which the proof of the Odd Order theorem [?], the CompCert certified C
compiler [?], and more recently the certification of the number of steps of the fifth Busy
Beaver [?].

MetaCoq is a tool built to manipulate the Coq internal representations of user-defined
terms and definitions in Coq in the form of Abstract Syntax Trees (ASTs), and to define
new Coq objects from those ASTs [?] [?]. MetaCoq allows the user to define meta-programs
that combine these techniques in a way that is not possible with tactic scripting languages
such as Ltac or Mtac.

Our current work uses MetaCoq to implement an alternative to the tactic inversion,
called prozy-based small inversions, or simply small inversions'. Proxy-based small inversions

*Institute of Engineering Univ. Grenoble Alpes
1The name small inversions actually covers a family of more or less similar approaches in the folklore, but
only one of them is considered in this paper.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

are a generalization on previous works by Jean-Frangois Monin (sketched in [?], itself a
rework of [?] and [?]), aiming at providing smaller, more explainable proof terms than
inversion.

This method defines intermediate inductive types and functions, that can be used with
basic tactics such as destruct. So far, these proxy definitions were written by hand, and we
wished to automate that process. We decided to use MetaCoq because of its crucial features:
in MetaCoq programs, we can inspect the internal representation of Coq objects, especially
inductive types, and make Coq validate new objects definitions from custom-made ASTs.

This article presents the MetaCoq tools we used in this project, as well as lessons we
learned using them. It also considers the relevance of the use of MetaCoq in projects that
are not directly linked to its original purpose of formalizing Coq in Coq. A theoretical
description of small inversions can be found in another article currently under review. To
make this paper self-contained, we however briefly present this technique on a simple example
in the following section.

2 A quick presentation of proxy-based small inversions

Reasoning by inversion is a proof scheme used in Coq that deduces information about the
premises of a proof from its conclusion [?]. It is used to simplify proofs by case analysis by
removing situations that are impossible by construction.

In Coq, we can define inductive types, which are types whose elements are entirely
described by a finite set of generating functions, called constructors. Those types can
represent sets of objects like natural numbers or booleans, populating the sorts Type, or
they can be logical propositions, populating the sort Prop.

Inversion reasoning in Coq consists in recovering the premises and constraints used to
derive the proof of a given inductive relation.

Here is an example based on a type representing the three traffic light colors, color:

Inductive color : Type :—=
| green : color
| orange : color
| red: color.

Here is the succession relation for those colors:

Inductive next_color : V cl : color, V c2 : color, Prop :=
| NcG: next_color green orange
| NcO: next_color orange red
| NcR: next_color red green.

Inversion reasoning is typically used to prove subgoals such as:

c : color
green_c : next_color green c

next_color c red.

A call to inversion green_c; constructor is enough to solve this subgoal. The only
possible constructor that can derive green_c is NcG, which constraints ¢ to be orange. To
perform this, the inversion tactic infers additional equalities, in this case (c = orange)
and performs case analysis to the proof term to eliminate impossible constructors [?]. It is
very versatile and easy to call, but it tends to generate massive and unexplainable proof
terms.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

In contrast, using small inversions, we focus on the first argument of next_color, using
the fact that it has an inductive type. We call it the pilot index.

We first define a distinct partial inductive for each possible constructor of the pilot index.
Together, they form a partition of the inductive relation we want to invert according to the
different values of this index.

Inductive next_color_green : V c2 : color, Prop :=
|NcG’ : next_color_green orange.

Inductive next_color_orange : V c2 : color, Prop :=
|NcO’ : next_color_orange red.

Inductive next_color_red : V c2 : color, Prop :=
|NcR’ : next_color_red green.

Next, we define a dispatch function, that maps the constructors of the pilot index to the
corresponding partial inductive. Finally, we define an inverter function that injects the
inductive into its partition. When performing case analysis on the result of the inverter,
only relevant cases are selected as specified by the corresponding partial inductive, and the
desired substitutions are obtained without additional equalities, hence the name proxy-based
small inversions.

