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We present the Braga method which we use to get verified OCaml pro-
grams by extraction from fully specified Coq terms. Unlike structural
recursion which is accepted as is by Coq, the Braga method works sys-
tematically with more involved recursive schemes, including the non-
terminating schemes of partial algorithms, nested or mutually recursive
schemes, etc. The method is based on two main concepts linked together:
an inductive description of the computational graph of an algorithm and
an inductive characterization of its domain. The computational graph
mimics the structure of recursive calls of the algorithm and serves both
(a) as a guideline for the definition of a domain predicate of which the
inductive structure is compatible with recursive calls; and (b) as a con-
formity predicate to ensure that the Coq algorithm logically reflects
the original algorithm at a low-level. We illustrate the Braga method
on various concrete recursive algorithms, including unbounded search,
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“fold-left” from the tail, non-terminating depth-first search, Paulson’s
normalization algorithm and first-order unification, the last two algo-
rithms being examples of nested recursive schemes. The method allows
us to easily show partial correctness and characterize termination in
each case, and in addition, the intended OCaml algorithm is faithfully
extracted from Coq code. All the results are implemented in Coq and
freely accessible on GitHub.

1. Introduction

The ability to describe partial recursive functions which can have
non-terminating computations, and to reason on them, is very useful
because this is a natural room for many complex algorithms, and
usual functional languages don’t impose any restriction on termina-
tion. In complement, Coq is a proof-assistant celebrated for years for
its success in different fields of mathematics and computer science.
In particular, it is a tool of choice for the certification of algorithms
written in functional programing languages such as OCaml or Haskell
thanks to one of its a powerful features called program extraction,
which can be summarized as follows. A faithful Coq version prog of
the target program is written in the functional language embedded
in Coq. Correctness properties of prog are then proved at will and, in
the end of the process, an OCaml (say) version of prog is automati-
cally extracted. As far as we are confident in this automated extrac-
tion, the resulting OCaml program satisfies the expected correctness
properties. A well-known impressive example using this technique is
the certified compiler for the C language developed in the CompCert
project [1].

However, a challenging discrepancy is raised here because at a
deep level of the logic implemented by Coq, only total functions
encoded by terminating algorithms are allowed. It would be a strong
impairment not to be able to encode as Coq functions a larger class
of algorithms based on complex recursive schemes, including nested
recursion or functions entailing computations that can terminate or
loop forever, depending on the effective parameters given as input.
In such situation, it is very important in practice to be able to
reason (with formal support) on correctness properties before get-
ting knowledge or even in order to get knowledge on termination
issues.
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We believe that thanks to the Braga method, named as a trib-
ute to our initial summary presentation at TYPES 2018 [2], a large
class of functional algorithms which were considered as out of reach
before can now be certified. We support this claim here by a number
of significant examples illustrating the range of possibilities offered
by this approach. We even present a small example of a certified pro-
gram implementing an algorithm that cannot be directly written in
OCaml. In addition to this document, the Coq code corresponding
to these examples is available at

https://github.com/DmxLarchey /The-Braga-Method.

The Braga method, to be explained in much further details in
this chapter, digests and improves previous work developed in the
last decades based on well-founded relations, inductive-recursive
schemes, etc. However it can altogether be presented in a very short
amount of space (see Section 3). In a nutshell, a relational version
of the functional program f of interest is written under the form of
an inductive relation G that mimics the structure of recursive calls;
an inductive characterization of the domain of f is inferred from G,
either as a custom inductive predicate ID or, equivalently, as a binary
relation to be managed through the standard accessibility predicate
of Coq. The subtle point is to ensure that recursive calls are safely
expressed with a structurally smaller domain argument. This can be
either automatically obtained using the inversion tactic of Coq or,
if one prefers an explicit approach, using concise terms where the
structural decrease shows up very clearly.

The chapter is organized as follows. For self-containedness,
Section 2 presents the necessary background on Coq, including some
fine points about structural recursion or the non-interference princi-
ple between the universes respectively devoted to observable data and
functions on one side, and to their logical properties on the other. The
reader in a hurry and already aware of these aspects can skip this sec-
tion and directly start with Section 3 on page 325 where the basics
of the Braga method are presented and illustrated on very simple
algorithms which, at first glance, seem inexpressible in Coq because
absolutely no clue is available on their convergence domain. Section 4
is devoted to additional tools that provide interesting variants of the
Braga method. The first one is based on the constructive version of
the generic accessibility predicate based on a binary relation given to
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it as a parameter, which is used in the Coq standard library to char-
acterize well-foundedness, a standard tool for well-founded recursion.
The second one is a technique for simulating induction—recursion in a
type theory without this feature — this is currently the case in Coq.
Then Sections 58 illustrate how the method and its variants can be
applied on more complex situations involving: in Section 5, a non-
standard approach to the well-known fold_left function on lists;
in Section 6, depth-first search, another potentially non-terminating
algorithm; and in Sections 7 (Paulson normalization algorithm of
if-then-else expressions) and 8 (first-order unification), examples of
nested recursion, with a presentation of the last ingredient of the
Braga method. Finally, the relationship between previous work and
our approach is given in Section 9.

2. Background Material

We provide here a light introduction to the main principles under the
hood of Coq that should be sufficient for the non-specialist to grasp
the main intuitions in the work presented here. This is by no means
a somewhat complete presentation of Coq and the interested reader
is referred to the abundant literature on the subject, for instance the
book by Bertot and Castéran [3].

2.1. Types, propositions and terms

Coq is essentially a strongly typed functional programing language,
with a very powerful type system called the calculus of (co)inductive
constructions (CIC) with Universes. At the same time, Coq is a proof
assistant implementing the so-called Curry-Howard-De Bruijn iso-
morphism, where theorems are types inhabited by their proofs, a
central idea to be illustrated in more detail below.

As already suggested, the types in CIC are themselves organized
along a hierarchy of universes generically denoted by Type, at the
bottom of which a special type is of interest for us in this chapter:
the sort Prop of propositions — we will often use the shorthand P.
For data types and functions on them we will use Type.

The two basic constructs for defining types are functional types,
e.g. A— B, which is the type of functions from A to B, and inductive
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types whose canonical inhabitants are exhaustively described with
special injective® functions called constructors. When A and B are
propositions, A — B is the type of functions returning a proof of B
given a proof of A as input. In other words, the arrow — is interpreted
as the logical implication between propositions.

Among common examples of inductive data types, we have bool
for Booleans, whose constructors are true and false, and nat for
Peano natural numbers, with two constructors noted 0 : nat and S :
nat — nat, where S represents the successor function. We commonly
use digital notation, for example 2 for S (S 0). Note that an inductive
type can be recursive, but it is not mandatory. For instance in nat, S
has an argument of type nat but no recursivity is involved in bool.

Two special inductive propositions are of interest: False which
has zero constructor, and then cannot be proved in the empty envi-
ronment, and True which has exactly one constructor called I : True,
i.e. the proposition True is trivially proved by I.

We will use a number of shorthands: B for bool, N for nat, | for
False and T for True. Additionally, in Sections 5, 6 and 8, we will
use the inductive type of (polymorphic) lists over a given base type
X : Type, denoted L X, and defined as

[:LX:=nil|cons x !, wherez:X

in BNF notation. The symbol [] is a short notation for the empty
list nil and the infix notation z :: 1 represents (conszl), i.e. the
list [ augmented with the value x : X at its head. We assume some
familiarity with lists and we will denote that type as L X in the rest
of this chapter. Note that the Coq syntax corresponding to the above
definition would be:

Inductive L (X :Type):Type:=[]:LX |(z: X):(:LX):LX.

Further lists operators and notations include the list 7 :: 29 :: 23 :: []
denoted as [x1;x9; x3], appending the lists I,m : L X denoted [ H m
and satisfying the equations [|-+Hm = m and (z::l) Hm = z:(I+m).
The list reversal function rev : L X — L X satisfying rev[] =[] and
rev(z 1 l) = (revl) H [z] is also assumed. Finally, we describe a

#There are cases where constructors of dependent types are not provably injec-
tive but we can ignore these subtleties for the discussion here.
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more visual way to introduce inductive definitions, with rules. For
lists, this would look like

r: X [:LX
[[:LX zul:LX

Inductive L (X : Type) : Type :=

and we hope that the reader will be able to switch between BNF
definitions (mostly for simple inductive types), rule-based definitions
(mostly for inductive predicates, see later) and the regular Coq syn-
tax when reading source code. As a final comment on lists for now,
note that the type parameter X is declared implicit in most list oper-
ators including [], ::, + and rev. Hence it is not syntactically present
in expressions and is recovered from the context most of the time.

Using function application and other constructs we can form
typed terms; t : T states that the term ¢ has type T'. For instance
we have 0 : N and S0 : N. Abstraction, written Az : X, ¢ (following
the syntax suggested by Coq’s standard library) denotes a function
taking an argument z of type X in input, whose body is given by ¢
— x is just a name, whereas t and X can be complex expressions.
When the type is clear from the context, it can be omitted. We also
use common shorthand notations, for example Az y, ¢t for Az, (\y, t)
and (f zy) for ((f z)y).

Common functions such as negation or conjunction on Boolean
values in B are defined by pattern matching using the following
syntax:

Definition neg (b:B): B :=
match b with
| true = false
| false = true
end.

Common functions on the type of Peano natural numbers N such
as addition are defined by pattern matching and recursion, with the
keyword Fixpoint in place of the keyword Definition:

Fixpoint add (n m:N):N:=
match n with
|0 =m
| Sp = S(add p m)
end.
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Importantly, only total functions can be defined. In particular, loop-
ing computations are forbidden. This imposes an important restric-
tion on recursion: recursive calls are allowed only on structurally
smaller arguments. On the above example, n is S p in the second
pattern, hence the recursive call is allowed because p is a strict sub-
term of S p. We go back to this in detail below since it is the central
issue tackled in this chapter. Coq provides features for defining nota-
tions, for instance add x y is noted z + y as usual.

Predicates are functions from a type (or several types) to P. An
important special case is equality, which happens to be yet another
inductive type, with a single constructor corresponding to reflexivity
(equality on X provides the smallest reflexive binary relation on X,
and pattern-matching on a proof of equality happens to yield the
Leibniz rule).”

Universal quantification also corresponds to a functional type.
For instance, Vn : N;n = n + 0 is seen as the type of functions from
natural numbers n to proofs of equalities between n and n + 0. This
is a typical example of dependent typing, where the type of the result
(the proposition n = n + 0) depends on the value n given in input.
Indeed, this formula can be proved either by induction on n, or by
directly programming a recursive function f on n that starts with a
pattern-matching on n; when n is 0, the type of the result is 0 = 0+0
which reduces to 0 = 0 by computation of add, and then is trivially
proved by reflexivity of the = equality predicate. When n is S p, the
type of the result is Sp = S p + 0 which reduces to Sp = S(p + 0)
by computation, then solved using p = p + 0 obtained by a recursive
call to f, namely fp. Such a function can be applied to any closed
value, e.g. S(80), providing a proof of 2 = 2 + 0. If desired, this
proof can be then reduced by computation and after two steps, it
boils down to a proof of 2 = 2 by reflexivity. This illustrates that
computations can be performed on proofs. In the present case, the
result is very small (informally, just “by reflexivity”) but in general
the result can be a huge proof tree, where many lemmas and theories
have been expanded. It is not really an issue, we will soon see why.
To close this aspect, remark that the usual principle of induction on
N is itself actually inhabited by a structural recursive function on N.

PThis approximation of the exact nature of = in Coq is sufficient for our needs.
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Another important dependent type is 9z : T, P z, which is inhab-
ited by pairs (z, p,), where z, the witness, inhabits X and p, is a
proof of P x. More precisely, it is an inductive type having a single
constructor of type Vo : X, Pz — Jy, Py named ex_intro. For the
sake of brevity we write (z, p,) for ex_intro x p,.

Coq provides also X-types, denoted by {z : X | P z}, which
are also inhabited by pairs (z,p,) where p, : P x. Only the label
of the constructor changes, exist instead of ex_intro. Although
the X-types dx : T, Pz and {z : X | Pz} look isomorphic, there
is a big difference between them: dz : T, Px is of sort P, whereas
{z : X | Pz} is of sort Type. Remember that while P is a type, it
is also the lowest sort in the Type hierarchy of sorts, and these two

existential quantifiers, 3z,... and {« : X | ...} outline an important
distinction between sort P and sort Type to be discussed in the next
section.

2.2. Non-interference from Prop to Type

We first state the non-interference property which plays a key role
in the work presented here.

Pieces of information available in Prop cannot be exploited in Type.

This informal motto will be expressed with more technical words
below. In order to explain its meaning, we consider two similar state-
ments, one expressed with 3 and the next one with a X-type.

Assume z : N and a hypothesis H, : In,n + n = z. Then by
pattern-matching on H,, we can get its two components, that is,
ng : N and an equality p : ng + no = x, allowing us to build a proof
p of Sng+Sng=S(Sx) and then a proof (Sng,p’) of In,n+n =
S (S z). This proof, reflecting an informal reasoning starting with
let ng be the number such that... is implemented by a term match
H, with (ng,p) = ... (Sng,p’) end. With an additional abstraction
step, we get a function \H, : (3n,n +n = x), match...end of type
(In,n+n=2x)— (3n,n+n=8(sz)).

Similarly, an inhabitant of {n | n4+n = 8 (Sz)} can be constructed
from an inhabitant in {n | n +n = z}, yielding after an abstraction
step a function ®even : {n |n+n=2} = {n|n+n=s(sxz)}.

Now, consider the application ®Peyen (3, p3) where ps is a proof of
343 = 6. Its computation will return a pair (4, ps) with py : 44+4 = 8.
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In a more general situation, we have a function ¥ : {z : N | Pz} —{y :
N | Qy}. The intuitive meaning of the input is a number = packed
with a proof of a precondition P x, and the intuitive meaning of the
output is a number y packed with a proof of the constraint @ y.

Another convenient way to type a function ¥ which takes an x
such that P zx is satisfied and returns a constrained y is

Ve :N, Px—{y:N|Qy}.

Here {z : N | Pz} is unpacked, so that we get a function with two
arguments, x then a proof of Px. An interesting advantage of this
formulation is that @ is in the scope of x, we can then consider a
postcondition relating y with x as in this common pattern:

U: Ve: X, Pr—{y:Y|Quy}.

Note that in the Braga method, we will use extensively this pattern
with a special conformity relation G for @) and its domain D for P.
Using the infix notation = +¢ y for G xy this will then be written as:

U: Ve: X, De—{y:Y|z—¢guy}

Now, consider a computation of ¥ 35 p with p a proof of P 35. It
yields a pair (y, p') with p’ a proof of @ 35y. When the computation
is completed, both y and p are said to be in normal form. What does
it mean? From y, a natural number, we get a normal value such as
3141. For p’ we get a term corresponding to a normal proof term as
illustrated above on 2 = 2 4 0 in page 311.

However in practice, we have a different interest in the two parts
of this result: we want to know the normal value of the result, for
instance, the amount of the income tax to be payed at the end of the
year, rather than a complicated expression yielding this value. On
the other hand, the normal form of p’ is of little interest to the end
user, who basically wants to know that the result y (say 3141) sat-
isfies the postcondition @ zy, provided the input = (say 35) satisfies
the precondition P x. Potentially interesting aspects of the proof p’
could be the kind of properties (algebraic, etc.) used in the reasoning,
but this has nothing to do with the normal form of p’. Indeed, the
computation of this normal form can be performed in theory, which
is important for meta-theoretical considerations such as the justifi-
cation of the logical rules used and the consistency of the underlying
logical system.
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However, in order to ensure that computing on the proof part
is actually not necessary, an important principle must be respected:
the computation of y from x does not depend on the proofs attached
to them. This is the very meaning of the non-interference princi-
ple stated at the beginning of this section. This is often stated in
the literature by qualifying terms in Type as informative and state-
ments in P as logical or non-informative, though this terminology
is somewhat misleading. Intuitively, logical statements behave like
secret comments. As those comments live in the same logical frame-
work, where proofs are seen as typed functions, computations could
be performed on them as well. But we don’t want those computa-
tions to have an impact on the data returned as outputs. To enforce
this non-interference property, Coq applies a very simple rule:

Pattern-matching on a term of sort Prop
to construct a term of sort Type is forbidden.©

Assume for instance that our context provides a data D, : {n |
n+mn = x}, expressing that we have a public n which is the half of z.
Then by pattern-matching, H, can be freely decomposed into some
n and an associated proof, which can then be used to construct an
inhabitant of {n | n +n = S (S z)}, witnessing that we can compute
the half of 2 4+ x. This is the job done by ®eyen-

On the other hand, assume that we only have an existential
hypothesis H, : In,n + n = x. The point is that an inhabitant (n, p;,)
of In,n + n = x contains a number n intended to be hidden — it
is just a helper for expressing that x is even. Nevertheless, H, can
also be decomposed into a secret n and an associated proof, provided
we only try to construct a proof of another proposition; for instance,
saying that 2 4+ x is even as well — as an aside, the latter proof
embeds a secret Sn.

