
Proving termination using dependent types:
the case of xor-terms

Jean-François Monin1 and Judicäel Courant1

VERIMAG - Centre quation, 2 avenue de Vignate, F-38610 Gières, France
{jean-francois.monin |judicael.courant }@imag.fr

http://www-verimag.imag.fr/˜monin |courant/

Abstract

We study a normalization function in an algebra of terms quotiented by an associa-
tive, commutative and involutive operator (logical xor). This study is motivated by
the formal verification of cryptographic systems, where a normalization function for
xor-terms turns out to play a key role. Such a function is easy to define using general
recursion. However, as it is to be used in a type theoretic proof assistant, we also
need a proof of its termination. Instead of using a clever mixture of various rewriting
orderings, we follow an approach involving the power of Type Theory with depen-
dent types. The results are to be applied in the proof of the security API described
in [CM06].

1 INTRODUCTION

In the course of the formal verification of cryptographic systems using symbolic
approaches, one deals with algebras of terms whose constructors include⊕, denot-
ing the binary bitwise exclusive or andO, denoting a bitstring consisting only of
zeros. Bitwise exclusive or is often used in cryptographic systems and many (po-
tential or effective) attacks are based on its algebraic properties [YAB+05, Bon04,
CKRT05, CLC03].

Dealing with the congruence generated by the usual arithmetic laws on⊕ andO
is therefore necessary in order to successfully verify these systems: in the following
we consider an algebra of termsT built up using a number of constructors, where
two of them, denoted by⊕ andO, enjoy the following algebraic properties.

Commutativity: x⊕y ' y⊕x (1)

Associativity: (x⊕y)⊕z ' x⊕ (y⊕z) (2)

Neutral element: x⊕O ' x (3)

Involutivity: x⊕x ' O (4)

Formally,' denotes the least congruence generated by equations (1) to (4). In
order to reason about terms ofT up to', a standard technique is to define a
canonicalization function overT . One also actually needs such a function to give
minimal terms with respect to simplification as one also needs a subterm relation

¹ which takes into account equalities such asu' u⊕x⊕x:

x¹ y if x' y

x¹ t if t ' x⊕y0 . . .⊕yn andx 6¹ yi for all i, 0≤ i ≤ n

Turning equations (1) to (4) into a convergent and strongly normalizing AC-
rewriting system is quite straightforward. Therefore, the existence of a normaliza-
tion function can be proven easily on the paper. Moreover, in any decent program-
ming language, writing the corresponding normalization function onT is quite
easy, using general recursion.

However, formally giving such a normalization function in Type Theory and
formally proving its correctness is much more challenging. The first problem is
to ensure termination. In Type Theory, all functions are total by construction. It
means that general fixpoints are not allowed for defining functions. The promi-
nent ingredient provided by Type Theory, in order to achieve this fundamental
property while keeping a good expressing power, is the limitation of recursion to
higher-order primitive recursion, extended to structural recursion over all induc-
tively defined types. In simple cases, one can use the combinators automatically
provided by the theory and support tools for natural numbers, lists and all user-
defined inductive types. In the modern version of Coq, which implements a ver-
sion of Type Theory called the Calculus of Inductive Constructions (CIC), the user
can equivalently provide, for each recursively defined function, an argument which
structurally strictly decreases at each recursive call. A special and very important
case is well-founded recursion: the decreasing argument is a proof, formalized as
an inductive object, witnessing that a given value is accessible for some binary
relation. It complicated cases, the latter approach is by far more convenient. But
it can be seen that there is no miracle: while totality in ensured by type-checking
(and the fact that well-typed functions are strongly normalizing), designing and
providing the right types and arguments are in the responsibility of the user. Stan-
dard libraries on well-founded relations are helpful here. Besides, one can consider
additional tools or methodology such as those developed by Bertot and Balaa, or
Bove and Capretta [BB00, BC05].

In the case of the canonicalization function we have in mind, using standard
rewriting arguments is surprisingly difficult in a proof assistant such as Coq [The05,
BC04].

• Although some theoretical works address the addition of rewriting to the
Calculus of Constructions [Bla01], these works are yet to be implemented.

