Proving termination using dependent types:
the case of xor-terms

Jean-Francgois Monirand Judical Courant

VERIMAG - Centre quation, 2 avenue de Vignate, F-38618r€s, France

{jean-francois.monin judicael.courant t@imag.fr
http://www-verimag.imag.fr/"monin |courant/
Abstract

We study a normalization function in an algebra of terms quotiented by an associa-
tive, commutative and involutive operator (logical xor). This study is motivated by
the formal verification of cryptographic systems, where a normalization function for
xor-terms turns out to play a key role. Such a function is easy to define using general
recursion. However, as it is to be used in a type theoretic proof assistant, we also
need a proof of its termination. Instead of using a clever mixture of various rewriting
orderings, we follow an approach involving the power of Type Theory with depen-
dent types. The results are to be applied in the proof of the security API described
in [CMO6].

1 INTRODUCTION

In the course of the formal verification of cryptographic systems using symbolic
approaches, one deals with algebras of terms whose constructors iaglddeot-
ing the binary bitwise exclusive or ar@l, denoting a bitstring consisting only of
zeros. Bitwise exclusive or is often used in cryptographic systems and many (po-
tential or effective) attacks are based on its algebraic properties [@ABBon04,
CKRTO05, CLCO03].

Dealing with the congruence generated by the usual arithmetic la@samialO
is therefore necessary in order to successfully verify these systems: in the following
we consider an algebra of terrfisbuilt up using a number of constructors, where
two of them, denoted by andO, enjoy the following algebraic properties.

Commutativity: XDY ~ YyBHX (1)
Associativity: (XDY)DZ~ XD (YD 2) 2
Neutral element: X®0 ~ X 3
Involutivity: X®X =0 4

Formally, ~ denotes the least congruence generated by equations (1) to (4). In
order to reason about terms Gf up to ~, a standard technique is to define a
canonicalization function over. One also actually needs such a function to give
minimal terms with respect to simplification as one also needs a subterm relation

=< which takes into account equalities suctuas u® x® x:

X<y ifx~y
X<t ift=x®yy...®dypandx Ay foralli,0<i<n

Turning equations (1) to (4) into a convergent and strongly normalizing AC-
rewriting system is quite straightforward. Therefore, the existence of a normaliza-
tion function can be proven easily on the paper. Moreover, in any decent program-
ming language, writing the corresponding normalization functiorZois quite
easy, using general recursion.

However, formally giving such a normalization function in Type Theory and
formally proving its correctness is much more challenging. The first problem is
to ensure termination. In Type Theory, all functions are total by construction. It
means that general fixpoints are not allowed for defining functions. The promi-
nent ingredient provided by Type Theory, in order to achieve this fundamental
property while keeping a good expressing power, is the limitation of recursion to
higher-order primitive recursion, extended to structural recursion over all induc-
tively defined types. In simple cases, one can use the combinators automatically
provided by the theory and support tools for natural numbers, lists and all user-
defined inductive types. In the modern version of Coq, which implements a ver-
sion of Type Theory called the Calculus of Inductive Constructions (CIC), the user
can equivalently provide, for each recursively defined function, an argument which
structurally strictly decreases at each recursive call. A special and very important
case is well-founded recursion: the decreasing argument is a proof, formalized as
an inductive object, witnessing that a given value is accessible for some binary
relation. It complicated cases, the latter approach is by far more convenient. But
it can be seen that there is no miracle: while totality in ensured by type-checking
(and the fact that well-typed functions are strongly normalizing), designing and
providing the right types and arguments are in the responsibility of the user. Stan-
dard libraries on well-founded relations are helpful here. Besides, one can consider
additional tools or methodology such as those developed by Bertot and Balaa, or
Bove and Capretta [BB0O, BCO5].

In the case of the canonicalization function we have in mind, using standard
rewriting arguments is surprisingly difficult in a proof assistant such as Coq [The05,
BCO4].

e Although some theoretical works address the addition of rewriting to the
Calculus of Constructions [Bla01], these works are yet to be implemented.

e Some works provide ways to define tactics for reasonning over associative-
commutative theories [ANOO], but they only provide ways to normalize given
terms, not to define a normalization function.