However, H, : 3n,n+n = x cannot be exploited by the same sim-
ple pattern-matching strategy to construct a data such as a Boolean
value, a natural number, either alone or packed inside a Y-type. In
order to get the half of x and then compute the half of 2 + x, more
work is needed. Essentially, we first write a recursive program that
computes the half of an even number, or more accurately, a number

“There is a very small number of harmless exceptions, to be discussed later.
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Fixpoint half (z:N):(Gn,n+n=2)—>{n|n+n=ua}:=
let Peven : {n\n+n:r}%{n [n+n=8(Sz } =...
in match x with

‘ 0 = )\HU, (07 E0>

[s0 = AHi, ... (absurd case)

| S (Sa') = AHgs, Peyen (half 2’ ...)
end.

Fig. 1. Fully specified function computing the half of an even number (sketch).

packed with a proof that it is even, that is a function
half: Vo, 3n,n+n=2z)—{n|n+n==zx}

then we can decompose the result returned by half x H, which inhab-
its the X-type {n|n+n =z}, in order to get the half of x and
then compute the half of 2 + x. A sketch of the function half is
given in Fig. 1. The function ®een was described at the beginning of
Section 2.2. The recursive call needs an effective parameter of type
In,n+n =2/, to be provided from Hss : In,n+n =S (Sz’). When
x is 1, we have an absurd case: from H; : dn,n +n =1 it is possible
to derive L. Let us call ¢ the latter proof of L. As | is an empty (or
zero-case) type, a pattern matching on ¢ provides a fake inhabitant
of {n | n+mn = 1}. This is one of the rare exceptions to the rule given
above, since L is in sort P whereas {n | n +n = 1} is in sort Type.
We come back to this issue in more detail in Section 2.7, where more
subtle ways of getting a fake inhabitant in a so-called informative
type from a proof of an absurd proposition will be discussed.

2.3. Harmless eliminations from Prop to Type

The rule stated above which strictly forbids eliminations from sort
Prop to Type, or so-called large eliminations. It has been relaxed
to allow for exceptional and harmless large eliminations. The part
of the Coq community which is concerned by these harmless large
eliminations from sort P to sort Type usually calls them singleton
eliminations; see [4] for an up-to-date and comprehensive discussion.
However we find this “singleton” denomination a bit misleading and
call them “harmless” instead. What qualifies as harmless has a pre-
cise meaning, but we here give the intuition of why such large elimi-
nations have been considered acceptable.
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Indeed, provided no information of propositional nature can leak
into a computation — more precisely propositional information that
would allow to choose between diverging computational paths, —
then matching on a proof of a proposition in P to build in term in a
Type is allowed. This happens when the constructor of the inductive
proposition contains only parameters of sort IP. Hence typically when
there are no constructors at all like for the | empty proposition.
This also holds for the logical conjunction A A B of which the sole
constructor is conjAB : A — B — A A B, hence conj A B has two
parameters, one is a proof of A, and the other a proof of B, both A
and B being of sort P.

However, the case of the logical disjunction A VvV B with
two constructors is very illuminating. These constructors are
or_introlAB: A— AV Bandor_intror AB: B—AV B. Taken
separately, both of these constructors could be considered harm-
less but a pattern matching on a proof of A V B would reveal a
Boolean information, i.e. which constructor of either or_introl and
or_intror was used in the proof, or else which of A or B has a proof,
hence a leak of logical information.

So, if there are two or more constructors for an inductive proposi-
tion, an information is indeed hidden in the choice of the constructor,
and this information cannot be allowed to leak. Not having more than
one constructor could then explain the origin of the singleton elimi-
nation terminology. However, note that the proposition dz : X, Px
has only one constructor, ex_intro X P:Vz : X, Pr—dx: X, Pz,
but this constructor has two parameters of which the first, i.e. x : X
is of sort Type, and not P. It cannot thus be eliminated to build a
term in Type. This is why we find that the “singleton” qualifier does
not properly cover the range of those allowed eliminations from P
to Type, and instead, we call them “harmless large” eliminations, or
simply “harmless” eliminations.

2.4. Program extraction

At this stage, we get functions working on data (in Type) packed
with correctness proofs (in P), with the additional knowledge which
is that computing on proofs is not needed to get the data part of the
result.
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We can then use an important feature of Coq, allowing us to
extract from such functions the part which is dedicated to data. To
this effect, Coq just erases the code dedicated to proofs. For example,
the type of half after P-erasure would be N — N: the second input
for the precondition is erased, as well as the second component of
the result (a proof of the postcondition). More generally, the type of
a function ® : Vx : X, Pz —{y: Y | Quy}, after P-erasure, becomes
X =Y.

However, the term obtained after raw P-erasure is in general not
acceptable as a Coq term, because ® would no longer be a total
function (over the whole type X). This phenomenon is witnessed
on the above version of half, which is not defined on odd inputs.
Code extraction actually targets mainstream functional languages
such as OCaml or Haskell, where partial functions are allowed. For
instance, the OCaml code obtained after extraction of half is a minor
variant of

let rec half x =
let phi_evenn=8n
in match x with
| 0 -0
| S - — assert false (* absurd case *)
| S(S2') — phi_even (half z/)

Note that the extraction process adds an element to be consid-
ered to the Trusted Code Base (TCB), i.e. the set of programs on
which the confidence of a system claimed to be correct relies, on
top of the kernel of Coq and the OCaml compiler. Program extrac-
tion was introduced in Coq more than 30 years ago by C. Paulin-
Mohring [5]. The interested reader may consult a more recent
overview by P. Letouzey [6]. Here, we rely on the correctness of the
(currently implemented) Coq type-checker (kernel) and extraction
mechanism, and consider their own verification/certification to be
orthogonal to our work. To lower the TCB, we mention the lively
MetaCoq project that deals with those issues [7].

2.5. Loose additional remarks on Coq

There is much more to say on Coq. On its theoretical background,
the reader has surely noticed the constructive aspects of the logic
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behind Coq. It is clear that there is no room for a general principle
of excluded middle (XM), as far as we work in the realm of data
formalized by the universes beyond PP. Still, for extraction purposes,
XM can be safely used at the level of P, since justifications at this
level are carefully erased in extracted programs. Note, however, that
corrupting Coq with a contradictory set of axioms, even just in the
P sort, allows for the construction of non-terminating programs in
Coq, see Section 2.7 for additional details.

We close this section with a practical remark on the development
of functions or proofs in Coq. Coq provides an interactive mode
allowing the user to construct a term step by step by the means
of tactics. Elementary tactics correspond to basic constructs such
as A-abstraction or pattern-matching. On top of them a large num-
ber of high level-tactics are available, allowing the user to automate
tedious parts or goals solvable by semi-decision procedures. On the
opposite side we have a powerful tactic called refine, allowing to
provide an incomplete proof term where some subterms, to be filled

later, are represented by a “_” joker. We often use this style in the
work presented here, in order to clearly present the function to be
extracted.

2.6. Structural recursion

Structural recursion is the very foundation of induction (or recur-
sion) in the inductive type theory of Coq [3]. Except for co-recursion
which is somehow dual, every other form of recursion described below
ultimately derives from structural recursion. However, at first glance,
it looks like it imposes a strong restriction on acceptable fixpoints.

A famous example of structural recursion is the reverse and
append of lists of type L X, a function characterized by the two
recursive equations:

rev_app !l [] =1 and rev_app! (z::m)=rev_app (x::1) m.
It is straightforward to encode those two equations this way in Coq:

Fixpoint rev_app {X : Type} (I m: LX) {struct m} :=
match m with
=l
| x:m/ = rev_app (z::1) m
end.

/
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Intentionally, the above code is very verbosely presented to help for
the comments below. The function rev_app is polymorphic in its
X : Type parameter which is declared implicit by putting braces {. ..}
around it instead of optional parentheses (...). It is a simple exercise
to show that the identity rev_app [ m = revm + [ holds for any
values of [,m : L X. However, we are not interested in the semantics
of the function here but how it illustrates structural recursion.

Let us explain what makes the above Fixpoint definition struc-
turally acceptable. The rule which Coq enforces is that one of the
two parameters — here the second one m, — must always be struc-
turally smaller on any recursive subcall. In general, Coq is able to
detect which parameter may structurally decrease although it does
not always find the right one. Here, we forced its hand with the
optional {struct m} declaration. Note that the rule says that the
struct parameter must decrease structurally but it says nothing
about the other parameters. Also, beware that on every subcall of
a given Fixpoint definition, it is the same parameter that must
decrease structurally.

But what does structural decrease mean? Well, this has a precise
definition embedded in the guard condition that Coq enforces on
Fixpoints. We are not going to describe it in full details but just
give the basic intuitions which are sufficient here:

e the struct parameter must be typed in an inductive type;

e in any recursive subcall of the body of the Fixpoint, the value
of the struct parameter must be a subterm of the input value,
according the inductive structure of the type.<

Hence typically, the first parameter [ in Fixpoint rev_app does not
decrease because there is a subcall where its value is _:: [. More
generally, consider a recursive function fct having n > 1 parameters
x1,...T, where z; is expected to be structurally decreasing. For the
following definition to be accepted:

Fixpoint fet xy ... (x;:T) ... x, {struct z;} :=
v (feter ... ep) ...

the expression e; has to reduce at type checking time to a subterm
of x;. To this effect, e; may be syntactically smaller (e.g. p if = is Sp).

dNote that subterms are recognized up to the convertibility equivalence relation.
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But subterm recognition also traverses match constructs, hence a
term e; of the form match €] return T with patterns end where,
again, all cases considered in patterns reduce themselves to a sub-
term of x;, is also recognized as a subterm of x;. The structural
decrease requirement in the guard condition ensures that there is
a terminating strategy for the reduction of Fixpoints. This cannot
be proved within Coq but has been verified on paper for various
versions of the calculus of (Inductive) constructions [8]. Intuitively,
terms of inductive types can be seen as well-founded trees and the
guard condition ensures that recursive subcalls always get you closer
to the leaves of those trees, leaves after which no recursive subcall
can occur anymore.

The guard condition is safe for termination, but it also imposes
very strong restrictions on the kind of Fixpoints that can be
type-checked by Coq. For instance, consider the following equa-
tions for the factorial function on N, i.e. positive integers in binary
representation:

facty, O, =1, and facty, n=mn-facty(n—1) when n # 0.

Then n—1 (the result of a computation of the minus binary function)
cannot be recognized as a subterm of n, even though it is provably
smaller for the strict order over N, (when n # 0p). Hence directly
encoding this definition as a Fixpoint would not be accepted by the
Coq type-checker.

However, it is possible to write a Coq function fact; satisfying the
same fixpoint equations, and critically, such that the OCaml program
automatically extracted from fact, Coq term is:

let rec fact, n =if n =0 then 1 else n- fact, (n —1).

In this example, it is not too complicated because we could use
measure-based or well-founded recursion as explained in Section 4.1,
but it can become really tricky when extracting algorithms which are
inherently partial algorithms.

Regarding structurally decreasing fixpoints, we will now assume
them, i.e. we won’t necessarily write the Coq Fixpoint definition cor-
responding to structurally decreasing equations and leave this task
to the reader. We just make the critical remark that the structurally
decreasing parameter xz; : T', although it must belong to an inductive
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type T, does not need to belong to an informative type, i.e. its type
T can be of sort P. In that case, extraction magically removes this
parameter: termination is statically ensured at type-checking time of
the Coq version, provided that inputs satisfy the expected precondi-
tions, then run-time checks are erased in the extracted version.

2.7. Eliminating (proofs of) the empty proposition
(or type)

We discuss the role played by the empty proposition L and the empty
type Empty_set, both defined as inductive but with no way to con-
struct a closed term:

Inductive L :P:=. Inductive Empty_set:Type:=.

in the common /shared Init part of the Coq standard library. Indeed,
these predicates have zero/no rule to build a (proof) term for them.
Corresponding to this above inductive definition of 1, Coq automat-
ically builds the (non-dependent) eliminator

Definition False_rect (T :Type) (f:L1l): T :=
match f: | return 7T with end.

which allows, from a proof f : 1, to build a term in any given type
T : Type. The optional return T clause can be omitted when Coq
is able to infer the type of the result (7" in this case). Note that the
match f : | with end construct, which is a pattern matching with
zero patterns, types correctly against any given type.

Moreover, this construct has an additional property of out-
most importance for us: it is considered as structurally smaller
than any term of type T (when T is an inductive type). This
is just a special case of the rule given above in Section 2.6 for
match €} return T with patterns end: here €} is f of type L, and as
1 has zero constructor, the patterns part boils down to nothing.

Note, however, that when T is of sort Type, the construct match _:
1 return T with end, and hence False_rect, both contain an elim-
ination from sort P to sort Type, a scheme which is permitted only
for harmless eliminations, see Section 2.3.

On the other hand, the construct match _: Empty_set with end
which also types against any given type, is a regular elimination (not
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a harmless one), because it proceeds from sort Type to sort Type.
Also, when considering

Definition False_ind (P:P) (f:L1):P:=
match f: | return P with end.

which is a restriction of False_rect to sort P sharing the very same
code, the elimination is a regular one from sort P to sort P.

When considering extraction, for all these constructs that match
on a term of an empty inductive type, i.e. match _ : F with end
where E is either |, Empty_set or any other inductive type with no
constructor, the extracted code proceeds with raising an exception
like in, e.g.

let false_rect _ = assert false (* absurd case *)

witnessing a situation that is not supposed to occur at runtime.

We now switch to another way to interpret the elimination of
empty inductive types computationally: by looping forever — at
least, by pretending to do so. We define False_loop+, an alternate
elimination scheme of L to T' : Type, this time not involving any
harmless large elimination:

Definition False_loopy (T :Type) (f:L): T :=
(fix loop (z : T) {struct x} := loop (match f return T with end)) I.

Recall that T is a simple inductive proposition with one constructor
called I. The pattern matching on = occurs when building an alter-
nate proof of T, a regular elimination from sort P to sort P. Typing
succeeds because match f with end types against any type, including
T. The satisfaction of structural decrease comes from the rule given
above. Indeed, note that using

fix loop z {struct z} := loop x

as a replacement for loop above would have failed because z is not a
(strict) subterm of itself. But in the definition of False_loop, the
construct match f return T with end is recognized both as having
type T and as being structurally smaller than z.

In the above definition of False_loopt, T can be replaced by
any inhabited inductive type. An interesting variant is to take ... L
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itself, since a proof a L is available, namely f. The definition can
then be presented in a slightly simplified way as follows.

Definition False_loop, (7 :Type): L — T :=
fix loop f {struct f} := loop (match f return L with end).

On the extraction side, f of sort P will be removed. As func-
tions in OCaml have at least one argument, we explicitly provide
an additional one of type unit, the inductive type with one element
called tt.

Definition False_loop (7 :Type): L — T :=
(fix loop t f {struct f} := loop tt (match f return L with end)) tt.

The code extracted from False_loop is now very different from that
of False_rect. We get a forever loop

let false_loop - = let rec loop - = loop () in loop ()

when applied to any argument of any type. Hence, after extraction,
we get another possible computational interpretation of the empty
type: looping forever instead of abruptly interrupting on an error.
These correspond to two usual interpretations of partiality.

The above example of False_loop invites a side discussion about
a misleading extrapolation of the normalization property of Coq.®
Indeed, we make the following important observation:

@ The fact that (axiom free) Coq terms are normalizing does not

imply that the corresponding extracted OCaml terms terminate.

Obviously, the False_loop term above and its extraction directly
justify this statement as a would be counter-example. It would be
incorrect to believe in an implication between Coq term normaliza-
tion and OCaml normalization because this would forget that while
erasing logical contents, the extraction process maps Coq terms to
partial OCaml functions in which the logical domain arguments dis-
appear. This could lead to errors —including non-termination — if
one applies an extracted function to an argument not satisfying its
precondition. This is precisely what could happen with the loop

®or even strong normalization on important fragments of Coq.
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above that has any empty domain. Moreover, as we will discover,
the Braga method actually relies on this ability to extract par-
tial algorithms, for which partial correctness properties can then be
established.

Extracted programs should normally not hit an absurdity, except
of course when called on arguments which do not fit their (Coq)
precondition, in which case they might return anything, interrupt or
loop forever.! From a strict programmer’s point of view, exceptions
are much better behaved than fake results or loops because you get
some control on what went wrong at runtime. However, logically,
False_rect T _ or a direct match _: | return 7 with end both
contain a harmless elimination (when 7' : Type), which could be
viewed as an issue in some contexts [4]. Can we satisfy both a high
programming standard (avoiding loops as much as possible) and a
high logical standard (avoiding harmless eliminations)? The answer
is yes, using Empty_set as an intermediate step:

Definition False_exc (T :Type) (f:L1): T :=
match False_loop Empty_set f return 7T with end.

In this case, we first eliminate | into Empty_set using False_loop,
so without using harmless elimination, and then Empty_set into T
using a match _ : Empty_set return 7' with end construct, again
without using harmless elimination because it proceeds from Type to
Type. Extraction wise, we obtain the best of both worlds, i.e.

let false_exc _ = assert false (* absurd case *)

because the infinite loop, recognized as dead code by the extraction
process, is just erased.