• Some works provide ways to define tactics for reasonning over associative-
commutative theories [AN00], but they only provide ways to normalize given
terms, not to define a normalization function.

We therefore tried to define our own specific rewriting relation corresponding
to the defining equations of', but found this approach really costly:

• A well-founded ordering had to be given. As no rpo or lpo ordering library
was available in Coq, we used the lexicographic combination of a partial
ordering≤1 with a total ordering≤2, where≤1 is a polynomial ordering,
and≤2 is a lexicographic ordering. Although≤2 is not well-founded, the
set of terms having a given weight for the polynomial defining≤1 is finite,
therefore we could prove in Coq the lexicographic combination of≤1 and
≤2 to be finite.

• Then we defined a rewriting relation.. The difficult part here is to take into
account commutativity and associativity. In order to avoid AC-matching
issues, we decided to throw in associativity and to add commutativity as a
conditional rule (x⊕y would rewrite toy⊕x if and only if x is smaller than
y). Moreover, we had to complete our rewriting system in order to close
critical pairs such asx⊕x⊕y, which could be rewritten toy or tox⊕ (x⊕y).

• A normalization function has to be given. As mentionned above, the def-
inition of such a function using well-founded induction in Coq is uneasy.
Therefore we stopped there and used an other approach instead.

• Once this would be done, we would still have to prove that the transitive
closure of our rewriting relation is irreflexive, that our normalization func-
tion is sound with respect to it, and that is computes normal forms. Essen-
tially, the main results to prove here would be∀t t 6 .+t, ∀t t .? norm(t) and
∀t1∀t2 t1 . t2 ⇒ norm(t1) = norm(t2).

Instead we experimented a new approach involving typical features of Type
Theory. The intuition behind our approach is very simple. In a first stage, the
term to be normalized is layered in such a way that each level is built up from
terms belonging to the previous level. These levels alternate between layers built
up using only⊕ constructors and layers built up using only other constructors, as
lasagnas alternate between pasta-only layers and sauce layers (mixed up to your
taste of tomato, meat, and cheese – in fact anything but pasta). In a second stage,
layers are normalized bottom-up. Normalizing a⊕-layer roughly boils down to
sorting, while normalization of a non-⊕-layer is just identity.

Basically, the second stage is not very difficult, though some pitfalls have to
be avoided. Surprisingly, the first stage, which is essentially nothing else than
type translation and renaming, requires more work than expected. In the whole
development, we need the full power of programming with dependent types: each
layer owns its specific ordering relation, which depends on the ordered structure of
the previous layer.

The approach we describe in this paper was designed and implemented using
the Coq proof assistant. Its results are to be applied in the proof of security proper-
ties of an API described in [CM06].

2 FORMALIZATION

2.1 Splitting the type of terms

Let {⊕,O}]C be the set of constructors ofT . For instance, in our case, we have
C = {PC,SC,E,Hash} with

PC : public const→ T E : T → T → T
SC : secret const→ T Hash : T → T → T

wherepublic const andsecret const are suitable enumerated types.
As explained in the introduction, we want to split aT -term into layers. More-

over, a number of functions and lemmas have to be stated and proved on each layer.
For obvious modularity reasons, it is better to handle each layer separately. Each
layer provides a datatype, comparison and sorting functions on this type as well
as correctness lemmas. Intuitively, it could be seen as a module in the sense of
Harper, Lillibridge and Leroy [HL94, Ler00], or better: a functor, because each
layer relies on the interface of the previous layer. HLL modules have been adapted
to the Calculus of Indiuctive Constructions and are implemented in Coq. But our
case is out of their scope, because here the number of layers is a dynamic notion
which depends on a piece of data, namely a term to be normalized. Therefore we
stick to the features of basic CIC, which are dependent, polymorphic and inductive
types.

In a first stage, we introduce two polymorphic inductive typesTx(α) andTn(α)
respectively called the pasta layer type and the sauce layer type. The construc-
tors ofTx(α) are (copies of)⊕ andO while the constructors ofTn(α) are (copies
of) those belonging toC . Moreover,Tx(α) (respectivelyTn(α)) has an additional
constructorIx : α→ Tx(α) (respectivelyIn : α→ Tn(α)).