Definition next_color_dispatch (cl c2: color) : Prop :=
match c1 with

| green = next_color_green c2

| orange = next_color_orange c2

| red = next_color_red c2
end.

Definition next_color_inversion
{c1 c2: color} (c: next_color cl c2):
next_color_dispatch cl c2 :=

match ¢ in next_color cl c2
return next_color_dispatch cl c2 with
|NcG = NcG’
|NcO = NcO’
|NcR = NcR’

end.

For the same subgoal as with inversion, we can simply use case analysis:
destruct (next_color_inversion green_c).

In general, small inversions focus inversion reasoning on a single argument of the inductive
relation (more accurately an index), called pilot index, which must have an inductive type.
As is the case with the historic inversion tactic, the pilot index must have an informative
inductive type — that lives in the sort Type — and its choice is up to the user.

3 MetaCoq

MetaCoq is a Coq library and plugin. It extends the Coq interpreter with reification and
reflection mechanisms (i.e., quoting and unquoting) and can be used to manipulate the Coq
kernel’s internal representation of Coq objects using the Coq type term, as well as to create
monadic programs manipulating those objects using the Coq type TemplateMonad.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

This section provides an overview of those two types and their usage.

3.1 Manipulating Coq syntax trees as Coq objects

Coq ASTs are represented by objects in the inductive type term. The most frequently used
ones are:

e The tCons constructor for constants like functions or theorems (e.g., plus)
e The tInd constructor for inductive types (e.g., nat)
e The tConstruct constructor for constructors of inductive types (e.g., true)

e The tCase constructor for case elimination (match ... with ... end)

e The tLetIn constructor for local definitions (let ...:= ... in...)
e The tProd constructor for dependent products (V(...:...),...)
e The tLambda constructor for A-abstractions (fun (...:...) = ...)

e Bound variables, in the form of de Bruijn indices, are represented by the tRel
constructor.

The more complex objects in CIC such as inductive types and pattern matching use
intermediate record types to gather relevant information in a composite structure. Here we
explain the representation of inductive types.

Each Coq inductive type is represented as belonging to a mutual definition of one type.
The mutual_inductive_body type describes the common parameters of a family of mutually-
defined inductive types and a definition of each inductive type as an object of the record type
one_inductive_body. For each inductive in the mutual definition, the one_inductive-
_body type contains its type arity and list of constructors. For each constructor of an
inductive, constructor_body records its name and arity.

When working with MetaCoq ASTs, especially with inductive definitions and pattern
matching definitions, one frequently has to manipulate terms starting with series of products
or of lambda abstractions. Processing those terms requires a separate treatment of this
binding prefix (called telescope) and of the inner term that is bound by this telescope. The
notion of telescope was introduced by de Bruijn for Automath in the early 1970s [?, ?] and
is regularly used for representing mathematical structures (e.g., [?]). It describes a sequence
of declarations and local definitions where later definition bodies and types can depend on
earlier ones. In MetaCoq, a telescope is constructed with tProd, tLetIn and tLambda, and
is used to interpret unbound variables that are represented by de Bruijn indices.

MetaCoq ASTs also use de Bruijn indices inside the definition of inductive types to refer
to the parameters, indices, and constructor arguments of this inductive type. Similarly,
recursive occurrences of an inductive type within its own definition use de Bruijn indices.
In Section 7?7 below, we explain how substitutions in a bound term can be performed with
nothing more than a manipulation of its telescope.

3.2 Template meta-programming: the MetaCoq Run command

The monad used for expressing MetaCoq programs is an error and state monad called
TemplateMonad. This monad contains extra constructs that represent calls to Coq’s API.
Errors can happen when executing those calls, or be raised by user code. The state accounts
for addition of new objects in the Coq global context. Note that when an error happens,
state changes are unrolled, i.e., the whole program is aborted.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

CIC interpreter (MetaCoq) Ocaml plugin

Import result
Pass result to continuation

MetaCoq Run <program> No continuation
i ; Side effects :
Reduction of the program code Execution of the command :> o
to a normal form by the plug-in New Definitions
Messages / Errors

Export command with parameters

Figure 1. Sequential execution of a MetaCoq Run.