This discussion can be seen as a bit technical and peculiar to the
typing rules of Coq and the required structural decrease, but we will
use these features extensively to produce inversion (or projection)
lemmas that satisfy the structural decrease constraint.

The section closes on the following take-home lesson: when one
needs to eliminate a proof of L against a Type, one can avoid harm-
less elimination using False_loop, or better False_exc. However,

fThis situation might be avoidable, when it makes sense to extract the applica-
tion of a function to specific closed arguments, instead of extracting the function
itself.
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when eliminating | against say D : Prop, typically when establish-
ing a domain property, then we advise for False_ind or a direct
match _ : | return D with end, especially since these constructs
produce terms that are moreover accepted as structurally smaller.

3. The Braga Method

In type-theoretic frameworks such as Coq, where all functions are
total, it is still possible to manage partial functions by considering
an additional argument in P containing a proof that the previous
arguments are in the expected domain [9, 10]. A first example was
provided with the half function in Section 2.2, which was intended
to be defined only on even numbers. In that case, another option was
to relax the requirements and to return, for instance the euclidian
quotient of the input by 2, or even an arbitrary value on odd inputs,
e.g. 10 for 1, 11 for 3, etc. Such (somewhat cheating) options are not
always available. For instance, we define here a predicate is_cons
on lists and use it to build a function which returns the first element
of a non-empty list.

Implicit Type l: L X.
Definition is_cons/:P:=matchl/with_:_= T |_= 1 end.
Definition head!:is_cons!— X :=
match [ with
|zt = \G, x
| - = AG,match G with end
end.

In this common pattern, it is important to see that the second argu-
ment of head, acting as a precondition (or a guard) is pushed in the
result returned by the match construct, which is typical of dependent
pattern matching where not only the output value depends on the
pattern, but also the output type. Each branch is then a function
taking a guard as an argument, whose type is made specific accord-
ing to the case considered. In the first case (x :: t), the specialized
type of G is T and is not used. In all remaining cases (denoted by
the _ wildcard or joker), the type of G is L, an empty type, allowing
us to use match G with end as a fake inhabitant of X. Avoiding the
(sometimes reluctantly accepted) elimination from P to Type here,
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one could alternatively get a fake inhabitant of X as False_exc X G
from Section 2.7. In both cases, the term G acts like a Trojan horse
silently carrying an information about the original contents of I, to
be revealed and used when needed. We will see many other uses of
this idea.

Coming back to recursive functions, we can say that the domain
of a partial recursive function corresponds to input values such that
the computation actually returns an output, without getting lost in
an infinite loop for instance.

The first central idea of the Braga method is to define this domain
(denoted D with subscripts) using an inductive predicate that mimics
the structure of recursive calls.

We will call these custom inductive domain predicates and they
make it possible to define and reason on the desired function before
getting additional knowledge on its actual domain. Even for total
functions, proving totality may require preliminary technical partial
correctness lemmas, so a usable formal definition is needed first. Such
examples will be presented in Sections 7 and 8.

3.1. Custom inductive domain predicates

We first illustrate the Braga method on a very simple case where
the domain depends on a higher-order argument in a completely
uncontrollable way.

Given an arbitrary type X, a function g : X — X, a halting test
function b : X — B, and an initial value x : X, we would try to
count the minimum number n of iterations of g over x needed to
get a point where the test holds, that is b(¢" ) = true; but of
course, with arbitrary g, b and x, we don’t even know if such an n
exists at all. Two algorithms easily come to mind, with or without
accumulator, in OCaml syntax:

let rec ns x = if b x then 0 else 1 +ns (g ),
let recnsaxz n = if b x then n else nsa (g z) (1 +n).

A simple question is: does the tail-recursive call nsa = 0 always return
the same value as ns x?

Due to the structural decrease requirement, there is no straight-
forward way to write down ns and nsa in Coq, then to state the
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expected theorem, not to mention proving it. However, it is clear
that ns and nsa have the same domain D, which can be induc-
tively expressed because, looking at the definitions, if b x is true
then z is in Dy and, if bz is false and g x is in Dyg, then z is in
Dy as well

Inductive Dy : X — P :=
bxr = true br = false Dys(gx)
Dys = Dps

[fo

We then look at Coq terms with the following shape:

Fixpoint fet o (D : Dpsx) {struct D} : N:=
match bz with
| true = ...
| false = ... fet (gx) (proj D) ...
end.

The point is to find a suitable expression for proj D, which is
expected to be a proof of Dypg (g x) structurally smaller than D. We
have to be very accurate here. This projection only makes sense for
the second inductive rule called DL and, in this case, D is DIz ED,,,
where E is a proof of bx = false and Dy, a proof of Dys (g9); proj D
must then be Dy, itself.> However, as for head above, an additional
guard argument is needed in order to have a properly defined function
even in the irrelevant cases. Looking at the rules for D,s, we can take
bx = false for the guard and, in the rest of this chapter, proj D
will be written mpns D G. The guarded projection mpys is defined as
follows, with the help of a basic lemma stating that a Boolean cannot
be simultaneously equal to true and to false.

Fact true_false {z :B}: 2 =true — z = false — L.
Definition 7pus {2} (D :Dpsz):bx = false — Dys (g x) :=
match D with
| Dtz E = AG,match true_false £ G with end
| DIf 2 EDgyy = AG, Dy,
end.

€A term isomorphic to Dy, would not be enough, Coq is quite fussy about
structural ordering. For instance in N, y := Sz is a subterm of ¢ := Sy as expected,
but Sz is not a subterm of ¢ := S (S z), because here Sz is reconstructed from z.
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The Trojan horse used here is different from the former one used
for head, that was a term whose type reduced to L in the branch,
whereas the Trojan horse used for 7mpps reduces to a proof G of
b x = false, where x is actually the first component of D when
D is DLt x E. Here, G happens to allow us to derive again a proof of
L but, in general, the purpose of a Trojan horse is to prove specific
propositions other than 1. Also, the reader might here recognize the
pattern match ... : 1 return P with end discussed in Section 2.7
that is both of arbitrary type, here Dy (g ) : P, and structurally
smaller than any term which inhabits an inductive type. Here P is
Dys (g x), whereas P was, e.g. T in False_loop in Section 2.7.

Now, we can write recursive calls by feeding an additional argu-
ment containing a proof of bax = false. To this effect, we use again
a Trojan horse which is here a proof of bx = b,, where b, is going
to be the constructor (true or false) corresponding to each case, as
specified in the first line of the match construct.” We then write ns
and nsa as in Figure 2.

That is it! We can then prove the expected lemma as a corollary
of a statement generalized on all n.

Lemma ns_nsa_n_direct:VznD,nsaxn D=nsx D+ n.
Corollary ns_nsa_direct:VaxD,nsax 0D =nsxz D.

Proof. The main lemma ns_nsa_n_direct is proved by depen-
dent induction on D, implemented as a Fixpoint. The proof is very

Fixpoint ns z (D :Dpsx) {struct D} : N:=
match bz as b, return bx = b, — _with
| true =X, 0
| false = \G, S (ns (9) (mpns D G))
end eq_refl.
Fixpoint nsa x (n:N) (D :Dysx) {struct D} : N:=
match bz as b, return bxr = b, — _with
| true = A, n
| false = AG,nsa (gz) (Sn) (mpas D G)
end eq_refl.

Fig. 2. Coq terms for ns and nsa, by structural recursion on D : Dps .

"This corresponds to the trick used for a long time in Coq for the implementation
of the tactic case_eq.
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short because the above definitions of ns/nsa provide the following
equalities (even conversions, actually) for free:

ns 0 DIt =0 ns z (DIf y D) =S(ns (gx) D),

S

nsaO0n D =n nsazn (DI yD)=ns(gz) (Sn)D.

S

(1)
O

The guarded projection mpus can also be obtained in a cheap
but (possibly) mysterious way, using the inversion tactic of Coq.
The reader is invited to display the rather heavy term produced by
inversion and to guess why the result is structurally smaller as
desired (even though Coq says it is so). The explicit yet small ver-
sion shown above is yet another variation on small inversions [11].
As the needed guarded projection is a special case of inversion, we
use indifferently for it the name guarded projection (in general, omit-
ting “guarded” for brevity) or inversion in the rest of this chapter.
The algorithm considered here in LISP style, with a recursive call
inside an else branch. However, in most situations, recursive calls are
inside a branch of a more general pattern matching. A more appro-
priate technique for writing suitable projections will be presented in
Section 5.

3.2. Inductive definition of the graph of
a recursive function

Note that the argument D for the domain is involved in a deep way
in the above formalization, which makes it very easy to get lost in a
dead end. For instance, the value returned by ns = D seem to depend
on the particular proof D given in input. Though it cannot be the
case, because informative values do not depend on proofs in the IP uni-
verse, this meta-theoretical knowledge cannot be directly exploited
and for more complex functions, the presence of D becomes very
troublesome. In general, there is no convenient way to derive recur-
sive equations such as the ones given in (1), which provide crucial
inference steps.

For this reason, and another related to nested recursion to be
developed later, we introduce an additional inductive definition
(denoted here by G with subscripts).

Now the second central idea of the Braga method: as for its
domain D, the inductive relation G mimics the structure of recur-
sive calls, but in contrast with D, the relation G takes the output as
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well into account, providing a description of the input-output relation
between arguments and result.

We call this relation the computational graph of the function.

3.2.1.  The algorithm without an accumulator
For instance in the case of ns, we have the following inductive rules,

with the infix notation z g y for G zy used as

Inductive Gpg: X = N—-P:=
bx = true br =false gx+rpso0

T s 0 T +ps SO

Observe that Gyg is nothing but a relational and agnostic presenta-
tion of ns, without any claim about termination and partial correct-
ness properties. On the other hand, D, is obtained from Gyg just
by removing the output. Indeed, favoring the prefix notation Gus = o
over the infix x 5 0, as side by side comparison gives

bx = true — bxr = true
Gps z 0 Dps
bz =false Gys (9z)0 bz =false Dys(97)
GDS T (S O) ID)ns x

The prefix notation makes it particularly straightforward to infer
the custom domain predicate D,s from computational graph Gyg: for
each rule of Gys, map it to a rule of Dypg by erasing the output/right
argument of the G,¢ predicate.’

Then a property which is both very useful and easy to show is
that the computational graph is the graph of a (partial) function, i.e.
a deterministic relation.

Fact Gupe_fun x 01 09: X Hou5 01 — T Hops 00 — 01 = 09.

Note that this simple idea of erasing fails with nested recursive algorithms
but can be nonetheless circumvented using the graph to recover lost outputs, see
Section 7.

page 330
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Proof. Rewrite it as Vz 01, T 5 01 — V02, & +rps 02 — 01 = 09
and proceed by induction on x +,s 01 and inversion of x g 09. O

In most practical situations, one first defines the computational
graph, then derives the inductive domain from it. The point of defin-
ing Gy is to enable us to state the type of a slightly enriched version
of ns, where the type of the result embeds a postcondition expressing
that inputs and outputs are related according to Gys:

Va, Dps © — {0 : N |z +>pg 0}. (2)

A function having this type, called ns_pwc (for packed with confor-
mity to the computational graph), can then be defined as in Fig. 3.
The heart of this code is inside the refine tactic, where we can
recognize the contents of the expected function and additional stuff
related to the structural decrease of D on the one hand, outputting a
Y-type instead of a natural number on the other hand. The positions
marked by O and O. denote terms for postconditions to be filled
later, using very basic tactics in this case:

e for O]: constructing a proof of = 5 0 from a proof of the guard
G of type bx = true;

e and for OJ: constructing a proof of g +ys So from a proof G of
bx = false and a proof C, of x 5 0.

Note that in the actual Coq code, these marks /0. are replaced
with the _ joker that the refine tactic interprets as a hole to be filled
later on. Finally, we point out that the proof ends with the keyword
Qed — as opposed to the keyword Defined — registering ns_pwc as
a term opaque to evaluation. Because ns_pwc outputs a result and a

Fixpoint ns_pwc (D : Dys ) : {0 | & —rps 0}.
Proof. refine(
match bz as b, return bx = b, — _with
| true = AG,exist 0 O]
| false = )G,
let (0,C,) :=ns_pwc (gz) (Tpas D G)
in exist _ (So) O]
end eq_refl).
[O7] : now constructor 1.
[©04] : now constructor 2.
Qed.

Fig. 3. Coq proof term ns_pwc of the conform-by-construction ns algorithm.
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proof of its conformity, there is no need to be able to compute with
this term: conformity to Gy is enough to completely characterize the
output value w.r.t. the input value.

As for the above mentioned direct definition of ns, the domain
argument in the recursive call is mpys D G, we already know that it
is structurally smaller than D. This termination certificate can also
be delayed with a _ joker if needed.]

Using the projections m; and mo of the standard library available
on X-types, we derive

Definition ns x (D :Dysx) := m(ns_pwc z D).

Fact ns_spec z (D :Dpsx): x+opsnsx D.

where ma(ns_pwe x D) is used as witness of conformity of the out-
put value. The OCaml code automatically extracted from ns is as
expected.”

let rec ns # = match bz with true — 0 | false — S (ns (g z)).

3.2.2.  The algorithm using an accumulator

Next we proceed in the same way with the second function. Its recur-
sive equations are encoded in the computational graph:

Inductive Gpga : X = N—=>N—-P:=

br = true br =false g¢gx;Sn>pga0

T;MN Frpsa N ;N Frpsa O

Again, we use the mixfix notation x;n — s, 0 to denote the predicate
Gpsa xn o and we show that G,g and Gpg, are related as follows:

T —ps 0 — ;0 —pga 0. (3)

This is a special case of x +—ps 0 — Vn, x;n Huga 0 + n, which we
prove by induction on x 5 0.

ISee, e.g. the example of depth-first search in Fig. 17 on page 354.

XNon-essential remark: this is the case if g and b are declared with the keyword
Parameter, making them constants to be realized at extraction time. Otherwise,
parameters g and b are added to ns according to a scoping feature of Coq called
Section and then appear in the actual extracted code.



June 18, 2021  9:50 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FAS5

The Braga Method: Extraction of Compler Recursive Schemes in Cog 333

Fixpoint nsa_pwc & n (D : Dpsx) : {0 | ;1 —rpsa 0}
Proof. refine(
match bx as b, return bz = b, — _ with
| true = A\G, exist _n O
| false = A\G,
let (0,C,) :=ns_pwc (gz) (Sn) (s D G)
in exist _o O}
end eq_refl).
[O]] : now constructor 1.
[O?] : now constructor 2.
Qed.

Fig. 4. Coq proof term nsa_pwc of the conform-by-construction nsa algorithm.

The domain of nsa does not depend on n, so we still use Dy
to define a function nsa_pwc : Vo n, Dy x — {0 | x;n +psa 0}, fully
displayed in Fig. 4, and along the same lines as for ns_pwc. Then we
get nsa : Vo n, Dy x— N which satisfies Van D, x;n —yusa nsa x n D
by projecting the output X-type.

Finally we can reason on Gyg, to prove properties on nsa. A first
useful property of Gyg, is its determinism, i.e.

Fact Guea_fun x n 01 02: Z;M b dpga 01 — T;MN +rpga 02 — 01 = O9.

Proof. We proceed by induction on x;n +—pss 01 and then by
inversion of x;n Frpga 09. O

In addition to the conformity of nsa w.r.t. Guga, we also need its
completeness, that is, z;n —ypga 0 — VD, 0 =nsa x n D. This is an
easy consequence of the determinism of Gus, and of the conformity
of nsa w.r.t. Gpga. The desired theorem VrD,nsax 0D =nsz D
follows by combining the conformity of ns, property (3) and the
completeness of nsa.

3.3. Low-level and high-level properties

We can now prove the low-level termination property of ns: the
domain D¢ is as large as possible, encompassing exactly the input
values x for which an output value o such that z —,5 0 exists, i.e.
the projection of the computational graph Gys.

Fact Dps pGps: Va: X, Dysx <> Jdo: Y, x+—ps 0.

page 333
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Proof. For the only if direction, the required value is obviously
nsz D where D : Dy z, i.e. because of ns_spec, a value 0 s.t. 5 0
is precisely what ns outputs on its domain. For the if direction, it is
enough to show Vx o, x —,5 0 — Dy x and we proceed by induction
on the proof of the graph predicate x —,5 0. O

The process we followed so far is somehow automatic, meaning
that we only use the syntactic information available for the algorithm
ns. As a consequence, manipulating Dyg either directly through its
constructors or as the projection of G,g are not high-level ways to
manipulate the domain.

Of course, one needs human intervention to design interest-
ing/useful alternative characterizations. In the case of Dys, we can
for instance show:

Fact Dys_high_level (x:X): Dysz <> In: N, b(¢"z) = true

since a call to g on x generates a sequence of subcalls ¢°(z),
g*(z),g%(x),... until the first of those input values gives b the value
true. Note that the above result could be strengthened further
because ns actually computes the first possible match for b (¢" x) =
true, if there is one at all; see ns_partially_correct in the Coq
code.