We therefore tried to define our own specific rewriting relation corresponding
to the defining equations af, but found this approach really costly:

e A well-founded ordering had to be given. As no rpo or Ipo ordering library
was available in Coq, we used the lexicographic combination of a partial
ordering<; with a total ordering<,, where<; is a polynomial ordering,
and < is a lexicographic ordering. Althoughy is not well-founded, the
set of terms having a given weight for the polynomial definifgis finite,
therefore we could prove in Coq the lexicographic combinatiorpfand
<, to be finite.

e Then we defined a rewriting relation The difficult part here is to take into
account commutativity and associativity. In order to avoid AC-matching
issues, we decided to throw in associativity and to add commutativity as a
conditional rule x®y would rewrite toy @ x if and only if x is smaller than
y). Moreover, we had to complete our rewriting system in order to close
critical pairs such as® x@y, which could be rewritten tg or tox® (X®y).

e A normalization function has to be given. As mentionned above, the def-
inition of such a function using well-founded induction in Coq is uneasy.
Therefore we stopped there and used an other approach instead.

e Once this would be done, we would still have to prove that the transitive
closure of our rewriting relation is irreflexive, that our normalization func-
tion is sound with respect to it, and that is computes normal forms. Essen-
tially, the main results to prove here would et #'t, vt t>* norm(t) and
ViVt ti>tp = norm(ty) = norm(ty).

Instead we experimented a new approach involving typical features of Type
Theory. The intuition behind our approach is very simple. In a first stage, the
term to be normalized is layered in such a way that each level is built up from
terms belonging to the previous level. These levels alternate between layers built
up using only® constructors and layers built up using only other constructors, as
lasagnas alternate between pasta-only layers and sauce layers (mixed up to your
taste of tomato, meat, and cheese — in fact anything but pasta). In a second stage,
layers are normalized bottom-up. Normalizingpdayer roughly boils down to
sorting, while normalization of a nom-layer is just identity.

Basically, the second stage is not very difficult, though some pitfalls have to
be avoided. Surprisingly, the first stage, which is essentially nothing else than
type translation and renaming, requires more work than expected. In the whole
development, we need the full power of programming with dependent types: each
layer owns its specific ordering relation, which depends on the ordered structure of
the previous layer.

The approach we describe in this paper was designed and implemented using
the Coq proof assistant. Its results are to be applied in the proof of security proper-
ties of an API described in [CMOB].

2 FORMALIZATION

2.1 Splitting the type of terms

Let {®,0} W C be the set of constructors @f. For instance, in our case, we have
C ={PC,SC,E,Hash} with

PC:public_const — T E:T—>T—>T
SC: secret_const — T Hash: 7T — T — T

wherepublic_const andsecret_const are suitable enumerated types.

As explained in the introduction, we want to splifaterm into layers. More-
over, a number of functions and lemmas have to be stated and proved on each layer.
For obvious modularity reasons, it is better to handle each layer separately. Each
layer provides a datatype, comparison and sorting functions on this type as well
as correctness lemmas. Intuitively, it could be seen as a module in the sense of
Harper, Lillibridge and Leroy [HL94, Ler00], or better: a functor, because each
layer relies on the interface of the previous layer. HLL modules have been adapted
to the Calculus of Indiuctive Constructions and are implemented in Coq. But our
case is out of their scope, because here the number of layers is a dynamic notion
which depends on a piece of data, namely a term to be normalized. Therefore we
stick to the features of basic CIC, which are dependent, polymorphic and inductive
types.

In a first stage, we introduce two polymorphic inductive tyggs) andZ,(a)
respectively called the pasta layer type and the sauce layer type. The construc-
tors of Zx(a) are (copies offp andO while the constructors of,,(a) are (copies
of) those belonging t@. Moreover,Zx(a) (respectivelyZy(a)) has an additional
constructolly : o — Zx(a) (respectivelyl, : o — Zn(a)).