Two special operations in the TemplateMonad are the quote and unquote operations. The
quote operation takes a Coq object and returns its syntax tree in type term (see below).
The unquote operation takes a syntax tree and returns the corresponding Coq object.

Once a MetaCoq program is defined (with type TemplateMonad unit), it can be executed
with the top level command MetaCoq Run. What follows reflects our understanding of what
happens next, according to our experience and a partial reading of the source code.

We represent in Figure 7?7 the internal steps in the execution of a MetaCoq program.
First the program is normalized: it yields a constructor of TemplateMonad applied to some
parameters, themselves in normal form. If this constructor is the bind operation tmBind,
its continuation is suspended waiting for the result of the bound body, and the same
normalization is executed on that body. Otherwise, the command and parameters are given
to the MetaCoq plugin, which interprets them. If there is a suspended continuation, it is
applied to the value returned by the command, after it has been translated back into a Coq
term. Otherwise, the MetaCoq Run terminates successfully.

4 Automating small inversions using MetaCoq

To automate the definition of the objects needed for proxy-based small inversions, we derive
modified versions of the (AST of the) target inductive type Relation, using the different
constructors of the type of the pilot index, Pilot. Then, case analyses are performed on
Relation and the Pilot to create the dispatch and inverter functions. The modified versions of
Relation are called partial inductives, and the dispatch function returns a partial inductive
for each possible construction of the pilot.

We now comment the data flow of our Metacoq implementation for small inversions
displayed in Figure ?77.

Extracting data. We start by extracting all the data we need from the MetaCoq structure
of the source inductive types Relation and Pilot. This mainly consists in gathering all needed
fields from the MetaCoq records into a custom record type for simple access. Moreover,
some processing is performed in order to reduce let in constructs that possibly occur in
both Pilot and Relation, and manipulation techniques on de Bruijn indices described in
Section ?7 are used to instantiate the parameters of Pilot to their actual value in Relation.
We also introduce a bidirectional mapping between each constructor D; of Pilot and the

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

')| Construction of the partial inductive constructors

MetaCoq Run (small_inversion ...) Arity of
Constructors rity o
the constructors
Types A
Path —>| Construction of the partial inductives
Constructors
Data extraction Arity of the
vy Ppartialinductives ASTs
—)I Construction of the dispatch function I ‘[;ll Translation into Coq objects
Names Arlty of the
v dispatch
—>| Construction of the inverter function '— .
Coq objects

Y

Fresh name generation

Names for new objects

Figure 2. Data flow of MetaCoq code of small inversions

constructors of Relation where D; can occur.

Generation of new names. We need new names for the partial inductives, their con-
structors, the dispatch and the inverter functions. They are created by simple string
concatenations, using a predictable and (hopefully user-friendly) systematic scheme. The
user can provide a suffix that is appended to all new names in order to avoid collisions.

Fresh variables are not given a name in our MetaCoq data structures. We use instead
an anonymous name, and we let Coq’s internal naming system find a suitable name to the
variable at definition time.

Partial inductives. A partial inductive of Relation is defined for each constructor D; of
Pilot. Each partial inductive Relation_D; is created by selecting the constructors C; whose
instance of the pilot index is compatible with D; (it is either that constructor, or a variable
that can take the constructor as value). From those selected constructors, we derive the
constructors C; _D; of the partial inductive Relation_D; by removing the pilot index from
the arity, and adding the arguments of D; to the parameters of this new inductive.

Here note that partial inductives are non-recursive by construction: constructor arguments
of type Relation stay in type Relation. This is the place where one de Bruijn index gets a
special treatment as mentioned below in Section 77.