4. Accessibility, Well-foundedness and
Induction—Recursion

The main tool for ensuring termination in the Braga method is the
inductive definition of a suitable domain D derived from the code
of a functional algorithm under study f, together with associated
structurally decreasing projection functions 7p as illustrated in the
previous sections. However, a traditional approach to recursion is to
guess a well-founded relation R which is expected to support the ter-
mination of f in all cases. These two views can be reconciled to some
extent by focussing on the constructive definition of a generic acces-
sibility predicate Acc parameterized by R, which is the main ingredi-
ent in Coq for defining well-founded relations. The usual approach to
defining well-founded recursive functions in Coq consists in provid-
ing a suitable R as an eureka, then to prove that R is well-founded
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and finally to feed a standard high-level feature of Coq (e.g. Program
Fixpoint or Equations) with R.

Instead of directly writing the domain D as a custom inductive
predicate, an alternate approach is possible, by defining first a binary
relation sj}c along similar lines, again by looking at the shape of the
recursive calls in f. When <3}C happens to be well-founded, tools
inspired by the traditional approach can be used as well.

Once again, a strong point of the Braga method is that
it works even when <3§ is not well-founded.

This distinguishes the Braga method from the above mentioned
approaches because it allows to postpone the study of termination,
as long as needed.!

In this variant of the Braga method, Acc is seen as a generic D
predicate parameterized by 43?. An interesting benefit of this variant
is that the key projection function, to be used in recursive calls for
building a structurally smaller domain argument, is defined once for
all: it is just Acc_inv of the standard Coq library. In the opposite
direction, one can also consider Acc as a special inductive relation
and Acc_inv as a particular (though important) case of a projection
function 7p. Things are partly simplified because Acc has a single
constructor. However, a light contribution of the second author to
the Coq standard library (in Logic/ConstructiveEpsilon.v)shows
that a dedicated domain predicate sometimes provides code which
can compete with Acc.

This section ends with an introduction to induction—recursion,
which can be used in association with the Braga method to write
fixpoint equations of the recursive function under study.

4.1. Well-founded recursion

Well-founded recursion is a principle that allows to justify termina-
tion of recursive calls based on a well-founded order (or relation).
Considering a relation R : X — X — P, it is well-founded if no infi-
nite descending chain of the form ... Rz, R ... R 1 R x( exists

'This does not make, e.g. Equations incompatible with the Braga method at
all. In fact, Equations can perfectly be used in conjunction with it.
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in the type X. This can be refined by defining the well-founded part
of the relation R as the xg which are not the starting points of infi-
nite descending chains, and then simply characterizing well-founded
relations as those where the well-founded part is the whole type X.

The classical characterization of the well-founded part of R is
given an inductive counterpart in Coq using the accessibility predi-
cate:

Inductive Acc {X :Type} (R: X - X —P) (z:X):P:=
Vy: X, Ryx — Acc Ry
AccRz

[Acc_intro]

and one can indeed show that Acc Rz entails no infinite descending
chain starts at xg. However, the converse only holds under some clas-
sical assumptions, typically excluded-middle and dependent choice.
Hence the Acc predicate is usually considered the proper way to
characterize well-foundedness in inductive type theory.

Definition well_founded {X} (R: X — X —P):=Vz: X, AccRuz.

Defined this way, well_founded satisfies most of the closure prop-
erties of (the classical characterization of) well-foundness including
the (transfinite) recursion principle:

Theorem well_founded_induction_type {X R} (-:well_founded R) :
VP : X — Type, (Vm :X,(Vy: X, Ryx — Py) %Pm)
—Vr: X, P

A way to read this statement is the following: each time one needs
to show Vz, P z, i.e. provide a dependent function mapping x : X to
a value in type Pz, one can further assume the induction hypothesis
IH, :Vy, Ryx— Py at x, which provides Py for all the values y : X
that are R-smaller than x.

In many cases, the programmers seek a simple relation R of the
form R:= Azxy: X,|z] < |y] where |-] : X —Nis a N-based measure
and < : N— N — P is the strict natural order. For instance, fact
algorithm of Section 2.6 or breadth-first search algorithms can be
implemented using measure-based induction [12].

Note that although it is a very common strategy, it is not always
applicable, e.g. the decreasing measure might simply not be total
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computable, as in the case of the Tortoise and the Hare algo-
rithm [13]. In such case, one could of course use Hilbert’s description
operator as is done in HOL4 for instance [14], but at the cost of
adding a non-logical axiom to Coq that is highly incompatible with
the constructive world view, and potentially inconsistent with other
logical axioms.™

Although well-founded recursion via well _founded induction_
type is more general than measure-based recursion to define non-
structurally recursive functions in Coq, it has a major drawback: one
needs to devise the well-founded relation R before actually defining
the recursive function.

First of all, it might be the case that no such well-founded relation
exists, typically for partial algorithms. But even for totally defined
functions, complications might become unbearable when writing
nested recursive functions that call themselves on their own output
values like, e.g. McCarthy’s F91 function [15].

4.2. Accessibility-based recursion

Coming to theoretical foundations of the herein called Braga method,
we revert back to the definition of the Acc predicate. It allows to
implement and extract not only total functions but also partial func-
tions via its fully-dependent recursor:

Theorem Acc_rect’ X R (P :Vz, Acc Rz — Type) :
(Vm A, (Vy (Hyz : Ryz), Py (Acc_invAxyny)) — PxAI>
—Vx A, PxA,

which reads quite differently than well_founded_induction_type
above. Indeed, the well-foundedness of R has disappeared and instead
we witness the accessibility A, : Acc Rx of x as an extra argument.

But before describing further the interpretation of the type of
Acc_rect/, let us recall Acc_inv, the inversion/projection lemma for

"That is, such an addition could silently corrupt Coq to the point where L
becomes provable.
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the Acc predicate implemented with a trivial pattern matching:

Definition Acc_inv {X R} z (Ay : AccRz):Vy, Ryx — Acc Ry :=
match A, with Acc_intro - H = H end.

This definition ensures that whenever one applies Acc_inv A, to any
y such that Ry x one can get a proof of Acc Ry which is also struc-
turally smaller than A, : Acc Rx.

Now we give a possible interpretation of Acc_rect’ as an induction
principle for defining a partial function f. Let us assume that we
can somehow ensure the identity Dy = Acc R between the intended
domain Dy of f and the accessibility predicate Acc R. We then write
D, : Dy x instead of A, : Acc Rz and we are in position to define a
partial, dependent function

f: Vo (Dy:Dyx), Pa D,.

In this case, applying Acc_rect’ reads as following: provided x and
a proof D, : Dsx, while building a value in Px D, we can further
assume the induction hypothesis at x

IH, : Y(y:X) (Hyy : Ryx), Py (Acc_inv Dy y Hyy).

That is, we can assume a value in Py D, for every y that is R-below
x, where D, := Acc_inv D, y H,, is a particular proof for Dy build
from D, and H,, : Ryx. Further note that the type family P may
depend not only on z but also on the proof D, of D x.

We follow up with a detailed review of the code of Acc_rect’
because it contains important ideas that the Braga method also
makes use of. For P :Vz, Acc Rz — Type satisfying the assumption

Hp :Vx A, (Vy (Hye : Ryz), Py (Acc_invAmyHym)) — Pz A,
we may define Acc_rect’ as the following fixpoint:

Fixpoint Acc_rect’ z (A, : Acc R z) {struct A,}: Pz A, :=
Hp xz A, ()\y Hy,. Acc_rect’ y (Acc_inv A, y Hym))

This code is a slight variant of the one occurring in Coq’s stan-
dard library module Wf under the name Fix_F. It shows precisely
how structural recursion is used to achieve Acc-based recursion and
a fortiori well-founded recursion. The structurally decreasing argu-
ment in the definition of Acc_rect’ is the proof A, : Acc Rx and the
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guardedness condition is ensured by the pattern-matching on A, per-
formed inside the Acc_inv term: Acc_inv A, y Hy, is recognized as a
subterm of A,. For Coq specialists, we also point out that Acc_rect’
does not perform harmless (large) elimination: there is no elimina-
tion from P to Type because Acc_inv is applied only when building
the struct argument of sort P, i.e. this is just a regular elimination
from P to P.

But, these theoretical considerations put aside, aren’t we back to
square one? We still need to find R such that D; and Acc R match,
or at least that Acc R covers the domain Dy.

Fortunately, concrete algorithms like those defined by recursive
equations always contain a canonical relation that can be used for
R. This is the recursive subcall/call relation below denoted by the <*¢
infix symbol. To understand this characterization of the domain Dy =
Acc ¥ of f, one could think in classical terms where Acc < « holds
for the values x such that no infinite <§§—decreasing sequence exists.
As (4) <% @ captures precisely the direct recursive subcalls that
can be triggered by a call at x, Acc <% & means termination of any
sequence of recursive subcalls starting from x, hence the termination
of the computation at x.

4.3. The domain as subcall/call accessibility

We illustrate this characterization of the domain Dy = Acc —4?‘: on the
previous example of ns of Section 3.1, and we later show why this
example challenges well-founded recursion. Consider the following
algorithm described by the OCaml program:

let rec ns x = if bx then 0 else 1 +ns(gx),

where b : X — B, g : X — X are already defined total functions. If
one picks R a relation for which R (gx)x holds for any z : X, then
using via IH, (gx), one can access the value ns (g ) while defining
ns .

Of course, one cannot simply choose any such relation R because
it may well be that Rx x holds for any x and thus Acc R would give
an empty domain." To avoid such a situation, we pick the smallest

"Think, e.g. gx = x.
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possible relation <5 : X — X — P linking calls with subcalls that

~'ns
actually occur, here simply defined by the single inductive rule

bxr = false
Inductive <3¢ : X - X - P:= -

~'ns

go <% @
Note the bax = false premise which restricts the rule on the actual
recursive calls, i.e. the subcall ns (gz) does not occur when bx =
true.

Given this definition of D]  as Acc <5¢, we can use Acc_rect’ to
give a first implementation in proof style:

Definition nspcc : Vo, D,z — N.
Proof.
induction 1 as [« - IHp | using Acc_rect’.
case_eq (bx); intros G.
+ exact 0.
+ apply S, (IHp (g9 x)).
now constructor.
Defined.

However, this definition makes it really hard to prove some critical
properties of the resulting term nsy... For instance, we would like
to be able to show the equation nsy.c x D = 0 whenever bx = true
holds, and the fixpoint equation nspccz D = S (nsACC (ng’)) for
some D’ : D, x when bx = false. But this can be very difficult
because opaque proof terms often stand in the way of the evaluation
that would normally give them to us for free, as reflexive identity. To
make those proof terms transparent might involve opening a large
amount of proof terms of lemmas of the standard library (due to
dependencies), and such proofs might involve very large terms satu-
rating the type-checker, which is precisely the reason why they were
made opaque in the first place.

Another critique is that the above term ns,.. somehow hides the
fixpoint computation behind Acc_rect’ of which, unless inlined, the
code is not visible. To solve both of these problems, we use the com-
putational graph Gpg : X — N — P as defined in Section 3.2 encoding
the relation x +—,5 0 to be read as ns terminates on input value x and
outputs the value o, or ns x = o for short. Instead of just outputting
a value of type N, we write the fully specified ns_pwc, . version of
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ns, packed with correctness as
ns_pwc,.. Vo : X, Dl x — {0: N |z 5y 0}

We furthermore inline Acc_rect’ inside the definition of ns_pwc,.,
to fully display the computational content of the term in Fig. 5. We
can then project the output 3-type to get

Definition ns x (D : D) x):= m(ns_pwc,., D).
and its specification
Fact ns_specz (D:Dl x): x+psnsz D.

with mo(ns_pwc,.. # D) containing the conformity proof of the out-
put value.

We can also recover the “natural” constructors mimicking those
of the custom domain predicate Dpg as two constructors DL and D2,
below which serve as an alternative to the Acc_intro constructor
implied by the definition D/ := Acc <5¢:

DL :Va, bz = true—D,_ z D2 :Vz, bz = false—D._(ga) =Dl x

The fixpoint equations can easily be deduced by combining ns_spec
and the functionality of Gps_fun. As ns_pwc, . is packed with its
conformity with Gyg, there is no need to unfold or evaluate its expres-
sion to get these next two equations

nsz (DL, # E)=0 and nsz (]D)IQI/S:UED):S(ns (9z) D)

as witnessed by the Coq Qed directive ending the proof term of Fig. 5,
intended to be opaque to evaluation.

Fixpoint ns_pwc,. = (D : D/  x): {0 |z s 0}.
Proof. refine(
match bx as b, return bx = b, — _with
| true = G, exist _0 O
| false = AG,
let (0,C,) := ns_pwc,.. (92) T
in exist _ (So) O
end eq_refl).
1,2:cycle 1. (* reordering of proof obligations *)
[7'] : apply Acc_inv with (1 := D); now constructor.
[O7] : now constructor 1.
(O3] : now constructor 2.
Qed.

Fig. 5. Coq fixpoint for ns_pwc, . with Dy, := Acc <3e.
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This construction with D. defined as Acc <3S provides exactly
the same tools as the construction with custom domain predicates.
We could now proceed with the study of the high-level properties of

ns in a similar way.

4.4. A failure of well-founded recursion

In the section, we discuss how this particular algorithm scheme of ns
challenges well-founded recursion, contrary to Acc-based recursion.
Let us consider b : N — B to be the identity test with 1, i.e. bz :=
x=1and g : N— N to be defined such that

n/2 if n is even
an = . .
3n+1 if nis odd.

Then the computation of ns generates the Syracuse sequence ¢° x,
g'x, g>x, ...until it eventually reaches the value 1. It is easy to
show that the domain of ns in this case is exactly the values x for
which the Syracuse sequence from z ends up in the cycle 1,4,2,1.
This follows directly from Dys_high_level (see page 334).

Hence Dy /D) is a predicate of which the totality problem is still
unresolved at the present time and b.t.w., despite its very simple
statement, a highly difficult mathematical problem [16]. A fortiori,
there is no known measure nor well-founded order that could be used
to justify the eventual termination of the Syracuse sequence into the
length 3 cycle.

Given that well-founded recursion assumes the domain to be total,
there would be no way to define this instance of ns unless at some
point, someone comes up with a totality proof for D/ moreover based
on a well-founded relation. On the contrary, Acc <;%-based recursion
(or custom domain predicates) are perfectly at ease with partial func-
tions and the implementation of the Syracuse sequence can trivially
be extracted as the above instance of ns.

4.5. Inductive—Recursive schemes

Induction—recursion consists in the simultaneous definition of a pred-
icate and a fixpoint such that the predicate might make reference
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to the fixpoint values. The concept was formally introduced by
Dybjer [17] and used widely for the representation of partial recursion
in type theory, e.g. in the seminal work of Bove and Capretta [10].

A Dbit at odds with the Coq understanding of accessibility
characterized by the specific but parametric Acc predicate, the
domain predicates used for inductive-recursive scheme by Bove and
Capretta [10] are also called accessibility predicates. To us, they
look much more like our custom inductive domain predicates, how-
ever with the main difference that their accessibility predicates must
belong to sort Type because the fixpoints to which they are attached
proceed by pattern matching and recursion on them.

Anyway, Coq does not currently implement inductive-recursive
schemes. Also, in the peculiar distinction between “non-informative”
propositions in P and “informative” Types that is crucial for extrac-
tion in Coq, pattern matching based on domain constructors in P
would not be accepted: it is already forbidden for regular fixpoints
definitions.®

Following Bove and Capretta [10] and the fully predicative world
view of Agda [18], one could of course consider Type-based domain
predicates in which case pattern matching on them would be allowed.
However, this approach would lead to terms with an entirely differ-
ent computational contents: computation would proceed by match-
ing on domain predicates instead of matching on input parameters.
This would of course reflect into the extracted terms which would
contain those informative domain arguments. But erasing the non-
informative domain argument is precisely the feature we are using to
get clean extracted terms [19)].

Nonetheless, our approach is compatible with induction—recursion
in the sense that we can simulate those schemes in Coq. In fact,
they form a quite convenient approach at proving partial correct-
ness properties as an alternative to induction on the computational
graph predicate. In practice, they allow to work with partial func-
tions instead of relational reasoning.

Simulating induction-recursion consists in the implementation
of a (proof irrelevant) eliminator (i.e. induction principle) for the
domain predicate and of fixpoint equations for the function.

°With the exception of the singleton elimination rule, see Section 2.3.
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This approach is favored in Sections 6 and 8 while inductive-recursive
schemes and computational graph-based induction are compared in
Section 7. In this work, we do not provide a systematic description
of induction-recursion but instead favor examples to hint at how it
behaves in practice.

5. Odd Functions on Lists

Objectives and disclaimer. In most cases, recursive calls are inside
branches of a pattern-matching construct, rather than in a simple if-
then-else construct. The components of the constructor currently
analyzed can then be directly exploited in the projections 7 intro-
duced with the first central idea of the Braga method, see Section 3.
To illustrate this, we consider here basic functions on lists, that are
neither complicated nor efficient in any way. But they happen to pro-
vide an unusual and in some sense natural reference for well-known
functions, especially OCaml fold_left which seems never to be for-
mally specified. We even consider a version which is not even directly
programmable in OCaml. This becomes the case after a simple trans-
formation but anyway, the reference program obtained in this way,
though simple, does not fit the simple scheme by structural recur-
sion. Thanks to the Braga method we can reason on these functions
(and even their ideal non-programmable version) and show that they
are related as expected with the standard efficient versions.