It is then clear that any termt in T can be recasted into either the type
Tx(Tn(Tx(. . .(/0)))) or the typeTn(Tx(Tn(. . .(/0)))), according to the top constructor
of t.

In a second stage, normalizingt can be defined as bottom-up sorting in the
following way. We say that a typeX is sortableif it is equipped with a decidable
equality and a decidable total irreflexive and transitive relation<. Equivalently,
we could take a decidable total ordering but the above choice turns out to be more
convenient.

If X is sortable,

• Tn(X) is sortable;

• the multiset ofX-leaves of any inhabitantt of Tx(X) can be sorted (with dele-
tion of duplicates) into a listNX(t), such thatt1' t2 iff NX(t1) is syntactically
equal toNX(t2);

• list(X) is sortable (i.e. can be equipped with suitable equality and compar-
ison relation).

Formally, we define the typesortableas a dependent record made of aSetX,
two binary relations= and< onX, and of proofs that= and< have the properties
just mentionned. IfA is asortable, the underlyingSetis denoted by|A|.

Let A be asortablestructure, then by the above remarks we can construct two
sortable structures:

• Rn(A), such that|Rn(A)|= Tn(|A|) and

• Rx(A), such that|Rx(A)|= list(|A|),
and moreover, we have a local normalizing function from|Tx(A)| to |Rx(A)|.

We actually go one step further. It is easy to define a function which takes as
input asortableA, a decidable propertyP on |A|, and yields as its output another
sortableB such that|B|= {x : |A| | Px}. We apply this mechanism in order to get
sorted-by-construction lists. That is, we can replaceRx with Sx, such that

• |Sx(A)|= {l : list(|A|) | sortedl}).
We are then ready for the third stage: normalizing any term of type

. . .Tx(Tn(Tx(/0)))) to a term of type. . .Rx(Rn(Rx(/0)))), or better. . .Sx(Rn(Sx(/0)))),
by induction on the number of layers. Note that thanks to polymorphism, we deal
with each layer in a pleasant modular way.

We now have to handle types such as. . .Tx(Tn(Tx(/0)))) in a formal way.

2.2 Formalized stratified types

2.2.1 Defining pasta and sauce layers

A layer is said trivial when it consists only of a termIx(a) or In(a). In order to
unfold sequences of⊕, we want to avoid artificial separation of⊕ layers likex⊕
Ix(In(y⊕z)). Therefore, we want to be able to forbid constructions likeIx(In(a)).
Hence we distinguish between potentially trivial layers and non-trivial layers, by
adding to the pasta layer typeTx a boolean parameter telling us whether trivial
layers are included:

Section sec x.
Variable A : Set.
Inductive Tx: bool→ Set:=
| X Zero: ∀ b, Tx b
| X ns: ∀ b, Is true b→ A→ Tx b
| X Xor : ∀ b, Tx true→ Tx true→ Tx b

.

Definition Ix := X ns true I.

Likewise the inductive sauce layer typeTn (non-xor terms) is parameterized by
a boolean telling whether trivial layers are included.

Section sec nx.

Variable A : Set.
Inductive Tn: bool→ Set:=
| NX PC : ∀ b, public const→ Tn b
| NX SC: ∀ b, secret const→ Tn b
| NX sum: ∀ b, Is true b→ A→ Tn b
| NX E : ∀ b, Tn true→ Tn true→ Tn b
| NX Hash: ∀ b, Tn true→ Tn true→ Tn b

.
Definition In := NX sum true I.

2.2.2 Lasagnas

The types of lasagnas are defined using mutual recursion on the height.

Fixpoint LT x (e:alte) : Set:=
match ewith
| 0e⇒ empty
| So→e o⇒ Tx (LT n o) false
end

with LT n (o:alto) : Set:=
match o with
| Se→o e⇒ Tn (LT x e) false
end.

The pair of types for normalized terms is similarly defined, but their realm is
sortableinstead ofSet.