The dispatch function. Our inverter function needs a suitable return type which is the
expected correct partial inductive, depending on the actual value of the pilot. To this effect
we create a dispatch function that matches each constructor D; of the pilot index to the
corresponding partial inductive Relation_D;.

At this step, the AST for the dispatch and inverter function has to be created from scratch,
instead of being derived from an existing one. This leads to creating ranges of de Bruijn
indices rather than manipulating existing ones.

The inverter function. This function takes an object in type Relation and, depending on
its constructor C; and the form of the pilot (either a variable or a constructor D), returns
the corresponding constructor of the correct partial inductive C; _Dj.

This is the most complicated part of our implementation for three reasons: First, if the
pilot is not in the form of a constructor, but a variable, an additional embedded pattern
matching is needed on that variable as well. In MetaCoq, the latter is translated using
complex de Bruijn offset computing. Second, as the type or value of other indices may
depend on the pilot’s value, this embedded pattern matching needs lambda-abstractions
for managing dependent types in its return branches. Finally, an additional preprocessing

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

computation is performed at data extraction stage in order to prepare the construction of
terms (C;_D; ...) corresponding to patterns (C; ...).

5 Lessons learned while using MetaCoq

5.1 Performance issues related to the use of TemplateMonad

As seen in figure 77, each intermediate call to the bind constructor of the TemplateMonad
creates another cycle of normalization and MetaCoq interpretation of the plug-in. This is
accompanied by a translation of the term for each passage from one side to the other. This
process is therefore time-consuming, and is better limited to the parts of a program where
the TemplateMonad is really necessary.

We use a custom error monad for the cases where a monad is needed (e.g., getting an
element at a given index in a list), with a function to translate a value of this error monad
into an element of TemplateMonad. The switch from TemplateMonad to this custom-made
monad improved execution times by a significant margin.

Lesson 1. Usage of TemplateMonad should be restricted to where API calls are necessary,
and a custom monad should be used for other monadic needs.

5.2 Quoting and unquoting ASTs

Getting the AST of a Coq object is a two-step process. First, quoting an object returns the
structure to call the quoted object by its qualified name. Then, using the qualified name,
the AST can be quoted from the environment.

First, using tmQuote, the term representing the call to the object is obtained?. For
example when quoting the term nat (the type of natural numbers), the result is

tInd {| inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"|, "nat"); inductive_ind := 0 |} ||

and when quoting the term for commutativity of addition (Nat.add_comm) we get:

tConst (MPdot (MPfile ["PeanoNat"; "Arith"; "Coq"]) "Nat", "add_comm") [|.

However, a user quoting an object might be interested in the AST of its definition
rather than the AST of a global reference to it. From such a qualified name, the AST
corresponding to the body of its definition is retrieved using suitable API calls, respectively
tmQuoteInductive and tmQuoteConstant.

To avoid two calls to the MetaCoq API, it is possible to use tmQuoteRec instead, which
will return a global environment containing only the dependencies of the quoted object. Then,
the call to tmQuoteInductive can be replaced by the pure Coq function lookup_mind_decl
and similarly tmQuoteConstant can be replaced by lookup_constant. This tip, given to
us by Yannick Forster, leads to better performance.

Lesson 2. Using tmQuoteRec to get a restricted environment, and then the lookup functions
lookup_mind_decl and lookup_constant reduces the number of API calls and the scope
to search the wanted AST in.

When producing a Coq object from an AST, the API call differs according to the nature
of the object to be created. The API call to define a constant is tmDefinition. The
definition body of type term has to be provided as a parameter. The type of the newly
defined constant is computed during the API call.

The API call to define a possibly mutual inductive type is tmMkInductive’. It takes
the AST of type mutual_inductive_body. As the structure mutual_inductive_body has
redundant information to simplify access, some fields are not used in this definition of a Coq
object. As such, they can be left empty or used to store debugging information that will

2The trailing empty lists [] are placeholders for universe polymorphism annotations.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

disappear once the AST is converted into a Coq object. The fields we found to be unused
in the redefinition are the list of parameters and indices of an inductive ind_params and
ind_indices, as well as the lists of arguments and indices of a constructor cstr_args and
cstr_indices.