It is then clear that any terinin 7 can be recasted into either the type
T(Tn(Zx(...(0)))) or the typeTn(Zx(Zn(. .. (0)))), according to the top constructor
of t.

In a second stage, normalizingcan be defined as bottom-up sorting in the
following way. We say that a typX is sortableif it is equipped with a decidable
equality and a decidable total irreflexive and transitive relationEquivalently,
we could take a decidable total ordering but the above choice turns out to be more
convenient.

If X is sortable,

e To(X) is sortable;

¢ the multiset ofX-leaves of any inhabitanf 7;(X) can be sorted (with dele-
tion of duplicates) into a lidlx (t), such that; ~ t; iff Nx(t1) is syntactically
equal toNx (t2);

e list(X) is sortableite. can be equipped with suitable equality and compar-
ison relation).

Formally, we define the typsgortableas a dependent record made @etX,
two binary relations= and< on X, and of proofs that and< have the properties
just mentionned. IA is asortable the underlyingSetis denoted byA|.

Let A be asortablestructure, then by the above remarks we can construct two
sortable structures:

e Ru(A), such thatR,(A)| = Zn(|A|) and
e R(A), such thatRy(A)| = 1ist(|A]),

and moreover, we have a local normalizing function fiaf{A)| to | Rx(A)|.

We actually go one step further. It is easy to define a function which takes as
input asortableA, a decidable propertly on |A|, and yields as its output another
sortableB such thatB| = {x: |A| | Px}. We apply this mechanism in order to get
sorted-by-construction lists. That is, we can repl&geavith S, such that

o |Sx(A)|={l:1ist(|A]) | sorted}).

We are then ready for the third stage: normalizing any term of type
o I(Tn(Ix(0)))) to aterm of type. . Ru(Rn(Rx(0)))), or better... Sx(Ra(Sx(0)))),
by induction on the number of layers. Note that thanks to polymorphism, we deal
with each layer in a pleasant modular way.

We now have to handle types such. asl(‘7h(%x(0)))) in a formal way.

2.2 Formalized stratified types
2.2.1 Defining pasta and sauce layers

A layer is said trivial when it consists only of a terf(a) or I,(a). In order to
unfold sequences af, we want to avoid artificial separation ef layers likex$
L(I(y®z)). Therefore, we want to be able to forbid constructions likdn(a)).
Hence we distinguish between potentially trivial layers and non-trivial layers, by
adding to the pasta layer typg a boolean parameter telling us whether trivial
layers are included:

Section sec.x.
Variable A : Set
Inductive Zy: bool — Set:=
| X_Zero: V b, Zx b
| X.ns: Vb, Is_trueb— A— ZItb
| X_Xor: Vb, T true — 7k true — Iy b

Definition I, := X_ns true |

Likewise the inductive sauce layer tyfdg (non-xor terms) is parameterized by
a boolean telling whether trivial layers are included.

Section sec.nx

Variable A : Set
Inductive 7, bool — Set:=
| NX_PC: Vb, public_const— 7, b
| NX_SC: V b, secretconst— Tn b
| NX_sum: V b, Is_trueb— A — Ty b
| NX_E : Vb, 75 true — 7, true — 7 b
| NX_Hash: V b, 7, true — 7 true — Tn b

Definition I, := NX_sum true |

2.2.2 Lasagnas
The types of lasagnas are defined using mutual recursion on the height.

Fixpoint L5 (e:alte) : Set:=
match e with
| Oe = empty
| Se 0= % (Lqn 0) false
end

with L4, (0:alto) : Set:=
match o with

| S0 €= Tn (Lox €) false
end.

The pair of types for normalized terms is similarly defined, but their realm is
sortableinstead ofSet

Fixpoint L (e:alte) : sortable:=
match e with
| Oc = Ro
| So—e 0= S« (Lsn O)
end

with Ls, (0:alto) : sortable:=
match o with
| S0 €= Ry (L €) false
end.