Fixpoint LSx (e:alte) : sortable:=
match ewith
| 0e⇒ R /0
| So→e o⇒ Sx (LSn o)
end

with LSn (o:alto) : sortable:=
match o with
| Se→o e⇒ Rn (LSx e) false
end.

2.2.3 Maps over lasagnas

Given a functionf from A : Setto B : Set, one can easily define amapx (resp.mapn)
function lifting f to functions fromTx(A) to Tx(B) (resp. fromTn(A) to Tn(B)).

Moreover, given an evaluation functionf : A→ T , one can extend it to the do-
mainTx(A) (resp.Tn(A)) by interpreting copies of⊕ andO (resp. of constructors
belonging toC) as the corresponding constructors ofT andIx (resp. In) as the
identity overT .

2.2.4 Stacking layers

Building a stack ofk layers now essentially amounts to building the type(Tx ◦
Tn)k/2(/0) or Tn(Tx ◦ Tn)k/2(/0), depending on the parity ofk. In a more type-
theoretic fashion, we define two mutually inductive typesalteven and altodd, de-
noting even and odd natural numbers respectively: the constructors ofaltevenare
0e andSo→e, the successor function from odd to even numbers, whereasaltodd has
only one constructor,Se→o, the successor function from even to odd numbers. We
also defineparity as eitherPe or Po. One can then build the function

alt of parity : parity → Set
Pe 7→ alteven

Po 7→ altodd

2.3 Stratifying a term

2.3.1 Lifting a lasagna

The intuitive idea we have about lasagnas is somewhat misleading, because the
number of pasta and sauce layers is uniform in a whole lasagna dish, while the
number of layers of subterms which are rooted at the same depth of a given term
are different in the general case. However, any lasagna of heightn can be lifted to
a lasagna of heightn+ e, wheree is even, because the empty type at the bottom
of types such asTx(Tn(Tx(. . .(/0)))) can be replaced with any type. Formally, the
lifting is defined by structural mutual induction as follows, thanks to map combi-
nators.

Fixpoint lift lasagna x e1 e2 {structe1} : LT x e1 → LT x (e1 + e2) :=
match e1 return LT x e1 → LT x (e1 + e2) with
| 0e⇒ λ emp⇒ match empwith end
| So→e o1 ⇒ mapx (lift lasagna n o1 e2) false
end

with lift lasagna n o1 e2 {structo1} : LT n o1 → LT n (o1 + e2) :=
match o1 return LT n o1 → LT n (o1 + e2) with
| Se→o e1 ⇒ mapn (lift lasagna x e1 e2) false
end.

2.3.2 Counting layers of aT -term

Given aT -term t, the type of the corresponding lasagna depends on the number
l(t) of its layers, which has to be computed first.

At first sight, we may try to escape the problem by computing a numberu(t)
which is known to be greater, or equal to,l(t) (a suitableu is the height). However
we would then have to handle proofs that the proposed numberu(t) does provide
an upper bound onl(t). Such proofs have to be constructive, because they provide
a bound on the number of recursive calls in the computation of the layering of a

T -term. Then they embark the difference betweenu(t) andl(t), in a more or less
hidden way. So it is unclear thatu(t) would really help us to simplify definitions,
and we chose to stick to an accurate computation ofl(t) as follows.

The lifting functions explained in section 2.3.1 are basically used in the follow-
ing way. We define the maximum of two natural numbersn andm asn−m+ m.
It is easy to check that this operation is commutative, hence the lasagnas of two
immediate subterms of aT -term can be lifted to lasagnas of the same height.

A further difficulty is that the arguments of a constructor occurrence int are
heterogeneous, i.e. some of them can be⊕ and the others can be inC . We then
may use appropriate injectionsIx or In. However, recall that their use is controlled
(see section 2.2.1): they can be used only at the borderline between two different
layers.

The trick is that, in general, we do not compute the lasagna of heightn of a
given term, that is, aTx(X,false) or aTn(X,false), whereX is a lasagna of the
opposite kind and of heightn−1 but only alasagna candidate of heightn−1, that
is, a function which yields aTx(X,b) or aTn(X,b) for any Booleanb.