Lesson 3. To define constants in the Coq environment, use tmDefinition applied to
the AST of its body. To define inductive types, use tmMkInductive’ applied to the
mutual_inductive_body.

5.3 Manipulating de Bruijn indices

The manipulation of de Bruijn indices is tricky and error-prone, especially when performing
recursive substitutions inside a term. Fortunately it is possible to work around such
manipulations by placing ad-hoc local let in definitions in the telescope of the term to
be substituted. We have two main usages for this technique: either replacing a variable
by a definition body, or redirecting a de Bruijn index to a binding further up the AST,
which results in replacing a variable by another. Then we use the let-reduction function
expand_lets to perform substitution in place. This reduction is called zeta-reduction in
the specification of CIC as documented in the Coq manual [?].
Here is an example of this technique: We have an AST

Vx, Vy, xty=y
Its representation with de Bruijn indices is
Vx, Yy, (1)+(0)=(0)

To swap x and y in this formula, we insert two let in at the end of the telescope, so that
the de Bruijn indices (1) and (0) point to them. These let in will have interchanged values
to exchange the place of x and y. Please note that the inner term (1)+(0)=(0) does not
need any direct modification, and that the technique would still work if inner binders were
present.

Vx, Vy, letx :=(0) in lety := (1) in (1)+(0)=(0)
which would unquote into:

Vx, Vy, letx :=yin lety :=xin x'+y=y
Finally, a reduction of the let in will give

Vx Vy, (0)+(1)=(1)
Vx, Vy, y+x=x

Lesson 4. When substitution of de Bruijn indices is needed, use let in structures inserted
in the telescope and reduce them to perform the operation.

In other situations, we use the 1ift function that increases all de Bruijn indices above a
certain binding level by a given value. This is mainly used when adding new elements to the
type telescope so that the indices continue to point to the same term as before. In reverse
situations where we need to decrement de Bruijn indices because we are removing a term
from a telescope we replace that element with a dummy let in definition whose reduction
updates for free all other de Bruijn indices correspondingly.

Lesson 5. When adding an element to a telescope, use 1ift to restore proper de Bruijn
references. To remove an element from a telescope, use the let in technique with a dummy
definition.

The only situation where a direct manipulation of a de Bruijn index could not be avoided
was when we needed to have some occurrences of a given de Bruijn changed into something
different from the rest.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

5.4 Working with the match ... with construct

In general, ASTs expressions in MetaCoq are quite finicky, and if there is an error while
defining them, the error message will not be helpful in figuring out why. This is even more
relevant for ASTs representing the match construct, because case analysis is a complex CIC
concept and, not surprisingly, this complexity is reflected in the internal Coq representation.
For instance, the scopes of the branches of the case analysis are different from the scope of
the return type of the case analysis. As a result, a difference between the return type and
the type returned by the branches may cause anomalies instead of errors.

The complexity of the match construct includes other aspects. For the match construct
(of constructor tCase), the in clause binds the indices of the inductive type and the object
itself, but not the parameters. To reference the parameters in the return clause, their
appearance prior to the pattern matching must be referenced, while the de Bruijns for the
indices of the inductive refer to the ones redefined in the in clause.

Lesson 6. Be mindful of the different scopes present in a match construct.

6 Conclusion

6.1 Our experience using MetaCoq

We have chosen to use MetaCoq because the add_constructor example from [?] presented
just the right usage of key features. Such features are the extraction and representation in
the form of ASTs of Coq objects, the definition of new Coq objects, inductive types and
constants, from ASTs, and the ability to use these actions as part of functional programs in
the TemplateMonad.