5.1. On the correctness of fold left

Let us start with a well-known example, reverting a list, which is tra-
ditionally presented in two ways: a simple version naive_rev which
recursively uses an auxiliary function consr, such that consr u y,
also denoted by u +:y, is the list u postfixed by the single element y
and a more sophisticated version eff_rev using an accumulator. It
is well known that eff_rev is better behaved: it is linear-time in the
length of the input, whereas naive_rev is quadratic-time. However,
naive_rev is simpler and better at proving algebraic properties. So
it is common to consider it as a specification of revert, and to prove
that eff_rev returns the same result as naive_rev. In this approach
the associativity of the append function + plays a crucial role, given
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the fact u +:y = u + [y]. On the other hand, eff_rev is a special
case of the fold_left function. But what should be the specification
of fold_left? Things become clearer if we (attempt to) write the
recursive equations of naive_rev in the converse way.

naive_rev [] =]
naive_rev (y:: u) = naive_revu+:y

naive_rev_conv [] []
naive_rev_conv (u +:y) =y :: naive_rev_conv u.

Similarly, a reference version of foldl_ref f by would be:

foldl_ref f by [] = by
foldl_ref f by (u+:2) = f (foldl_ref f by u) z.

These equations, which formalize common informal explana-
tory drawings, correspond to nothing but the mirror version of
fold_right. Note that, in these equations, f and by are constants.
In particular, bg is not an accumulator. Therefore, in the rest of this
chapter, we consider that f and by are given once for all and we
simplify the previous equations as follows.

foldl_ref [|=by and foldl_ref (u+:2)= f (foldl_ref u) z.

Figure 6 contains a program in OCaml syntax which reflects those
equations, but this is not a regular program because the second pat-
tern is written with a function call instead of constructors. From an
algebraic perspective, the pair ([],+:) shares the same desired prop-
erties (injectivity, discrimination and covering) as ([],::) for decom-
posing a list. But beyond algebraic meaningfulness, an explicit way
to get the components of each “constructor” is needed.

let rec foldl_ref [ =match ! with (* fake *)
Il —=b
| u+:z— f (foldl_ref u) z

Fig. 6. A fake ideal reference program for fold_left.
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Nonetheless it is possible to recover a regular functional program
after a small additional work. Let us introduce an auxiliary mnon-
recursive type 1r defined in OCaml syntax as follows.

type o 1r = Nilr | Consr of « list * a.

The first argument of Consr is purposely a list, and not a 1lr.
We then consider the regular reference OCaml program foldl_ref
(without parameters f and bg) given in Fig. 7. In this program, 12r
is the obvious bijective function from « 1list to a 1r, whose inverse
is the even more obvious function r21 which interprets Nilr by the
[] constant and Consr by the +: operator.

In other words, the constructor Consr is a concrete reflection of
the +: function. The regular pattern matching on the left-hand side
of Fig. 8 can be seen as the actual meaning of the fake scheme on the
right-hand side which is suggested by the above recursive equations.

Note that naive_rev_conv can be implemented using the same pat-
tern, yielding a program having the same complexity as naive_rev.

On the same model, foldl_ref of Fig. 7 can serve as an ineffi-
cient, but clear reference program for the usual fold_left. In order
to provide a formal Coq proof of the equivalence between them, a
suitable definition of foldl_ref in Coq is required, as well as tools
for reasoning about it. The above recursive function does not fit into
the usual scheme of definitions by structural recursion, but we can
use the Braga method.

First, we introduce in Fig. 9 a relational presentation G¢y4; for
the graph of foldl_ref. We consider Gg,.4; as a binary relation
H¢1 between an input in L A and an output in B, with additional

let rec foldl_ref [ = match 12r [ with
| Nilr by
| Consr (u, z) — f (foldl_ref u) z

Fig. 7. A regular reference program for fold_left.

match 12r [ with match / with (¥ fake *)
| Nilr — ... 1] — ...
| Consr (u,2) — ... [ut:iz— ...

Fig. 8. Implementation of a fake match.
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Inductive Ggpyq :LA—=B =P and Ggr:lrA—-B—-P =

U1 b 12r [ 1y b

Nilr 1. bg Consr u z —rs1y f b2 [ b

Fig. 9. Basic relational presentation of fold_left.

U b
[]’—)flbo u+:Z>—)f1be

Inductive Ggpq :LA— B —P:=

Fig. 10. High-level relational presentation of fold_left.

Dsorar u

Deoran H Dsorar (’u, +: Z)

Inductive Djo1q1 : LA = P:=

Fig. 11. Inductive definition of the domain of fold_left, based on Fig. 10.

constant parameters f and by. In situations where more details are
needed we will use the heavier notation Gf;blodl. In order to define
Gso1q15 @ Coq version of 1r and 12r is needed first. This is an easy
exercise, as well as the definition of r21 and the proofs that 12r and
r21 are inverse of each other.

This presentation is a straightforward translation of the program
given in Fig. 7. However in the present case, it is more naturally
described in Fig. 10, with +: instead of Consr, pretending that we
are going to directly implement the fake match of Fig. 6 without the
artificial intermediary of 1r.

The next step is to write the inductive definition of the domain
Dtorar Of Gggrqr- We just ignore its last (output) argument. The
constant parameters f and by are irrelevant here since they are only
used for computing the output. A first definition of Dso147 is given in
Fig. 11. Actually, an equivalent predicate D1, is used in order to fulfill
an objective of this section. Note that these predicates are suitable
to all functions which visit lists from right to left. A projection 71, :
D1, (u +: 2) — D1, u returning a structurally smaller term can then
be blindly defined using the inversion tactic of Coq, however an
explicit definition will be given in Section 5.2.

A conform-by-construction fold_left can then be defined as in
Figure 12. As for ns, the heart of this code is inside the refine
tactic, with a crucial use of mp;, in the recursive call and two proof
obligations for the postcondition. A technical difference is that here



June 17, 2021 16:36 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FA5 page 348

348 D. Larchey-Wendling € J.-F. Monin

Let Fixpoint foldl_pwc [ (D : Dy, 1) : {b|l+>s b}.
Proof.
gen_help | G;oy4;; apply up_11P in D; revert D.
refine (match 12r [ with
| Nilr = AD T, exist _by O
| Consruz=ADT,
let (b,C}) := foldl_pwc u (mp,, D)
in exist _ (f b2) O}
end).
[C?f] : apply T'; constructor 1.
[03] : apply T; constructor 2; exact Cj.
Qed.

Fig. 12. Coq proof term foldl_pwc of the conform-by-construction foldl
algorithm.

we have two Trojan horses. The first one is D whose type D1, [ has
been replaced by Dy, (r21 (12r()) using up_11P, and the second one
is T : Vy,r21 (12rl) 41 y — [ —¢1 y, introduced by gen_help.
Lemmas up_11P and gen_help are justified by a simple rewriting
step. In this way, the pattern-matching of 12r [ changes expressions
r21 (12r [) respectively by r21 Nilr and r21 (Consr u z) in the two
branches. In the first, we get D : Dy, [ and T : Vy, [| =1y — [ =5
y. In the second we get D : Dy, (u+:2) and T : Vy,u+: 2z g
y — 1y, so everything is in place for feeding mp;, and proving
the postconditions.

As for ns, we easily get a Coq version of foldl_ref and a proof
that it satisfies G,14; using the standard projections on X-types m;
and mo. The extraction of foldl_ref yields exactly the expected
OCaml code.

In this case study, we are interested in proving that the usual
(linear-time) implementation of fold_left returns the same result
as foldl_ref. To this effect we first define this function (where f is
a hidden parameter) by easy structural recursion in the list in input,
and we prove that it is complete w.r.t. Gggpq4;-

Fixpoint foldlbl: B :=
match [ with [|=0b | x:]= foldl (f bx) [ end.

Theorem foldl_complbl: [+>¢1b — b=7fo0ldl by l.

The proof is by trivial induction on [ +¢; b, using a simple lemma
saying that foldl f b (u +: 2z) is always equal to f (foldl f b u) z.



June 17, 2021 16:36 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FA5 page 349

The Braga Method: Extraction of Complex Recursive Schemes in Cog 349

Finally, we get the expected corollary, expressed with an explicit f.

Theorem foldl_equiv_partial fbl (D :Dq,l):
foldl fbl==foldl_ref fbIl D.

Actual termination is obtained separately and total correctness
of fold_left is just a special case of fold_equiv_partial. As
expected for such a very simple case study, the proofs are very light,
between one and three lines of elementary explicit scripts without
automation or heavy machinery.

Back to the revert function, we can prove, along the same
approach, that eff_rev returns the same result as naive_rev_
converse, without referring to an alien function (+) and its alge-
braic properties. In particular the graph is nicely symetric. Its domain
is D1, the same as for foldl_ref.

5.2. Projections

We define here the projection used in order to have a clearly struc-
turally smaller domain argument in the recursive call of foldl_pwc.
Though Dgfe191 can indeed be used, we replace it with the equiv-
alent definition given in Fig. 13, which is based on the graph of
Fig. 9. The main reason is that the auxiliary D, illustrates a situ-
ation which is close to most common examples, where the pattern-
matching is expressed against the main argument of the function (I
here). The projection is then easier to define, without interference
with additional equality proofs. We first focus on this part by defin-
ing M1y : D1y (Consru z) — Dy, u as in Fig. 14. The term returned in
the interesting case is D,,, which is clearly the intended subterm of
D. Note the use of a Trojan horse G : shape r, where shape r plays
the same role as is_cons at the beginning of Section 3. When D is
DY, then its type is D1, r with » = Nilr, so that shape r, the type
of GG, reduces to L.

Inductive D1, : LA —P and Dy :1lrA—P =

D, - Dy (12r 1
(D] e [DF, u 2] D 120) Di,]
Dy, {

Dy, Nilr Ds, (Consr u 2)

Fig. 13. Inductive definition of the domain of fold_left, based on Fig. 9.
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Definition shape (r:1rA):P:=
match 7 with Consruz = T | _= L end.
Definition mpir {uz} (D : Dy; (Consru z)) Dy, u =
match D in DD, r return
let up :=match r with Consr ug 29 = ug | - = u end
in shaper — Dy, up with
‘ Dgr Ug 2o Du(, = \G, Du(]
| DY, = AG,match G with end
end I.

Fig. 14. Projection function for Ds.

Definition lrleft r:shaper — L A :=
match r with Consru z = A_,u | - = AG,False_elim _ G end.
Definition mpyy {uz} (D : Dy (Consruz)) Dy u =
match D in Dy, r return VG, Dy, (1rleft r G) with
| DS, uo 20 Duy = AG, Dy,
| DY, = AG,match G with end
end I.

Fig. 15. Projection function for D, with an auxiliary function.

There is a subtle point about the u component of Consrw z. In
the course of the pattern matching of D, the type of D is originally
considered as being D1, r and the identity » = Consrwu z is lost: r
becomes either Nilr (the fake case handled by the Trojan horse G),
or Consr ug 2g, S0 we need to reconnect ug with . This is performed
by stating that the type of the result in the return clause is D, uo,
where ug is the first component of » when r is Consr ug zg. However,
up has to be defined in all cases for r, so a default value has to be
provided. In the case of the type 1r we could take the ad-hoc Nilr.
For the sake of generality it is much better to make no assumption
on the type of ug, but we just remark, as in [20] that a suitable
candidate is necessarily available at this stage: u itself.

Another option for mpy, is to first define an auxiliary function
1lrleft along the same lines as for head at the beginning of Section 3,
as illustrated in Fig. 15. In addition to r, this function takes a guard
argument G of type shaper. In the absurd case where r is Nilr, we
don’t mind to find a value, using for False_elim one of the functions
detailed in Section 2.7. This option is especially valuable if a safe

page 350
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version like False_loop or False_exc is chosen, avoiding harmless
Prop to Type eliminations issue.P

However, as for ns in Section 3.1, in the target algorithm, the
pattern-matching is expressed not against the argument of the func-
tion (I here), but on a function of [, which is here 12r. A similar work
is done with an auxiliary equality proof. The expression same G D,
just says that in the type of D,, 12r [ can be rewritten as consr u z
in the presence of G: [ = u +: z.

Definition 7py, {u z} (D Dy (u 4+ z)) i Dipu =
match D in Dy, [ return! =u +: z — _with
| D1, I D, = \G, mpy (same G D,.)
end eq_refl.

6. Potentially Non-terminating Depth-First Search

Depth-first search is an algorithm for traversing or searching tree-
based or graph-based data-structures [21]. The standard traversing
dfs algorithm is generally presented using the recursive equations of
Fig. 16 leading to potential non-termination on some inputs; see the
discussion ending the section for a non-terminating example on an
infinite graph. The structure of dfs is similar to that of our initial
example ns introduced in Section 3.1 but it has two input parameters
instead of only one.

Despite its apparent simplicity and its lack of nested calls, we
consider dfs to be a particularly interesting algorithm to imple-
ment as an illustration of the Braga method because of this potential

dfs v [] =
dfsv (z:l)=dfs vl ifxewv
dfs v (x 1) =dfs (v v) (succsz H 1) ifoxdov

Fig. 16. Equations describing the dfs algorithm.

PThis issue is not raised in the first version of 7p1, presented in Fig. 14 since
there is no need to eliminate G to describe the type returned by the match G
construct.
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non-termination, leading to a quite non-trivial characterization of its
(termination) domain, based on invariants to be discussed later on.
The ability to manipulate the partial algorithm and derive partial
correctness properties will be critical to the characterization of its
termination domain.

6.1. Preliminaries

We consider a potentially infinite graph described by a type V : Type
of wvertices and a function succs : V — LV finitely enumerating
the successors of a vertex. These assumptions restrict the study to
finitely branching directed graphs but these are standard assump-
tions for depth-first search.

To convert equations of Fig. 16 into a definitive algorithm, we
need to assume a membership test function over lists of vertices mem :
Y — LYV — B that we denote infix z €’ v := memz v, and with the
specification:

Parameter mem_true_iff: Vzov, x €’ v =true > x €.

Then we can show that

xE?v:trueHxEU

Coroll iff: V A
orollary mem_i T, {x € v = false < x & v.

Note that mem could be derived from an equality decider? over V,
but we refrain from specifying it more: the particular implementation
might depend on the specific structure of vertices to be more efficient
than a sequence of identity tests.

6.2. The computational graph and the domain

We define the computational graph Gges of the dfs algorithm as
a ternary relation Ggssvlo between the inputs (v [ : LV) and the
output o : LV, denoted with the mixfix notation vUI +>4 0, and to be

9usually implementable for data-types but, contrary to OCaml, not available in
any type in Coq, e.g. typically not available over function types.
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read as “dfs v [ outputs o”. It is composed of the three following
inductive rules that mimic the equations of Fig. 16:

Inductive Ggss : LV LYV LYV P :=

rev vlUl—go x&€v zivlUsuccsxHIlrrqo0

vU[] —=qwv vUzl—q0 vUx g0

The graph Ggss is a mostly straightforward formal encoding of the
otherwise informal equations defining dfs. For simplicity, here we
assume Ggss to faithfully encode those equations in its three rules,
but this will not matter at all for total correctness. It might only
be of relevance when considering the operational semantics of the
extracted code.

We show that the computational graph Gg¢s of dfs is functional,
i.e. it outputs at most one value on any given pair of inputs:

Fact Ggss_funvloj og: vilr—g01 — vUl+—g00 — 01 = 09.

Proof. By induction on the first predicate of type v L1 —4 01 and
inversion on the second predicate of type v U1 >4 09. O

We characterize the domain Dg¢s of dfs with a custom induc-
tive predicate following the three rules of the graph Ggy¢s but ignor-
ing/erasing the third (output) argument':

Inductive Dy : LYV LY - P:=
zev Dgesv |

—— D} D? l
]D)dfs v H [ dfs 'U] ]D)dfs v (117 . l) [ dfs vx ]
v Dgss (T::v) (succsx +1
7o Duse(riv) | L Dl
Dyssv (2 1)

The correctness of this characterization of Dg¢s w.r.t. the projection
of Ggss on its two inputs will be established later on.

"This works in the case of dfs because it is not a nested recursive algorithm,
but it will fail and must be refined in the case of, e.g. Paulson’s normalization
algorithm of Section 7.
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6.3. A term for dfs that conforms to its
computational graph

We have enough structure to build the fully specified dfs, that is the
algorithm packed with conformity to the computational graph Ggss
of type

dfs_pwc: Vul, Dgssv l — {o | vUI 4 0}

of which the exhaustive term reported in Fig. 17. It is implemented
as a Fixpoint of which the struct argument is the non-informative
domain predicate D : Dgss v . Using the handy refine tactic, we
mostly separate the computational contents presented in program-
ming style, from the logical contents presented in proof style (i.e. as
combinations of tactics).

The computational contents strictly follows the intended OCaml
algorithm that we wish to extract. Some of the logical contents, essen-
tially names for introduced hypotheses, must be reported in there but
we try to keep it is as minimal as possible.