Similarly, the definition of the height for a lasagna candidate (calledalt allpar of term)
depends on a given parityp.

Definition inj odd parity p : alto→ alt of parity p :=
match p return alto→ alt of parity pwith
| Pe⇒ So→e

| Po ⇒ λ o⇒ o
end.

Similarly for inj even parity

Fixpoint alt allpar of term(t:T) : ∀ p, alt of parity p :=
match t return ∀ p, alt of parity pwith
| Zero⇒ λ p⇒ inj odd parity p (Se→o 0e)
| Xor x y⇒

let o1 := alt allpar of term xPo in
let o2 := alt allpar of term yPo in
λ p⇒ inj odd parity p (max ooo1 o2)

| PC x⇒ λ p⇒ inj even parity p 0e

| E x y⇒
let e1 := alt allpar of term xPe in
let e2 := alt allpar of term yPe in
λ p⇒ inj even parity p (max eee1 e2)

[Similarly for other constructors]
end.

The lifting functions of section 2.3.1 are easily generalized to lasagna candi-
dates.

2.3.3 Computing the lasagna

The main recursive function computes a true lasagna candidate. In other words,
the type of its result depends on the desired parity.

Definition kind lasagna cand of term(t:T) (p: parity) : Set:=
match p with
| Pe⇒ lasagna cand n (alt allpar of term tPe) true
| Po ⇒ lasagna cand x (alt allpar of term tPo) true
end.

Its body introduces injections as required. Here is its definition.

Fixpoint lasagna cand of term(t:T) :
∀ p, kind lasagna cand of term t p:=
match t return ∀ p, kind lasagna cand of term t pwith
| Zero⇒

λ p⇒ match p return kind lasagna cand of term Zero pwith
| Pe⇒ In (X Zero false)
| Po ⇒ X Zero true
end

| Xor t1 t2 ⇒
let l1 := lasagna cand of termt1 Po in
let l2 := lasagna cand of termt2 Po in
λ p⇒ match p return kind lasagna cand of term(Xor t1 t2) p with
| Pe⇒ In (bin xor X Xor l1 l2)
| Po ⇒ bin xor X Xor l1 l2
end

| PC x⇒
[similarly for constructors inC].

The above definition requires a function calledbin xor which maps a construc-
tor of Tx to an operation on lasagna candidates of arbitrary height. This is the place
where lifting is used. Note the essential use of the conversion rule in its typing.

Definition bin xor
(bin : ∀ A b, Tx A true→ Tx A true→ Tx A b) o1 o2 b
(l1 : lasagna cand x o1 true) (l2 : lasagna cand x o2 true) :
lasagna cand x (max ooo1 o2) b :=
bin (LT n (max ooo1 o2)) b

(lift lasagna cand x trueo1 (o2 - o1) l1)
(coerce max comm(lift lasagna cand x trueo2 (o1 - o2) l2)).

Finally, the functionlasagna of termis defined on top oflasagna cand of term.
In contrast with the latter, we force the parity to depend on the constructor at the
root:

Definition alt of term t := alt allpar of term t (parity of term t).

Definition lasagna of parity p : alt of parity p→ Set:=
match p return alt of parity p→ Setwith
| Pe⇒ LT x

| Po ⇒ LT n

end.

Definition lasagna of term(t:T) :
lasagna of parity (parity of term t) (alt of term t) :=
match t return lasagna of parity (parity of term t) (alt of term t) with
| Zero⇒ X Zero false
| Xor t1 t2 ⇒

let l1 := lasagna cand of termt1 Po in
let l2 := lasagna cand of termt2 Po in
bin xor X Xor l1 l2

| PC x⇒ NX PC false x
[similarly for constructors inC].

2.4 Normalizing

We define a pair of normalization functionsNx : ∀ e,LT x e→ |LRx e| and Nn :
∀o,LT n o→ |LRn o|. Basically, the latter does essentially nothing, while the core
of the former is
λx. fold insert(map xor (Nn o) falsex) [].