2.2.3 Maps over lasagnas

Given a functionf from A: Setto B: Set one can easily definemaap, (resp.map,)
function lifting f to functions fromZx(A) to Zx(B) (resp. fromZ,(A) to Zx(B)).

Moreover, given an evaluation functidn A — ‘7', one can extend it to the do-
main I (A) (resp.Z,(A)) by interpreting copies of andO (resp. of constructors
belonging to() as the corresponding constructors®fand Iy (resp. I,) as the
identity over7.

2.2.4 Stacking layers

Building a stack ofk layers now essentially amounts to building the typgo
T)¥2(0) or Th(Tx o Tn)¥/?(0), depending on the parity . In a more type-
theoretic fashion, we define two mutually inductive ty@dg,e, and altoqq, de-
noting even and odd natural numbers respectively: the constructaitt.gf,are

O0e andS,_¢, the successor function from odd to even numbers, whexdégg has
only one constructos .o, the successor function from even to odd numbers. We
also defingarity as eithelP, or P,. One can then build the function

alt_of_parity: parity — Set
Pe +— alteyven

P, — altggg

2.3 Stratifying a term
2.3.1 Lifting a lasagna

The intuitive idea we have about lasagnas is somewhat misleading, because the
number of pasta and sauce layers is uniform in a whole lasagna dish, while the
number of layers of subterms which are rooted at the same depth of a given term
are different in the general case. However, any lasagna of heigdn be lifted to

a lasagna of height 4 e, wheree is even, because the empty type at the bottom

of types such agx (7 (Z(...(0)))) can be replaced with any type. Formally, the
lifting is defined by structural mutual induction as follows, thanks to map combi-
nators.

Fixpoint lift _lasagnax e; & {structe;} : Loy €1 — Loy (€1 + &) :=
match e; return Ly, €1 — Lgy (61 + &) with
| Oe = A emp=- match empwith end
| S—e 01 = map (lift_lasagnan o; &) false
end
with lift _lasagnan oy e {structosi} : Lq, 01 — Ly, (01 + &) =
match o; return L4, 01 — Lqp, (01 + &) with
| S0 € = map, (lift_lasagnaxe;) false
end.

2.3.2 Counting layers of & -term

Given a7 -termt, the type of the corresponding lasagna depends on the number
[(t) of its layers, which has to be computed first.

At first sight, we may try to escape the problem by computing a numéer
which is known to be greater, or equal kt) (a suitableu is the height). However
we would then have to handle proofs that the proposed nunibgedoes provide
an upper bound oht). Such proofs have to be constructive, because they provide
a bound on the number of recursive calls in the computation of the layering of a

7 -term. Then they embark the difference betweérn andl(t), in a more or less
hidden way. So it is unclear thaft) would really help us to simplify definitions,
and we chose to stick to an accurate computatidiitopfas follows.

The lifting functions explained in section 2.3.1 are basically used in the follow-
ing way. We define the maximum of two natural numbe@dmasn— m-+m.
It is easy to check that this operation is commutative, hence the lasagnas of two
immediate subterms of @-term can be lifted to lasagnas of the same height.

A further difficulty is that the arguments of a constructor occurrendeaire
heterogeneous, i.e. some of them cantband the others can be @. We then
may use appropriate injectiotigor I,. However, recall that their use is controlled
(see section 2.2.1): they can be used only at the borderline between two different
layers.

The trick is that, in general, we do not compute the lasagna of haighia
given term, that is, &(X,false) or a‘Zy(X,false), whereX is a lasagna of the
opposite kind and of heigim— 1 but only alasagna candidate of height— 1, that
is, a function which yields &(X,b) or aZ,(X,b) for any Boolearb.

Similarly, the definition of the height for a lasagna candidate (calliecllpar_of_term)
depends on a given parify

Definition inj_odd_parity p: alto — alt_of_parity p:=
match p return alto — alt_of_parity p with
|Pe= Soe
|Phb=A0=0
end.