The logical contents — composed of proof obligations — splits
into, on the one hand termination certificates such as 7,’, and on the

Let Fixpoint dfs_pwc v [ (D : Dgss v 1) {struct D} : {o|v Ul +4 0}.
Proof. refine(
match [ with
[[] = AD, exist_v O]
| z:l= AD,
match o €’ 1 as b return x €’ [ =b— _with
| true = \E,
let (0,G,) := dfs_pwc v | T
in exist _o O
| false = \E,
let (0,G,) := dfs_pwc (v ::v) (succsz H-1) T
in exist o0 O}
end eq_refl
end D).
1,2,4: cycle 1. (* reordering of proof obligations *)
[7\'] : now apply mp,,_1 with (1 := D).
[75] : now apply mp,,,_2 with (1:= D).
[O0]] : now constructor 1.
[OF] : constructor 2;auto;apply mem_iff;auto.
[0}] : constructor 3;auto;apply mem_iff;auto.
Qed.

Fig. 17. Coq proof term dfs_pwc of the fully specified dfs algorithm.
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other hand postconditions such as ;. In real Coq code, these names
all collapse to the wildcard _ (or joker) associated with the refine
tactic but we distinguish them in here to better document them.

For instance, the termination certificate 7," corresponds to the
subgoal:

[7'1’] feenz Vool LY, D Dygssv (1), E:x €'l =1true F Dyss v L.
We remark that the proof term for the inversion lemma below
Lemma 7y, lvxzl: Dgsv (xz:l)—x €’ v =true — Dyss v 1

must be carefully crafted because, used in the proof of the termina-
tion certificate 7,’, its output value of type Dgss v [ must type-check
as a subterm of its first (unnamed) parameter of type Dgss v (x :: ).
In modern versions of Coq, one can safely rely on the inversion
tactic to satisfy such a constraint. However, the obtained term might
not be short and if a cleaner implementation of such an inversion
lemma, is required, one could for instance switch to small-inversions
based on dependent pattern matching as discussed in Sections 3.1
and 5.2. We recall that it is standard to call such a result “inver-
sion lemma” because it corresponds to the inversion of the second
inductive rule defining Dg¢s, i.e. it implements pattern matching on
a term with this (second) outer constructor. Here we also call these
results projections because they recover the structural components
of constructors.

The second projection lemma mp,, _2 is used as termination
certificate 7)) and must thus satisfy the same structural decrease

property.

Lemma 7p,, _2v x:

Dass v (z::1) — 2 €’ v = false — Dgge ( :: v) (sucesz + 1),
Turning to postconditions like, e.g. O
[OZ)] ...,E:xe?l:true,Go:vl_ll»—>do Foldax:lgo

these are much simpler to establish and their proofs consist mainly
in the application of the corresponding rule/constructor of the graph
(Gfdfs-
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Now we can define dfs by projecting on the first component of
the 3-type {o | vUI 4 o} that is the output of dfs_pwc and we get
its specification with the second my(dfs_pwc v [ D).

Definition dfs vl (D :Dgyssv 1) := mi(dfs_pwc v [ D).
Fact dfs_specwv !l (D :Dgssvl): vUlr—gdfsvl D.

Since dfs is inherently a partial algorithm, let us pause a bit and
consider again our definition of the domain predicate Dgyss v | used
to define dfs. Of course, one could naturally consider the projection
of the graph Ggss on its inputs v and [ as a definition of the domain,
i.e. the pair of values v and [ for which there is an output value o
such that v Ul 4 o. It turns out that those two characterizations
are equivalent:

Theorem Dgyss_eq_Gass vi: Dgssv l <> Jo, vUI >4 0.

Proof. The only if direction (—) is trivial as an o satisfying v U
[ —4 o is precisely what dfsvl D outputs (according to dfs_spec).
For the if direction (+—), we show by induction on the graph predicate
v U1 4 o that Dgss v [ holds. For this, we just use the constructors
of Ddfs . U

6.4. Reasoning about dfs and its domain

We now complete our construction with a simulated induction—
recursion scheme for dfs [10,17] that will allow us to reason about
Dgy¢s/dfs. First a proof-irrelevant recursor/eliminator for the domain
Dgss, leaving out guessable arguments® as a joker _ for concision:

Theorem Dyss_rect (P : Vul, Dgss v I — Type) :
VolDi Dy, Pvl Dy — Pul Dy)
— EVU, P__ (D, v))
— (VwazlHD, P__D— P__ (D%, vzl HD))
— (VazlHD,P__D—P__(D}, vzl HD))
— EVUZD,PUZD).

*By guessable, we mean that they are recovered by Coq through unification.
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Then the proof-irrelevance of dfs, and finally the fixpoint equa-
tions:

Facts:
dfs_pirr :VwlDj Do, dfsvl Dy =dfs vl Ds.

dfs_fix_1: Vo, dfs _ _ (D)5 v) = v.
dfs_fix_2:VowlHD, dfs . _ (D%, vxl HD)=dfs __D.
dfs_fix_3:VowlHD, dfs . _ (D3, vxl HD)=dfs __D.

Proof. Direct consequences of dfs_spec and Ggss_fun. a

With the tools that simulate an inductive-recursive scheme, we
can study dfs and give a more abstract characterization of its
domain, and of what it computes using invariants.

6.5. High-level correctness results and termination

Even though this example is discussed in Krauss [14], we do not follow
his outline. Indeed, his reasoning assumes finiteness of the type V of
vertices. Here we manage dfs as a partial algorithm, hence assuming
finiteness of V' is unnecessary, and we get a high-level termination
characterization independent of that assumption. Only in the end do
we specialize df s on a finite type of vertices, deriving totality nearly
for free in that case.

We establish a first partial correctness result: a property of the
output of dfs v [ under the hypothesis of its termination on that
particular input (v [ : LV). Here, we show that on its domain Dgsg
of termination, dfs computes a least invariant as follows:

Definition dfs_invariant; (v!:LV) (i:LV):=
vH1C1
{V:U, x€i— (x €vVsuccsx Ci).
Theorem dfs_invariant v [ (D :Dgssv ) :
A { dfs_invariant; v [ (dfs v [ D)
Vi, dfs_invariant;, vl ¢ —dfsv il D Cu.

Proof. By induction on D with Dy¢s_rect, and then rewriting
using dfs_pirr and the fixpoint equations dfs_fix_[123]. O
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Then we switch to the most difficult result to establish, i.e. the
characterization of the domain Dgss of termination of dfs using
invariants:

Theorem Dyss_domain v l: Dgssv [ <> Ji,dfs_invariant; v [ i.

Proof. According to the first conjunct of dfs_invariant, dfs out-

puts an invariant when called on its domain Dg¢s, thus the only if

part is trivial. On the other hand, showing that the existence of an

invariant implies the termination of dfs is much more complicated.
Assuming a fixed 7 : LV, we want to show

Yul, dfs_invariant; v [ i — Dgss v L.

We proceed by a nested induction:

(1) first on v using reverse strict list inclusion 2 as a well-founded
relation;
(2) second by structural induction on .

The relation D between the lists (v w : LV) is defined as
voQw:=wCvAJx:V,z€vAzdw.

Of course this relation 2 is not well-founded in general, but it is when
restricted to the sublists of some given fixed list, here the assumed
global invariant ¢. We show that the binary relation Avw, v 2 w A
v C i is indeed well-founded; this involves in particular the pigeon
hole principle.

As a consequence, computing dfs v (x :: 1), the recursive subcalls
to dfs v [ (when z € v) and dfs (x ::v) (succsx +1) (when = € v)
are both lesser in this nested scheme: in particular when z ¢ v holds,
we have v C z::v Ci." Since the first parameter (z::v) is D-smaller
than v, the second parameter has no influence in the nested inductive
scheme. O

Using the characterization by invariants, it is then almost straight-
forward to establish the monotonicity of Dgss:

Fact Dgss_mono v v/ {1 :v Cv =1 Cv' H1— Dgssv | — Dggs v’ I

Y*As x::1 C i is a property of the invariant 1.
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whereas, on the other hand, trying to show Dg¢s_mono by, e.g. direct
induction on Dg¢s v [ is painful endeavor that is bound to end in

misery.
We finish with the characterization of the domain of dfs [], which
is the standard way to call dfs on an empty list v = [] of already

visited vertices.

Definition dfs_nil_invariant; vl i:=
IlCiAVx, z€i—succsx Ci.
Corollary dfs_nil_invariant ! (D : Dgss ] () :
dfs_nil_invariant, [ (dfs [| [ D)
{W, dfs_nil_invariant; [ i —dfs [| | D Ci.
Corollary Dgss_nil_domain ! :
Dygs [] I <> Ji, dfs_nil_invariant; [ i.

Hence dfs [] [ terminates and computes the least list ¢ containing
[ and invariant /stable under succs, precisely when such an invariant
exists. We can further specialize the termination result Dyss_domain
and prove totality for dfs in case the type V of vertices is finite, i.e.
listable.

Fact Dgss_total: (Il :LV,Vo:V, z €ly)—Vol, Dgsv L.

Proof. Use Dyss_domain and pick ¢ := [y, as invariant. O

6.6. Concluding remarks and extraction

Note that in case V is not finite, e.g. ¥V = N, then it is possible for
Dgss [] not to cover the whole input type L V. Indeed, with succsn :=
[1 + n], then any invariant must be stable under successor, which
means dfs []/ terminates when and only when [ = [].

To finish, the extracted OCaml code confirms the operational
behavior of dfs as we expected:
let rec dfs v 1 = match 1 with
0 ->v
| x::1 -> if mem x v
then dfs v 1
else dfs (x::v) (app (succs x) 1)
Remember that the global parameters mem : & — « 1ist — bool and
succs : a—« list are not extracted and have to be provided for this
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code to work." An alternative approach would have been to make mem
and succs parameters of dfs with the disadvantage of bloating the
above code a bit without significantly improving the explanations of
what is going on.

7. Paulson’s if-then-else Normalization Algorithm

Paulson’s normalization algorithm was the example which we chose
to introduce the basics of the herein called Braga method at the
TYPES 2018 conference [2]. It is described by the equations of
Fig. 18. In this section, we both enter more in the details of the
implementation of nm while we also develop four possible variants of
the Braga method, characterized by

e defining the domain of nm either as a custom inductive predicate,
or as the accessibility predicate of the subcall/call relation of nm;

e proving partial correctness either with the simulated proof-
irrelevant inductive—recursive scheme of nm, or proceeding by
induction on the computational graph predicate of nm.

These two binary choices give rise to four possible variants of the
method and we discuss/compare all of them in this section.

7.1. The computational graph and the
inductive domain

First, we define the inductive type of if _ then _ else _ expressions
a,byc: Qu=a|wabec,

where «a represents atomic expressions and w a b c is a short notation
for if a then b else ¢ where a, b and ¢ are expressions themselves.

m (wayz) ;wa(nmy)(nmz)
mn (w(wabc)yz) =mm(wa(om (wbyz)) (om (wey z)))

Fig. 18. Equations describing nm, Paulson’s normalization algorithm.

“"However, app/-H is extracted but not displayed here.
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This type is idealized for the purpose of simplifying the explanations
here: there is only one atomic expression. Of course, a more realistic
implementation would involve a type parameter for atomic expres-
sions but this would not fundamentally change the discussion which
follows in the section.

We define the computational graph reflecting the equations of
Fig. 18 into a binary relation e —, n which reads as “nm e terminates
and outputs n”. The choice of the letter n is to remind that the
output is intended to be a normal form (of the input e).

Inductive Gup: Q2 —Q —P:=
YNy 2Ny

Qrp Q WYz —p WAy N,

wbyzrspnp WCYZr>pNe WanyNe g Ng

w(wabe)yz iy ng

In line with the previous sections, e —, n is just a convenient infix
notation for the prefix Gy, e n notation. We show that the graph
Gqm 1s a functional relation.

Fact Gpp_funening: er—pniy — e—p Ny — N1 = No.

Proof. By induction on e —, nq then inversion on e —, ns. O

We give a first possible characterization of the domain Dy, of nm
by a custom domain predicate:

Inductive Dy : Q—P:=
Dy Dy 2

D Dy (way 2)

Dy (wby 2) Dy (e 2)
Ynpne, wbyz >y ny — weyz =y ne — Doy (wanyne)

Do (w(wabce)y z)

The intuition behind the construction of Dy, is to simply erase the
right-hand side part (i.e. output part) of Gp,: when we have e —, n,
we only keep what is on the left of the —, symbol and we get Dy, e.
This is what we already did in the cases of the ns searching algorithm
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in Section 3.1, or of the depth first search algorithm dfs of Section 6.
However neither ns nor dfs have nested calls while nm has two.

We now explain how to cope with nested calls when designing cus-
tom domain predicates. When there is a nested call, then its output
is transferred on the left-hand side (i.e. the input part) of another
premise and we simply cannot leave a dangling variable not referring
to anything that way. So, we characterize/recover the erased out-
put by using the computational graph Gy, combined with universal
quantification. This is what happens in the lower premise of the third
rule.

The third central idea of the Braga method: when dealing with
nested or mutually recursive algorithms, one can use the computa-
tional graph predicate to characterize the output values of nested calls
than come as input for the domain predicate.

As hinted in the introduction of this section, we now discuss a
second and alternate construction of the domain, denoted D7, and
based on a different intuition. First, we link calls to nm with the direct
recursive subcalls they trigger in the <3¢ binary subcall/call relation:

Inductive <50 : Q= QP :=

YSmwayz wbyz=<mwwabc)yz WYz e My WCYZ i Mo

; wWanyNe <om w(wabe)y z
Zmwayz wceyzmw(wabe)yz b7e <m W ( )y

The relation < is defined with inductive rules but if you look closely,
<io never appears on any premise of any rule, hence induction is just
a presentation/programming convenience here, not a requirement.
Note, however, that Gy is used in the two premises of the rightmost
rule, to characterize nested calls similarly to the case of the custom
domain predicate Dyy.

Having linked recursive subcalls with <3, following the general
description of Section 4.3, we state that the domain is composed of
the input values from which no infinite descending <3¢ -chain start,
conventionally called the well-founded part of the <{¢ relation, and
inductively characterized by the accessibility predicate Acc <5.

Definition DI, (e: ) :=Acc g5 e.
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Below we simply denote Dy, for the domain predicate but note
that the discussion would be mostly same were we to use the alternate
definition D] instead. Only some technical details differ slightly but
not the main results we present in here. We will however discuss some
of these differences.

7.2. The Coq term packed with a conformity

certificate
So, with either definition of the domain, be it Dy, or D), we now
implement the nm algorithm packed with a conformity certificate, as

a term of type
nm_pwc : Ve : Q, Dy e — {n | e —y n}.

Its computational contents is displayed in Fig. 19 but the contents
of proof obligations is not displayed for concision. Theses are divided
into three post conditions O]~ and five termination certificates
TIT
e the post conditions O}O; are proved very directly by applying the
corresponding constructor/rule of the inductive definition of Gyy;
e the termination certificates 7, 77,?;’ have more complex proofs, in
particular if the domain is defined as the custom predicate Dyy. In
that case, one should be careful with the guardedness condition,

Let Fixpoint nm_pwc € (D : Dyy €) {struct D} : {n | ey n}.
Proof. refine(
match e with
| a = AD, exist _a O]
|lwayz = AD,
let (ny,,Cy) :=nm_pwc y 7, in
let (n.,C,) :=nm_pwc z 7, in
exist _ (wanyn.) O]
|w(wabe)yz = AD,
let (ny, Cp) :=nm_pwc (wbyz) 75 in
let (n.,C.) :=nm_pwc (wecyz) 7, in
let (ng,C,) :=nm_pwc (wanyn.) 75 in
exist _n, O
end D).
(* POs: termination certs 7;';; postconditions O ; %)
Qed.

Fig. 19. Coq proof term nm_pwc of the nm algorithm packed with correctness.
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e.g. the proof term of 7,
(7] oy 2 QD Doy (wayz) - Doy y

should be built as a subterm of D. Because Dy, has several con-
structors, this requires dependent pattern matching which is prop-
erly implemented by the inversion tactic and explicit projections
by “small inversions”, as explained in the previous sections.

In the case of the alternate definition D), := Acc <3¢, a simple
pattern matching on D : D _ (as implemented in the Acc_inv
lemma) is sufficient for ensuring structural decrease.

Now we can define nm by projecting on the first component of the
Y-type {n | e =, n} containing the output value

Definition nme (D : Dy, e) := m(nm_pwc e D).
Fact nm_spece (D :Dpye): erspnme D

and with the second component my(nm_pwc e D), we get its specifi-
cation nm_spec expressing the conformity proof of the output value.

7.3. The inductive—recursive scheme

We build tailored inductive-recursive constructors for the domain.
As nm is a nested recursive algorithm, the constructors refer to the
function itself, more precisely, on the values it outputs in nested calls.

Do .

D2 :Vyz, Don ¥ — Dy 2 — D (w ay 2).

D3, :Vabeyz Dy De, Dpg(wa (nm (wby2z) Dy) (nm (wey z) D))
— D (w(wabe)yz).