MetaCoq fulfilled its promises, it offered features otherwise exclusive to OCaml plug-
ins. We managed to implement the automation we wanted in a reasonable time frame.
Good coding practices, especially regarding de Bruijn indices lead to a code that can be
incrementally expanded upon, and the quoting mechanism allowed us to compare the ASTs
produced by our automation to the ASTs of the target Coq objects we wanted to define.

However, those coding practices are not easy to acquire, the learning curve is steep,
and the package’s API is difficult to find. This issue is compounded by a sparse online
documentation, which is not always up to date. The community is welcoming and helpful to
new users, and the best way to get help is the Zulip MetaCoq channel, where other users
and the developers quickly answer most questions. A good place to look at some MetaCoq
examples is [?].

Overall, we have found that MetaCoq is a very powerful tool that is still rough around
the edges. Some errors may still result in anomalies, and the error trace is rarely useful.
We can see that its self-proclaimed goal is to allow for formalization of the meta-theory as
it lacks user-oriented API, such as a named layer to abstract away de Bruijn indices, or a
printer for unchecked ASTs.

6.2 Future work using MetaCoq

Our current implementation of proxy-based small inversions has limits that we are striving to
overcome: we are studying the systematisation of partial inductive creation in the presence
various complications, such as deep patterns (S (S n) for even), multiple pilots, dependently
typed pilots (like VectorDef.t), and various cases with non-linear patterns.

We are also considering possible applications of on-demand Coq object definition in other
situations where Coq definitions need to be derived from user-defined objects, such as in the
Braga method [?].

We could look into other solutions which seem to fulfill the same requirements as MetaCoq,
such as Coq-ELPI [?].

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

References

[CT96]

[dBO1]

[GAA+13]

[GGMRO9]

[LWM21]

[Mon10]

[Mon22]

[MS13]

[msF*24]

[SAB*20]

[SWB+24]

Cristina CORNES et Delphine TERRASSE : Automating inversion of inductive
predicates in Coq. In Stefano BERARDI et Mario COPPO, éditeurs : Types for
Proofs and Programs, pages 85-104, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

N. G. de BRULJN : Telescopic mappings in typed lambda calculus. Inf. Comput.,
91(2):189-204, 1991.

Georges GONTHIER, Andrea ASPERTI, Jeremy AVIGAD, Yves BERTOT, Cyril
COHEN, Francgois GARILLOT, Stéphane LE ROUX, Assia MAHBOUBI, Rus-
sell O’CONNOR, Sidi OULD BiHA, loana PAscA, Laurence RIDEAU, Alexey
SOLOVYEV, Enrico TAssI et Laurent THERY : A machine-checked proof of the
odd order theorem. In Sandrine BLAZzY, Christine PAULIN-MOHRING et David
PICHARDIE, éditeurs : Interactive Theorem Proving, pages 163-179, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

Frangois GARILLOT, Georges GONTHIER, Assia MAHBOUBI et Laurence RIDEAU
: Packaging mathematical structures. In Stefan BERGHOFER, Tobias NIPKOW,
Christian URBAN et Makarius WENZEL, éditeurs : Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings, volume 5674 de Lecture Notes in Computer
Science, pages 327-342. Springer, 20009.

Dominique LARCHEY-WENDLING et Jean-Frangois MONIN : The Braga
Method: Extracting Certified Algorithms from Complex Recursive Schemes
in Cog, chapitre 8, pages 305-386. World Scientific Publishing Company, 2021.

Jean-Frangois MONIN : Proof Trick: Small Inversions. In Yves BERTOT, éditeur
: Second Coq Workshop, Edinburgh, United Kingdom, July 2010.

Jean-Frangois MONIN : Small inversions for smaller inversions. In TYPES 2022
Abstracts, Nantes, June 2022.

Jean-Frangois MONIN et Xiaomu SHI : Handcrafted Inversions Made Operational
on Operational Semantics. In S. BLAZY, C. PAULIN et D. PICHARDIE, éditeurs
: ITP 2013, volume 7998 de LNCS, pages 338-353, Rennes, France, July 2013.
Springer.