However, things are a little more complicated: nomalizing a list may produce a
one-element list, which behaves exactly asIx, as explained in 2.2.1. In order to re-
move such fake layers, we replace the typelist(α) in Rx with a typen1 list(α)
of lists having either no element, or at least two elements. Then, when sorting an
inhabitant ofTx(|A|) the normalization function for lasagnas returns a value in a
type with two options: either an1 list(|A|), or an element of|A| lifted as an
element ofRn(Sx(|A|)).

Using this lifting requires some work: we have to show that it is monotonic,
and that the various map functionnals preserve monotony.

In summary, the whole normalization function typechecks, and syntactic equal-
ity in the type of its output corresponds exactly to the equivalence of its input wrt
algebraic laws of⊕.

3 CONCLUSION

The Epigram project [AMM05] already advocates the definition of functions using
dependent types. They mostly aim at ensuring partial correctness properties (such
as a balancing invariant in the case ofmergesort).

The present paper shows how dependent types can help for ensuring termina-
tion too. We showed that an alternate path to termination orderings can be followed
in some situations. While our approach is certainly less general, it relies on more

elementary arguments. As a consequence, we can get a better insight on the rea-
sons that make the normalization process terminate: they boil down to a (mutual)
induction on the implicit structure of terms. Like for approaches advocated by Epi-
gram, the whole game consists in finding dependent types that render this implicit
structure explicit.

Our development is available at http://www-verimag.imag.fr/˜monin/.

REFERENCES

[AMM05] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Manuscript, available online, April 2005.

[AN00] C. Alvarado and Q. Nguyen. ELAN for equational reasoning in Coq. In J. De-
speyroux, editor,Proc. of 2nd Workshop on Logical Frameworks and Meta-
languages. Institut National de Recherche en Informatique et en Automatique,
ISBN 2-7261-1166-1, June 2000.

[BB00] Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recur-
sion in type theory. In M. Aagaard and J. Harrison, editors,Proc. of 13th
Int. Conf. on Theorem Proving in Higher Order Logics, TPHOLS’00, Port-
land, OR, USA, 14–18 Aug. 2000, volume 1689, pages 1–16. Springer-Verlag,
Berlin, 2000.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, volume
XXV of Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004. 469 p., Hardcover. ISBN: 3-540-20854-2.

[BC05] Ana Bove and Venanzio Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Science, 15(4):671–708, August 2005.

[Bla01] Fŕed́eric Blanqui. Definitions by rewriting in the calculus of constructions. In
Logic in Computer Science, pages 9–18, 2001.

[Bon04] Mike Bond. Understanding Security APIs. PhD thesis, University of Cam-
bridge Computer Laboratory, June 2004.

[CKRT05] Yannick Chevalier, Ralf K̈usters, Michäel Rusinowitch, and Mathieu Turuani.
An np decision procedure for protocol insecurity with xor.Theor. Comput.
Sci., 338(1-3):247–274, 2005.

[CLC03] H. Comon-Lundh and V. Cortier. New decidability results for fragments of
first-order logic and application to cryptographic protocols. InProc. 14th
Int. Conf. Rewriting Techniques and Applications (RTA’2003), volume 2706
of Lecture Notes in Computer Science, pages 148–164. Springer, 2003.

[CM06] Judicäel Courant and Jean-François Monin. Defending the bank with a proof
assistant. In Dieter Gollmann and Jan Jürjens, editors,Sixth International IFIP
WG 1.7 Workshop on Issues in the Theory of Security, pages 87 – 98, Vienna,
March 2006. European Joint Conferences on Theory And Practice of Software.

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order
modules with sharing. InPOPL ’94: Proceedings of the 21st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 123–137,
New York, NY, USA, 1994. ACM Press.

[Ler00] Xavier Leroy. A modular module system.J. Funct. Program., 10(3):269–303,
2000.

[The05] The Coq Development Team.The Coq Proof Assistant Reference Manual Ver-
sion 8.0. Logical Project, January 2005.

[YAB +05] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amer-
son Lin, Ronald L. Rivest, and Ross Anderson. Robbing the bank with a the-
orem prover. Technical Report UCAM-CL-TR-644, University of Cambridge,
Computer Laboratory, August 2005.