Similarly for inj_even_parity

Fixpoint alt_allpar_of_term (t:7) : V p, alt_of_parity p:=
match t return Vv p, alt_of_parity p with
| Zero= A p = inj_odd_parity p (Se—o Oe)
| Xor xy=
let 0; ;= alt_allpar_of_term xP, in
let 0, := alt_allpar_of_term yP, in
A p = inj_odd_parity p (max.00 01 0y)

| PC x= A p=-inj_evenparity p &
|[Exy=
let e; ;= alt_allpar_of_term xPs in
let & ;= alt_allpar_of_term yPs in
A p = inj_evenparity p(max eee; &)
[Similarly for other constructors]
end.

The lifting functions of section 2.3.1 are easily generalized to lasagna candi-
dates.

2.3.3 Computing the lasagna

The main recursive function computes a true lasagna candidate. In other words,
the type of its result depends on the desired parity.

Definition kind_lasagna cand.of_term (t:7) (p: parity) : Set:=
match p with
| Pe = lasagnacand.n (alt_allpar_of_term tP.) true
| P, = lasagnacand.x (alt_allpar_of_term tR,) true
end.

Its body introduces injections as required. Here is its definition.

Fixpoint lasagna cand.of_term (t:7) :

v p, kind_lasagna cand.of_term t p:=

match t return V p, kind_lasagna cand.of_term t pwith

| Zero=
A p = match p return kind_lasagna cand.of_term Zero pwith
| Pe = I, (X_Zero falsg
| P = X_Zero true
end

’ Xorty t, =
let I, :=lasagna cand.of_termt; P, in
let I, :=lasagnacand.of_termt, P, in
A p = match p return kind_lasagna cand.of_term(Xor t; t2) p with
| Pe = I, (bin_xor X_Xorlq I5)
| Po = bin_xor X_Xor |1 |2
end

| PC x=
[similarly for constructors irC].

The above definition requires a function call®d_xor which maps a construc-
tor of Z; to an operation on lasagna candidates of arbitrary height. This is the place
where lifting is used. Note the essential use of the conversion rule in its typing.

Definition bin_xor
(bin: VAb 7y Atrue— Ty Atrue— TxAb)o1 0o b
(I1 : lasagnacand.x o; true) (I, : lasagna cand.x o, true) :
lasagnacand.x (max.0001 0p) b :=
bin (L7, (max.0001 02)) b
(lift _lasagna.cand.x trueo; (02 - 01) 11)
(coerce max.comm(lift _lasagnha cand.x true o, (01 - 02) I2)).

Finally, the functiorlasagna of_termis defined on top d&sagna cand.of_term
In contrast with the latter, we force the parity to depend on the constructor at the
root:

Definition alt_of_term t:= alt_allpar_of_term t(parity_of_term 9.

Definition lasagna of_parity p: alt_of_parity p — Set:=
match p return alt_of_parity p — Setwith
| Pe = Ly
| Po= Ly
end.

Definition lasagna of_term(t:7) :
lasagna of_parity (parity_of_term §) (alt_of_term f) :=
match t return lasagna of_parity (parity_of_term §) (alt_of_term 9 with
| Zero= X_Zero false
| Xorty tp =
let I :=lasagnacand.of_termt; P, in
let I, :=lasagna cand.of_termt, P, in
bin_xor X_Xor 1 I»

| PC x= NX_PC false x
[similarly for constructors irC].

2.4 Normalizing

We define a pair of normalization functiomd : Ve, Loye — |Lgyx € and Ny :

Vo, Ly, 0— |Lgno|. Basically, the latter does essentially nothing, while the core
of the former is

Ax. fold_insert(map.xor (N, o) falsex) [].

However, things are a little more complicated: nomalizing a list may produce a
one-element list, which behaves exactlylgsas explained in 2.2.1. In order to re-
move such fake layers, we replace the typet(a) in R with a typen1_list(a)
of lists having either no element, or at least two elements. Then, when sorting an
inhabitant of Zx(|A|) the normalization function for lasagnas returns a value in a
type with two options: either a1_1ist(|A|), or an element ofA| lifted as an
element ofR,(Sx(|A])).