MXDYS, SAVASK, Nathan FENNER, Justin BLANCHARD, Mateusz NASCISZEWSKI,
Konrad DEkA, IJiL, MEI, Shawn LIGOCKI, Jason YUEN, Shawn LIGOCKI,
Pavel KropITZ, Chris XU, Shawn LIGOCKI et Dan BRIGGS : [july 2nd 2024]
we have proved “bb(5) = 47,176,870”. https://discuss.bbchallenge.org/t/
july-2nd-2024-we-have-proved-bb-5-47-176-870/237, July 2024.

Matthieu SOZEAU, Abhishek ANAND, Simon BOULIER, Cyril COHEN, Yannick
FORSTER, Fabian KUNZE, Gregory MALECHA, Nicolas TABAREAU et Théo
WINTERHALTER : The metacoq project. J. Autom. Reason., 64(5):947-999,
juin 2020.

Matthieu SOZEAU, Théo WINTERHALTER, Simon BOULIER, Nicolas TABAREAU,
Yannick FORSTER, Jason GROSS, Abhishek ANAND, Meven LENNON-BERTRAND,
Gregory MALECHA, Pierre-Marie PEDROT, Jakob Botsch NIELSEN, Kenji MAIL-
LARD, Gaétan GILBERT, Danil ANNENKOV, YANNL35133, Hugo HERBELIN,
Marcel ULLRICH, Enrico TAssi, Maxime DENES, Gabriel SCHERER, Pierre
Roux, Andrej DUDENHEFNER, Fabian KUNZE, Emilio Jests Gallego ARIAS,

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

https://discuss.bbchallenge.org/t/july-2nd-2024-we-have-proved-bb-5-47-176-870/237
https://discuss.bbchallenge.org/t/july-2nd-2024-we-have-proved-bb-5-47-176-870/237

Proxy-based small inversions using MetaCoq P. Corbineau and B. Gros and J-F. Monin

[Tas18§]

[Tea24al

[Tea24b]

[Tea24c]

[WFLB]

[ZucT5]

4EVER2, Jim FEHRLE, Julin S, Karl PALMSKOG et Pierre ROUSSELIN : Metaco-
q/metacoq: Metacoq 1.3.2 for coq 8.20, aott 2024.

Enrico TassI : Elpi: an extension language for Coq (Metaprogramming Coq in
the Elpi AProlog dialect). In The Fourth International Workshop on Coq for
Programming Languages, Los Angeles (CA), United States, janvier 2018.

The CompCert Development TEAM : Main website of the CompCert project.
https://compcert.org/, 2024.

The Coq Development TEAM : The Coq reference manual, release 8.19.1. pages
327-332, 2024.

The Coq Development TEAM : Main website of the Coq project. https:
//coq.inria.fr/, 2024.

Théo WINTERHALTER, Yannick FORSTER et Meven LENNON-BERTRAND : Meta-
Coq tutorial at POPL24. https://github.com/MetaCoq/tutorials/tree/
main/popl24.

J. ZUCKER : Formalization of classical mathematics in AUTOMATH, pages
135-145. Department of Mathematics, Eindhoven University of Technology,
July 1975.

JFLA 2025 — 36°° Journées Francophones des Langages Applicatifs

https://compcert.org/
https://coq.inria.fr/
https://coq.inria.fr/
https://github.com/MetaCoq/tutorials/tree/main/popl24
https://github.com/MetaCoq/tutorials/tree/main/popl24

	Introduction
	A quick presentation of proxy-based small inversions
	MetaCoq
	Manipulating Coq syntax trees as Coq objects
	Template meta-programming: the MetaCoq Run command

	Automating small inversions using MetaCoq
	Lessons learned while using MetaCoq
	Performance issues related to the use of TemplateMonad
	Quoting and unquoting ASTs
	Manipulating de Bruijn indices
	Working with the match … with construct

	Conclusion
	Our experience using MetaCoq
	Future work using MetaCoq