Proof. Depending whether one chooses Dy, or DI, the proofs
somewhat differ in here but they are always straightforward. O

We follow up on the inductive-recursive scheme for nm with a
proof-irrelevant eliminator/induction principle for Dy, (or else D).

page 364
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It states that a predicate P : Ve, Dy, e — Type which is both proof-
irrelevant and closed under the three constructors DL ~D3 holds over
the whole domain:

Theorem Dy, _rect (P : Ve, Dy, e — Type) :
(Ve D1 Dy, P e Dy — P e Dy)
—~ (P-Dk)
— (VyzDyD., PyDy,—PzD,—P_(D2 yzD,D,))
— (VabcyzDy Do Dy, P_Dy— P_D,— P_D,
%P_(DﬁmabcyszDcDa))
— (Ve D, P e D).

Proof. The technical details of the proof here depends on the
choice of Dy, or the alternate D, , but in either case, it proceeds
by Fixpoints with D : Dy, e as struct parameter. Then the pat-
tern matching is on e —not D!— but we later implement careful
inversion/projections of D to ensure decrease of the recursive sub-
calls. It is very similar to the term build for nm_pwc in Fig. 19 except
that here we do not need to control the computational contents so
tightly because Dy, _rect is not intended to be extracted. O

We finish the construction of the inductive-recursive scheme for
nm with the proof irrelevance of nm and fixpoint equations.

Facts :
nm_pirr :VeD; Da, nme Di =nme Ds.
nm_fix_1 : nm o Dim = .
nm_fix_2 :Vyz Dy D, m (wayz) (D4, y 2 Dy D)

=wa(mmy Dy) (om z D).
nm_fix_3 : Vabcyz Dy D: D,,nm (w (wabc)yz) (]D)S’m _____ Dy D. D,)
=m (wa(mm (wbyz) Dy) (nm (weyz) De)) Da.

Proof. The proofs are very short and based on the functionality
Guun_fun of Gy, and nm_spec. They are the same whether for Dy,
or D . O



June 17, 2021 16:36 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FA5 page 366

366 D. Larchey-Wendling € J.-F. Monin

7.4. High-level partial correctness results

Now that we have built the inductive-recursive scheme for nm, we
can prove partial correctness properties of nm following the outline of
Giesl [22]. Here, we present three of those partial correctness results,
the first one being proved using the full inductive-recursive scheme
and the two other results, by graph induction instead. These two
approaches are in fact interchangeable in the case of nm.

Let us start by showing that nm outputs expressions in normal
form, i.e. when the Boolean condition b in if b then _ else _ is
always atomic. We characterized this notion inductively as

Inductive normal: 2 — P := normal y normal .

normal « normal (way z)

With this definition, we prove the following partial correctness result:
Theorem nm_normal e (D :Dyy €): normal (nm e D).

Proof. Here, we use the full inductive-recursive scheme of nm. The
proof proceeds by induction on D using Dy, _rect. There are four
inductive cases to establish:

(1) the proof-irrelevance of A\e D, normal (nm e D), follows trivially
from that of nm proved as nm_pirr;

(2) for the second inductive case, we rewrite using nm_fix_1 and get
normal « which holds by the first rule of normal;

(3) for the third inductive case, we rewrite using nm_fix_2 and we
need to show normal (wa (nm y Dy) (nm z D)) while assuming
normal (nmy D,) and normal (nm z D) as induction hypotheses.
Hence the second rule of normal does the job;

(4) for the fourth inductive case, after rewriting using nm_fix_3, we
are invited to show

normal (nm (wa(om (wbyz) D) (om (weyz) De)) Da>

but this is precisely the statement of the third induction hypoth-
esis.

This completes the four cases of the induction on Dy, e. O
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Let us now show that, while nm is normalizing, it also pre-
serves the semantics of if _ then _ else _ expressions. We
could do this by explicitly defining a semantic interpretation of
Q but we proceed otherwise by defining an “equivalence” rela-
tion that would be satisfied by any reasonable semantic inter-
pretation of 2, i.e. any two equivalent expressions would neces-
sarily have the same interpretation. We use the least congruence
which allows for commutation in the composition of Boolean con-
ditions, i.e. identifying if (if a then b else ¢) then y else z and
if a then (if b then y else z) else (if ¢ then y else z). This can
be characterized inductively by the following rules:

Inductive ~q:Q2—>Q—=P:=

/ / /

a~o T ~az wryz~qwx'y 2

w(wabe)yz ~quwa(wbyz)(wey 2)

The reader might have noted that we left out the symmetry rule,
hence ~q is only contained in the above mentioned congruence, even
strictly b.t.w." However, the symmetry rule is not needed and ~q is
large enough to show the following partial correctness result:

Theorem nm_equive (D :Dy,e): e~gunme D.

Proof. We could also proceed by induction on D using Dy, _rect
but here we want to illustrate the alternate method of graph induc-
tion. In that spirit, thanks to nm_spec, it is enough to show

Ven,e—p,n — e~qn
and we establish this by induction on (the proof term of) e —, n:

(1) for the first rule of Gup, we need to show o ~q « which is trivial
using the first rule of ~gq;

(2) for the second rule of Gpp, we need to show wayz ~q wanyn,
while assuming y ~q n, and z ~q n. as induction hypotheses.
We conclude with the third (or congruence) rule of ~q;

YFor example, one can prove that wa(wbyz)(wcyz) »q w(wabc)yz, see
equiv_not_sym.



June 17, 2021 16:36 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FA5 page 368

368 D. Larchey-Wendling € J.-F. Monin

(3) for the third rule of Gpy, we need to show w(wabc)yz ~q ng
while assuming wby z ~q ny, wcy z ~q Ne and wany ne ~q Ng
as induction hypotheses. We use the fourth rule of ~q com-
bined with reflexivity, transitivity and congruence. Reflexivity
(i.e. Ve, e ~q e) itself is proved separately by structural induc-
tion on e.

This concludes the three cases of Gy, graph induction. O

We remark that the graph induction method deployed in the
previous proof (after having removed the reference to nm e D with
nm_spec) does not involve any of the tools of its inductive-recursive
scheme any more. In fact, it does not even involve nm, just its com-
putational graph Gpy.

Actually, graph induction can generally be used as an alternative
way to capture extensional properties of nm, specifically because of
nm_spec. However, to some users, directly manipulating the output
values of nm through nm e D might be viewed favorably as opposed
to using a relational description of it. It can also be more convenient
when combining nm with other functions.

On the other hand, the graph induction method allows to avoid
the construction of inductive-recursive scheme of nm, except for the
domain constructors (see below nm_term), i.e. with graph induction,
one does not need the proof-irrelevant eliminator Dy,_rect, and nei-
ther proof-irrelevance of nm nor its fixpoint equations.

For us, we think both methods are fine and it is up to the user to
decide which one he finds more convenient to a particular application.

Let us now prepare the termination proof of nm. For this we need a
third partial correctness result stating that nm preserves a particular
measure. We define the measure (-) : © — N over Q by structural
induction:

o) =1 (wayz) = (2)(1+ (y) + ().
Observe that this definition ensures that (e) is never 0,
Fact ce_size_ge_le: 1< (e).
Then we establish the following remarkable strict inequality [22]:

Fact ce_size_specialabcy z:
(wa(wbyz) (wey2)) < {w(wabe)yz)
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by a mostly straightforward arithmetic computation. We show the
following partial correctness result:

Theorem nm_dec e (D :Dyye): (nme D) < (e).
Proof. Using nm_spec, it is enough to show
Ven, e~y n — (n) < {(e)
and we prove this by induction on the graph predicate e —, n:

(1) for the first rule of Guy, we have to show (o)) < (a)) which is
trivial;

(2) for the second rule of Gy, while assuming (n,) < (y)
and (n.) < (z) as induction hypotheses, we have to show
(wanyn,) < (wayz). This computes into 1+ (n,) + (n.) <
1+ (y) + (z) easily solved by an arithmetic tactic;

(3) for the third rule of Gyu, while assuming (np) < (wbyz),
(ne) < (weyz) and (n.) < (wanpn.), we have to show
(ne) < {w(wabc)yz). But by monotonicity we have

(na) < (wanpne) < (wa(wbyz) (weyz))

and we finish with the above remarkable inequality
ce_size_special.

This concludes the three cases of Gy, graph induction. O

7.5. Termination and total correctness

We conclude the theoretical study of nm with its termination proof,
i.e. the domain Dy, holds over the whole input type:

Theorem Dy, _total: Ve: ), Dy, e.

Proof. We proceed by strong induction on (e} while using partial
correctness nm_dec. Then we distinguish three cases: e = «, e =
wayzore=w(wabc)yz by pattern matching:

(1) of course D}, establishes Dy, «;

(2) with D2, proving Dy, (w oy 2) is reduced into proving both Dyy ¥
and Dy, 2z which hold by induction. Indeed, it is easy to show
() < {wayz) and (z) < {wayz);
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(3) and finally, we use D3, to establish Dy, (w(wabc)yz).
We are thus invited to prove Dy : Dy (wbyz), D.
Dun (wey 2) and then Dy, (wa (am — D) (nm _ D.)). By D, and
D, are directly built using the induction hypothesis because
(wuyz) < (w(wabc)yz) holds for u € {b,c}. Then we use
ce_size_special which allow to prove

(wa@m_ Dy) (nm - D)) < (wa(wbyz) (wecyz)) < {w(wabc)yz).

Note that we use (nm (wuyz) Dy) < (wuyz) for u € {b,c}
which comes from the partial correctness result nm_dec.

The three aforementioned cases covering the whole domain, the proof
is completed. O

Considering this last proof, critically, a partial correctness result is
used to establish termination: we need some properties of the output
value to be able to establish termination. This is typical of nested
recursive schemes and what makes them a priori hard/impossible to
implement in the naive approach through structural induction. Even
well-founded induction is difficult because the inductive structure of
the domain depends on the output of the function itself.

We can conclude with the fully specified and terminating
Paulson’s normalization algorithm, i.e. total correctness of the nm
algorithm:

Definition pnm (e:Q): {n|normal n Ae~qn}.
Extraction works flawlessly giving

type Q=a|w of QxQxQ

let rec pnm ¢ = match e with
| a — o
’ W(Od7 y? Z) - W(O(,pnm y?pnm Z)
| w(w(a,b,¢),y,2) = pom(w(a, pam(w(b, y, 2)), pam(w(c, y, 2))))

8. First-Order Unification

Considering a type of terms, here binary trees denoted A, composed
using the infix ¢ operator and with leaves decorated either with vari-
ables like px or with constants like ¢ ¢, the unification of two given
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unif (pz) m = Some [(z,m)] ifx Am
unif (pc) (uz) = Some [(z, ¢ ¢)]
unif (pc) (¢d) = Some || ife=d
unif (mon) (px) =Some [(z,mon)] ifzAmon
unif m m’' = Someo
unif (mon) (m' on’) = Some (0 o v) when {unif n{o] n'{o] = Some v

unif _ _ = None in all other cases

Fig. 20. Equations describing the unif algorithm.

terms consists in finding a substitution of the variables so that under
this substitution, the two terms become identical. Actually unifica-
tion not only seeks a substitution, it seeks a most general one.

We study the same nested unification algorithm as Krauss [14]
which was first informally described by Manna and Waldinger [23]
and later verified both in classical and constructive settings; see
Slind [24] and Monin [25] for more details. The unification algorithm
unif (with occur-check) is conventionally presented using the equa-
tions of Fig. 20. There, the notation x 4 m means that x does not
occur check in m." Note that contrary to the usual practice, we make
the constructors p and ¢ for atomic terms (respectively variables
and constants) explicit herein — but with a compact notation — to
avoid any formal ambiguity. The algorithm computes optional sub-
stitutions, i.e. either a substitution Some ¢ or a void value None, and
substitutions are represented as lists of variable/term pairs. Moreover
o o v represents the composition of the two substitutions ¢ and v.

All calls to unif are terminal® except for the case unif (m ¢
n) (m’ on’). In that call, there are two subcalls: first on unif m m/’
and then possibly on unif n{c]} n’{c] creating a nesting between
these recursive subcalls. Decision for the occur check condition z<"m
is also a recursive algorithm but it employs structural recursion over
terms, hence is quite trivial to implement, verify, and extract.

A call to unif mn produces either Some o where o is then a most
general unifier for m/n, or None in which case m and n cannot be uni-
fied. In this section, we formalize and mechanically establish exactly
this functional specification along with the termination of the com-
putation of unif mn whatever the values of m and n.

YThat is, £ cannot occur in m unless m = px.
*That is, they respond without invoking any further recursive subcall.



June 17, 2021 16:36 Proof and Computation II: From Proof. .. 9in x 6in b4243-ch08 FA5 page 372

372 D. Larchey-Wendling € J.-F. Monin

The unif algorithm, though idealized herein, is quite useful in
practice, typically in first order theorem provers, but also Coq itself
uses a refinement of (higher-order) unification. This combination of
usefulness and tricky nesting in the recursive scheme makes unif a
prime target for applying our method, and this example would have
been put up-front were it not for the preliminary notions required
to present it, and the number of matching subcases that have to be
considered.

8.1. Preliminaries

Let us now completely formalize unif in inductive type theory. We
assume two discrete types V (for variables) and C for (constants). By
discrete, we mean that V and C are each provided with a Boolean
equality decider:

:;:V%V%IB% qu_SpeCIV[L‘y:V,.’E:j)y:true(—)gg:y
=:C—>C—B eqC_spec:Vab:C, a=;b=true <> a=>h.

Note that, from these, we also define dependent deciders

eqV_dec:Vzy: V, {z =y} + {z # y},
eqC_dec :Vab:C, {a = b} + {a # b},

that extract as their respective Boolean decider :?V and :70 but are
more convenient to use when combining programming and proving.

Given the types for constants and variables, we build the type A
of terms which are binary trees with leaves either in V or C:

m,n:Az=pzx|pc|mon withz:V and c:C.
It is trivial to extend equality deciders to A as
=" :A—>A—B eqT_spec:Vst: A, s=jt=true <> s=1t

We define recursively the size [-] : A — N and the list of variables
(-) : A= LYV of terms by the structurally recursive equations:

[ =0 [v-]
(pz) ==l (o)

0 [mon] =1+ [m]+ [n]
[T {mon) = {m) + (n).
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The occur check decision algorithm <’ : V— A —B is also defined
by structural recursion

:U<?,u,_:: false x<?g0_:: false

r="mon:=px=mllpz=nllz=<"m|lz<"n
and specified by
Fact trm_vars_occ_checkz m: x <m<+>m#px Az e (m).

Note that to ensure shorter notations, we abusively write x < m for
x<"m = true and £ m for x <" m = false. Using <’, we imple-
ment the dependent decider which allows both smooth extraction
and better behavior w.r.t. proof obligations.

Definition occ_check_decxz t: {x <t}+ {z £t}

Typically, when x < m holds, which reads “x occurs check in m”,
then z and m cannot be unified, i.e. no common substitution will
ever make them identical.¥Y On the other hand, when = £ m, any
substitution that maps z to m unifies those two terms.

A (finite) substitution is a list of type ¥ := L (V x A) composed
of substitution pairs, and for ¢ : ¥, we define the substitutions of
variables of(-) : V—A and of terms (-){{o ]} : A— A with the structural
recursive equations:

[Tz :=px ((z,t) = )tw o=t ((y,-) :0)tw =0tz whenz #y
pr{ol :=otz oclo] :=pc (mon){c] :==mfol} on{o].

Remark that the equality decider :; is used for comparing x and y
in the definition of o ().
We define the composition o ov of two substitutions (o v : X) by:

ocov:=map (A(z,t), (z,t{v])) o Hv
and the composition satisfies the following specification:

Fact subst_comp_specovt: t{ocov| =t{o]{v].

YBecause z{ o[} would occur strictly in m{ o]} creating a discrepancy of sizes.
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8.2. The computational graph and the
domain predicate

Given all those preliminary notions, we can at last deploy the Braga
method and define the graph of the unif function corresponding to
the set of equations of Fig. 20. The graph is described as a purely
logical inductive predicate. It relates the inputs with the potential
output of unif, and its inductive description allows to follow the
nested recursive scheme quite naturally:

Inductive Gupis : A — A — optiond — P :=

pc X mon —y None mon X pc >y None goclxpxr—mSome[(:c,gac)]

T<mon zAmon z<m
mon X §x —, None m<>nD<,ux>—>uS0me[(a:,m<>n)] nx X m+—, None
x%m a=2>0 a;éb
LT X m >y Some [(z,m)] paX b, Some[] @aX @b+, None
m x m’ s, None mx m' +s, Someo n{cl} x n'{o]} >, None
m<>n><m/<>n/>—>uNone m<>nl><m/<>n/b—>uNone

mx m’ 3, Someo  n{o)) x n'{o] — Some v

monxm' on' —, Some (0 ov)

where the mixfix notation m X n + 7 is favored over the prefix nota-
tion Gyuais mnr. We establish the functionality of the graph Gyuis:

Fact Guis_ funmnrs: mxn—=,r — MmMXnr—=,S — r=Ss.