Using this lifting requires some work: we have to show that it is monotonic,
and that the various map functionnals preserve monotony.

In summary, the whole normalization function typechecks, and syntactic equal-
ity in the type of its output corresponds exactly to the equivalence of its input wrt
algebraic laws ofp.

3 CONCLUSION

The Epigram project [AMMOS5] already advocates the definition of functions using
dependent types. They mostly aim at ensuring partial correctness properties (such
as a balancing invariant in the casenadérgesory.

The present paper shows how dependent types can help for ensuring termina-
tion too. We showed that an alternate path to termination orderings can be followed
in some situations. While our approach is certainly less general, it relies on more

elementary arguments. As a consequence, we can get a better insight on the rea-
sons that make the normalization process terminate: they boil down to a (mutual)
induction on the implicit structure of terms. Like for approaches advocated by Epi-
gram, the whole game consists in finding dependent types that render this implicit
structure explicit.

Our development is available at http://www-verimag.imag.fr/"monin/.

REFERENCES

[AMMO5] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Manuscript, available online, April 2005.

[ANOO] C. Alvarado and Q. Nguyen. ELAN for equational reasoning in Cog. In J. De-
speyroux, editorProc. of 2nd Workshop on Logical Frameworks and Meta-
languages. Institut National de Recherche en Informatique et en Automatique,
ISBN 2-7261-1166-1une 2000.

[BBOO] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recur-
sion in type theory. In M. Aagaard and J. Harrison, editétsc. of 13th
Int. Conf. on Theorem Proving in Higher Order Logics, TPHOLS'00, Port-
land, OR, USA, 14-18 Aug. 200@lume 1689, pages 1-16. Springer-Verlag,
Berlin, 2000.

[BCO4] Yves Bertot and Pierre Ca&san. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructiondume
XXV of Texts in Theoretical Computer Science. An EATCS Se8psinger,
2004. 469 p., Hardcover. ISBN: 3-540-20854-2.

[BCO5] AnaBove and Venanzio Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Scient®(4):671-708, August 2005.

[BlaO1] Frécéric Blanqui. Definitions by rewriting in the calculus of constructions. In
Logic in Computer Scien¢gpages 9-18, 2001.

[Bon04] Mike Bond. Understanding Security APISPhD thesis, University of Cam-
bridge Computer Laboratory, June 2004.

[CKRTO5] Yannick Chevalier, Ralf Ksters, Mich&l Rusinowitch, and Mathieu Turuani.
An np decision procedure for protocol insecurity with xérheor. Comput.
Sci, 338(1-3):247-274, 2005.

[CLCO3] H. Comon-Lundh and V. Cortier. New decidability results for fragments of
first-order logic and application to cryptographic protocols. Pimc. 14th
Int. Conf. Rewriting Techniques and Applications (RTA’20@8Jume 2706
of Lecture Notes in Computer Scienpages 148-164. Springer, 2003.

[CM06] Judic@l Courant and Jean-Francois Monin. Defending the bank with a proof
assistant. In Dieter Gollmann and Jdmjéns, editorsSixth International IFIP
WG 1.7 Workshop on Issues in the Theory of Seguyréages 87 — 98, Vienna,
March 2006. European Joint Conferences on Theory And Practice of Software.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. IROPL '94: Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languggeges 123-137,
New York, NY, USA, 1994. ACM Press.

[Ler00]
[TheO5]

[YAB +05]

Xavier Leroy. A modular module syster. Funct. Program.10(3):269-303,
2000.

The Coq Development Tearfihe Coq Proof Assistant Reference Manual Ver-
sion 8.0 Logical Project, January 2005.

Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amer-
son Lin, Ronald L. Rivest, and Ross Anderson. Robbing the bank with a the-
orem prover. Technical Report UCAM-CL-TR-644, University of Cambridge,
Computer Laboratory, August 2005.

