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Fixpoints

Recursive calls
must be on a structurally smaller argument.

Available for all inductive types
Not only natural numbers

Induction is a special case of a fixpoint
Not only natural numbers
Computational interpretation
More secure
Subtleties on quantification
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Syntax of fixpoints

Consider a recursive function f with arguments x. . . z,
including y

Fixpoint f (x:A). . .(z:C) {struct y}: R :=
. . .
match y with

. . .
| Construct. . .y’. . . => . . . (f. . .y’. . .) . . .
. . .

end
. . .

However, {struct y} can be omitted:
Coq tries to guess which is the structurally decreasing
argument from the body of f
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Subtle inductions

Proofs by induction may need a strengthening of the
statement

I additional conjuncts
I put more quantifications ∀ in the scope of the induction
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Informative data types

Informative Booleans: sumbool

Inductive sumbool (P Q: Prop) : Set :=
| left : forall p:P, sumbool P Q
| right : forall q:Q, sumbool P Q.

Notation : {P}+{Q}

Qualified values: sig

Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> sig P.

Notation : {x:A | P x}
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Pragmatics of informative data types

Corresponding counterparts in Prop

logic data types
P ∨ Q {P}+ {Q}
∃x ,P x {x : A | P x}

Easier to construct and to use in interactive mode
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Differences between Prop and Set (1)

In general, we don’t care about normal form of proofs

E.g. in {x:nat | even x},
consider (20× 15, p), where p is a proof that 20× 15 is even.

I 20× 15 reduces to 300:
useful, e.g., we may want to compute pred (20× 15)

I p may rely on a lemma saying that n ×m is even if n is
even; reducing p to the constructors of even has no
special interest
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Differences between Prop and Set (2)

Bottom line
Case analysis on p:P:Prop to get a value in A:Set

is not allowed

Can be read as confidentiality
The information contents of proofs in Prop is secret:

I it is visible only in other proofs in Prop
I it is hidden to the world of datatypes and computations

Set (and Type)
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Differences between Prop and Set (3)

Advanced (not discussed here)
Prop is impredicative while Set may be predicative
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Excluded middle
A consequence of the computational reading of disjunction
Constructive (intuitionistic) logic

I P ∨ ¬P is not a theorem
I ¬¬(P ∨ ¬P) is a theorem
I similar for {P}+ {¬P}

Examples
I ∀n m : nat, {n = m}+ {¬n = m} OK... with work
I ∀f : nat → nat, {∃n, f n = 0}+ {∀n,¬f n = 0}

just impossible

Notes
I ∀n,¬P n is equivalent to ¬∃n,P n
I ∀f g : nat → nat, f = g ∨ ¬f = g
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More on Excluded middle

Admissible axioms
I P ∨ ¬P is admissible:

Require Import Classical.
Can be convenient, but often stronger than really needed
Matter of taste...

I {P}+ {¬P} is not admissible
Consistent with confidentiality (see above)
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Why induction matters

Tool of choice for proving properties on an infinite (but
countable) number of values
Other methods are

I either weaker (prove less properties)
I or rely on induction in a hidden way

Required in many applications in computer science
I reasoning on data structures
I language syntax
I programming language semantics
I proofs of algorithms
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Strength of induction

Induction requires ingenuity, in general
I a consequence of Gödel incompleteness theorems
I support for induction is a discriminating criterium for

automated provers
Coq supports induction

I proof search 6= proof checking
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Several forms of induction

I Basic induction on natural numbers (IN)
I Well-founded induction on (IN, <)
I Well-founded induction on (S,R), where S is an

arbitrary set and R a suitable relation on S
I Transfinite induction
I Structural induction

We will focus on structural induction, because it is
I a very natural extension of basic induction but on lists,

trees, terms . . . instead of IN
I close to computer science concerns
I yet powerful enough to embed all other kinds of

induction
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Proving something on all natural numbers