Proof. Quite typically, by induction on (the proof of) m x n s, r
and then inversion on m X n +—, S. |

We follow with definition of the domain Dy,;¢ using the
Accessibility predicate applied to the below defined subcall relation
<3¢ of the unif recursive algorithm

Definition Dypisuv := Acc 3¢ (u,v).

critically using the computational graph Gyuis to characterize the
nested recursive call in the second rule:
Inductive <y AXA—>AXA—-P:=

m x m' —, Some o

(m,m’) K3 (mon,m on') (n{ol,n'{o]}) 5 (mon,m on')
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8.3. The Coq term packed with conformity

We are now in position to build the unification function
unif_pwc : Vuv, Dypisuv — {r | ux vy r}

packed with conformity to Gupis, of which the proof term is reported
in Fig. 21. We first point out that although the two arguments u
and v are packed in a pair (u,v) in the definition of the domain
predicate Dyyi¢ v v, there is no need to pack these two arguments in
the definition of unif_pwc. This will reflect in the extracted term

Let Fixpoint unif_pwc w v (D : Dunis uv) {struct D} : {r |u X v =y r}.
Proof. refine(match u as u’ return u = v — _ with
| pz = AE D,match occ_check_dec z v with
| left H = exist _None O
| right H = exist _ Some [z,v] O}
end
e = AED,
match v with
|y = AD, exist _ Some [(y, u)] O
| pd = AD, match eqC_dec ¢ d with
| left H = exist _Some[] O]
| right H = exist _ None O
end
| m' on’ = AD, exist _ None O
end D
| mon = AE D,match v with
| ny = AD, match occ_check_dec y u with
| left H = exist _None O
| right H = exist _ Some [(y,u)] O
end
| pd = AD, exist _ None O
| m' on’ = AD, let (r,G,) := unif_pwc m m’ 7, in
match r with
| Some o = G, let (s,Gs) := unif _pwc n{o] n'{o] 75 in
match s with
| Some v = AGy, exist _ Some (o o v) Of
| None = A\Gl, exist _ None O,

end G
| None = A\G,,exist _None O,
end G-
end D
end eq_refl D).
(*x POs: termination certs '77')2; postconditions (’)'f 12 *)

Qed.

Fig. 21. Coq proof term unif_pwc packed with conformity.
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that will not pack u and v in a pair either. And D : Dy uv, in
which u and v are packed as the (u,v) pair, will simply be erased
because its type is purely logical.

Then, we remark that proof obligations in Fig. 21 are very easy to
establish and only lightly discussed here: termination certificates 7,
and Tz) use Acc_inv to safely ensure the structural decrease for the
fixpoint, as in Section 4.3; postconditions O -, have trivial proofs,
basically consisting in applying the corresponding rule/constructor
of Gunis-

Then, by projecting the X-type {r | u X v+, r}, we get unif as

Definition unif m n (D : Dypie mn) := m(unif _pwc m n D).
Fact unif _specmn D: mxn+—yunif mn D

dependent on the domain predicate D : Dy,i¢ mn, whereas the pro-
jection mo(unif_pwc m n D) provides conformity.

8.4. The tnductive—recursive scheme

We implement suitable constructors for the domain Dy,i¢ which, for
the last two of them, depend on the unif function themselves. This
is what typically happens when simulating the induction—recursion
scheme of a nested recursive algorithm.

Facts:
]D)}m:Lf :Vemn, Duir (pc) (mon). ]D)?inif :Vemn, Dyie (mon) (pc).
ngf :;J;;] gun:?.f Egp c)) (). g‘én%f zmdn x, gun%f Em <; 7(1) () ).
unif ° ) unif (U T) T unif - VC unif
]D)Znlf :Vmnm/n' D, unif m m' D =None — Dynir (mon)(m' on').
8 e :Vmnm/n' Do, unif m m’ D = Some o — Dyuir (nfo]) (n'{o])
— Dynis (mon) (m’ on’').

Proof. With Acc_intro for Dy, then unif_spec/Gyyis_fun. O

We continue with the eliminator/recursion principle which
expresses that any proof-irrelevant predicate P : Vmn, Duyis mn —
Type holds over the whole domain Dyyis when it is closed for the
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constructors:

Theorem Dunis_rect (P :Vmn, Dyyis mn — Type) :
(Vmn Dy Do, PmnDlﬁPmnDz)

iiiiiiii

uni

Vemn, P__ (DL cmn)
Echn P__(D2,;; cmn)
Vew, P__ (D3 c x))

Ymnzx, P__ (D2

unif mmn I‘))

(

EVasm P__ (D} zm))

Vab, P__ (DS,;¢ a b))

Eanm n'Di(.:P__Dy)H, P__ (Dl - --_-DiH))
(anm n' Dy (-: P__Dy)o HDs,

P__DQ%P——(]Dg it -~ - - D1 - HDy))
— (anD,PmnD).

uni

We finish the construction of the induction-recursion scheme of
unif and establish proof-irrelevance and fixpoint equations:

Facts :
unif_pirr
unif_fix_1
unif_fix_2
unif_fix_3
unif_fix 4

unif_fix_4’

unif_fix_5

unif_fix_5’

unif_fix_6
unif_fix_6
unif_fix_ 7
unif_fix_8

unif_fix_8’

:Vmn Dy Dz, unif m n D1y =unif m n Do.
:Vemmn, unif _ _ (Diye ¢ m n) = None.
:Vemn, unif _ _ (D2 ¢ m n) = None.
:Ver, unif _ _ (D3 ¢ x) = Some [(z, ¢ )]
:Vmnz, z <mon — unif _ _ (Di: m n x) = None.
:Vmnz, z Amon —unif _ _ (D m n x) = Some [(z,m on)].
:Vom, z < m—unif _ _ (D3;; = m) = None.
:Vam, x Am — unif _ _ (D3¢  m) = Some [(z,m)].
: Ve, unif _ _ (DS ¢ ¢) = Some|].
":Ved, ¢ #d—unif _ _ (DS;; ¢ d) = None.
:Vmnm/n' DH, unif _ _ (DL m nm/ n’ D H) = None.
:Vmnm/n' D1 o HDy, unif _ _ Dy = None

—unif _ _ (D& m nm/ n’ Dy 0 H D) = None.

:Vmnm/n' Dyo HDy v, unif _ _ Dy = Some v

—unif __ (D& mnm' n' D1 o HDs) = Some (g ov).

8.5. High-level partial correctness

Once the inductive-recursive schemes in place, we can establish the
partial correctness of unif, i.e. an abstract specification of what
it computes on its domain. By abstract, we mean that we would
get more information on unif mn D than just the low-level result
unif_spec that expresses conformity with the computational graph,
i.e. that m x n +—, unif mn D holds.
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FEquivalence denoted o ~ v means that the two lists ¢ and v of
substitution pairs, despite being two potentially different lists, have
the same extensional behavior:

Infix ~: X > ¥ P Vov:X, or=v < Vi A, to] =t{v].

Non-unifiability denoted m () n means no substitution can unify m
and n:

Infix (:A—A—=P. Ymn: A, m(§n<+ Vo:% m{o] #n{oc]
and mgu m n ¢ means o is a most general unifier for m and n:

Definition mgu (m:A) (n:A) (0:%):P:=
mflo} =nflcf AVv: X, m{v]) =n{v]}—-3Ir: X, vx=oorT.

Note that two mgus need not be (extensionally) equivalent (i.e. w.r.t.
~) because the definition of mgu does not characterize their behavior
for the variables not occurring inside of m or n, hence one can freely
permute those outside variables while preserving the mgu property.

The mechanized proof below follows the script described by
Krauss [14] which first establishes partial correctness results to con-
clude with totality /termination. This feature is recurrent with nested
algorithms: proving termination involves some knowledge of what the
function computes, a vicious cycle for Coq that can be broken with
the Braga method.

Hence we first establish partial correctness: on its domain of ter-
mination Dyyie, unif outputs either Some o where o is an mgu of m
and n, or else None in which case m and n cannot be unified.

Theorem unif_partial_correct m n (D : Dyysmn):
match unif m n D with Some o = mgu m n o | None = m () n end.

Proof. By direct induction on D using Dyyis_rect and the other
components of the proof-irrelevant inductive-recursive scheme of
unif. O

This illustrates that we can study the output value of unif in
Coq, without and independently of having to establish termination/
totality. Moreover, we can also get refined partial correctness results
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such as, the output of unif m n, if it is Some o, then applying the
substitution o does not produce any new variable:

Lemma mgu_trm_vars_incl m n (D : Dy mn) :
match unif m n D with
| Some o = Vt, (t{ol) € (m) + (n) + (t)
| None =T
end.

Another important partial correctness result states that the output
of unif m n, if it is Some o (extensionally) different from the identity
substitution [], then o erases at least one variable from those of m
or n:

Lemma mgu_trm_vars_decm n (D : Dysmn):
match unif m n D with
| Someo = o~ [|VIz:V,ze (m)H n)AVt: A =& (t{o])
| None =T
end.

These two partial correctness lemmas are both established by induc-
tion on D : Dyis mn using Dynis_rect.

8.6. Termination

These three partial correctness results give us enough feedback prop-
erties to allow the proof of totality for Dy,if, i.e. termination of
unif mn for any input values m and n:

Theorem unif_total: Vmmn, Dyis mn.

Proof. By a lexicographic (or nested) induction on:

(a) first, the list {(m) + (n)) ordered by strict list inclusion;
(b) second, the size [m] ordered by the strictly less relation <.

Starting from the call unif (m o n) (m’ o n'), the termination of
the first subcall unif m m’ is ensured by (b). Then, thanks to
mgu_trm_vars_dec, in the case unif m m’ = Someo where there
is a second (nested) subcall unif n{o} n'{o]}:

e cither o ~ [] in which case the subcall is identical to unif n n’,
terminating because of (b) again;
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let rec unify u v =
match u with
| Var x -> if occ_check_b x v then None else Some [(x,Vv)]
| Cst ¢ -> (match v with
| Var y -> Some [(y,w)]
| Cst d -> if eqC c d then Some [] else None
| App (_,_) -> None)
| App (m, n) -> (match v with
| Var y => if occ_check_b y u
then None
else Some [(y,u)]
| Cst _ -> None
| App (m’,n’) -> (match unify m m’ with
| Some r -> (match unify (subst r n) (subst r n’) with
| Some s -> Some (subst_comp r s)
| None -> None)
| None -> Nomne))

Fig. 22. Extracted OCaml code for the unify algorithm.

e or there is a variable x, outside of both n{o]} and n’{c ]}, ensuring
that condition (a) holds and we get termination again.

In any case, termination is ensured by the induction hypotheses. O

We trivially derive the fully specified terminating unification
algorithm

Definition unify m n:
{r | match r with Some c = mgu m n o | None = m () n end}.

which extracts gracefully in Fig. 22 as the expected OCaml code that
reflects faithfully on the equations of Fig. 20. Note that the identity
deciders for variables eqV : «—«a—bool and constants eqC : §— 3 —
bool are not extracted in the OCaml code because they are global
Parameters for the whole project of this section and thus should be
properly instantiated before using unify. Alternatively, they could
be declared as Variables, in which case they would appear as extra
arguments for unify, occ_check_b, subst and subst_comp.

9. Related Works

In this chapter, we have described the Braga method. Mostly through
examples, we explain how to systematically encode partial recursive
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schemes into Coq while, at the same time, ensuring a tight control
over the computational contents of terms. The method is friendly
to extraction while allowing to build the tools to define and reason
about partial recursive functions in Coq.

Our own contribution is based on a very rich literature that orig-
inates in the mid-1990s and concerned with the mechanized study of
recursive algorithms. Of course, the formal study of the properties of
recursive algorithms is much older with, e.g. the work of Manna and
Pnueli [15] in the early 1970s. Also, the mechanization of reasoning
and the verification of proofs of mathematical theorems by comput-
ers can be traced back in the 1970s with the work of de Bruijn on
Automath [26]. But here, we only collect and briefly describe some
of the references that were influential in the design of the Braga
method.

Foremost, maybe it is the seminal paper of Giesl [22] that gave
us the good foundation for approaching the difficult cases of nested
algorithms where the properties of the output have an impact on
the study of the domain. Hence separating the study of termination
from the study of correctness is a critical insight. Building on this
idea, Krauss [14] gave an approach to be able to define and manip-
ulate functions implementing algorithms, independently of their ter-
mination or correctness properties. His approach however relies on
Hilbert’s description operator in HOL, a highly non-constructive fea-
ture that typical users of Coq extraction mechanism want to avoid
because there is no way to extract this operator. Moreover, as it is
incompatible with many propositional axioms, assuming it makes it
easy to silently corrupt the internal logic of Coq. Nonetheless, the
examples we develop in this chapter mostly come from Giesl [22] and
Krauss [14].

These two previous authors do not consider constructive frame-
works like type theory or Coq, and in this context, the landmark ref-
erence is Bove and Capretta [10] who use inductive-recursive schemes
to model partiality. However, we do not really follow their approach,
but we can retrieve their tools as convenient ways to manipulate
termination domains and partial functions in one of the variants of
the Braga method. In contrast, our custom domain (or accessibil-
ity) predicates are critically implemented as non-informative proposi-
tions, allowing their erasure at extraction. Moreover, we also remark
that induction on the computational graph can often be used as
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a cheaper alternative to inductive-recursive schemes, provided one
accepts working with relations in place of equations. Actually, by
reasoning on the computational graph, one could prove properties of
the partial function and its domain without even writing the func-
tion.” In that context, the Coq implementation of the function would
only matter for extraction purposes.

The idea of defining the domain as the projection of the computa-
tional graph on its inputs can at least be traced back to Dubois and
Donzeau-Gouge [9]. This idea is revisited by Bove [19] but there, the
domain predicate is informative. Hence the way termination is proved
would leak into the extracted program, thus failing to separate code
definition from correctness and termination study. By projecting the
computational graph on its inputs to get the domain predicate, these
two references pick up an approach that does not naturally capture
the structure of recursive calls over the domain.

Bove et al. [27] propose a quite recent overview of recursion in
the context of interactive theorem provers, illustrated with typical
examples. They focus mainly on higher-order logics (Hols), either
the constructive type theories of Agda and Coq, or the more classi-
cal HOL. Putting aside co-inductive examples, we have successfully
tested the Braga method on most of the examples they list. It is our
intention to complement our distributed code with these examples
later on.

Concerning Coq, Sozeau and Mangin [28] propose the “equa-
tions” package that allows the definition of recursive functions with a
much more flexible syntax. Equations has many advantages over the
Fixpoint primitive or the more elaborate Program Fixpoint decla-
ration. However, it is difficult to tightly control its behavior w.r.t.
extraction when dealing with somewhat complicated schemes [12].
Also for termination, it is based on well-founded recursion and thus,
not always suitable for partial algorithms or else algorithms that
are better manipulated as partial, typically nested ones. That said,
Equations can perfectly be used when deploying the Braga method
and it is our hope that the method will one day find its way for

“This idea can be pushed further to functions written with non-existent fea-
tures in Coq and OCaml, such as a pattern-matching on virtual constructors, as
illustrated with our reference “fold-left from the tail” function.
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full integration in the equations framework, thus allowing a seamless
treatment of partial recursive functions.

At TYPES 2018, Andreas Abel pointed us to the contemporary
work of Wieczorek and Biernacki [29] on normalization by evalua-
tion implemented in Coq. In there, independently of our work, they
use some tools belonging to the herein called Braga method like cus-
tom inductive domains and induction on the computational graph.
In their Section 3.2 on page 269, they compare their approach to
the existing literature at the time, mostly the work of Bove and
Capretta [10,19]. As they also aim at extraction, they make similar
observations to our own w.r.t. induction—recursion and informative
domain predicates.

They only reason on the computational graph, actual definitions
of partial functions are there only for program extraction. Addi-
tionally, they do not note that inductive-recursive schemes can be
inferred in Coq using the restriction to proof-irrelevant predicates
illustrated here on dfs, nm and unif, so that the two approaches —
induction on the computational graph and equational reasoning using
inductive-recursive schemes — turn out to be equivalent.

Moreover Section 3.3 of Wieczorek and Biernacki [29] don’t
explain how their projection/inversion functions actually provide
structurally smaller arguments in recursive calls though this is a key
aspect of the method. We consider that this structural decrease can
be shown very clearly in different situations, as illustrated from our
introduction to custom inductive domain predicates in 3.1, then more
typically in Fig. 14, or in the encoding of Paulson’s nm. Because they
aim at solving a complex problem with an algorithm, their recursive
scheme reflects this complexity and (to us) is not ideal as an illus-
tration of their method. They seem to consider it somehow ad-hoc
while on the contrary, we have the conviction that the Braga method
is very versatile.

More recently, Jan Bessai kindly wrote us to explain how the
Braga method, as outlined in the two pages TYPES 2018 abstract [2]
and the accompanying code, helped him to implement his correct by
construction algorithm for fast BCD subtyping [30]. On this example,
he also extended the method to be able to capture some properties
related to a measure of complexity of his algorithm. This gives us
even more conviction that simple/short examples help at the under-
standing of the Braga method. That is why we insisted on these
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examples in this chapter, and in the future, we intend to populate
our available Coq code with additional well-documented illustrations
of the method.
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