Let us define x ≤ y def
== ∃d , d + x = y

Prove ∀x , 2+ x ≤ 5+ x

I Take an arbitrary natural number x
I Remark that 3+ (2+ x) = 5+ x
I Hence ∃d , d + (2+ x) = 5+ x
I By definition of ≤ we get: 2+ x ≤ 5+ x

This proof is uniform : it does not depend on the value of x
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Looking at x : (non-uniform) proof by cases

Prove ∀x , x ≤ 4⇒ ∃y , x = 2y ∨ x = 1+ 2y

The proof is not uniform: different is each case

I Case x = 0: take y = 0, left, check 0 = 2.0
I Case x = 1: take y = 0, right, check 1 = 1+ 2.0
I Case x = 2: take y = 1, left, check 2 = 2.1
I Case x = 3: take y = 1, right, check 3 = 1+ 2.1
I Case x = 4: take y = 2, left, check 4 = 2.2
I Case x = 5+ n: don’t care
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What do you think of the following one?

x ≤ y def
== ∃d , d + x = y

Prove ∀x , x ≤ 3x

I Take an arbitrary natural number x
I Remark that 2x + x = 3x
I Hence ∃d , d + x = 3x
I That is x ≤ 3x

Is this proof uniform? Yes: no case analysis on x
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Common scheme for a proof by cases on nat

Basic scheme

P 0 ∀n,P (S n)
∀x ,P x

Variants

P 0 P 1 ∀n,P (S (S n))
∀x ,P x

P 0 P 1 P 2 ∀n,P (S (S (S n)))
∀x ,P x

etc.
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Proof by cases on all natural numbers

P 0 P 1 . . . P n . . .

∀x ,P x
In order to prove ∀x ,P x,
prove P on each natural number n

∞ cases to consider

Does not work. . .

Unless we have a systematical way to construct a proof of
P n for each n?



IIPS

J.-F. Monin

Fixpoints and
induction

More on Prop and
Set

Induction
Induction on natural
numbers

Functional reading of
Induction

Refinements on
Constructive Logic

Induction and
quantifier
management

What if there is no
zero?

Constructing proofs of P n, with n : nat

1. Prove P 0
2. Prove P 0⇒ P 1
3. Prove P 1⇒ P 2
4. etc.

From 1. and 2. we get P 1
From the latter and 3. we get P 2
Etc.

At first sight, no progress:
infinite number of proof obligations

Unless ve prove (uniformly) 2. 3. 4. etc. at once:

∀n, P n⇒ P (S n)
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Induction on nat

P 0 ∀n,P n⇒ P (S n)
∀n,P n

P n is called the induction hypothesis.

Remark: proof by cases

P 0 ∀n,P (S n)
∀n,P n

is a special case of induction – the induction hypothesis is
not used.
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Primitive recursion

Example: addition
Given some fixed natural m, what is to “add to m”?

I 0+m = m
I S n +m = S(n +m)

Method for defining such functions f
I provide the returned value when the argument is 0
I provide the returned value when the argument is S n

this value may depend on n and on f n

Note that f may have other fixed arguments

Official name in the jargon of logic : primitive recursion
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Properties of +

(Almost all) basic properties of + are proved by induction

I ∀n, 0+ n = n . . .?
I ∀n, n + 0 = n . . .?

Commutativity, associativity

Similarly for subtraction, multiplication. . .

Interest: foundations (Coq library); fundamental exercises



IIPS

J.-F. Monin

Fixpoints and
induction

More on Prop and
Set

Induction
Induction on natural
numbers

Functional reading of
Induction

Refinements on
Constructive Logic

Induction and
quantifier
management

What if there is no
zero?

Constructive (i.e. functional) reading

A proof of ∀n, P n⇒ P (S n) is a function which,
given 2 arguments:

I a nat n
I a proof pn of P n

yields a proof of P (S n)

Let f be such a proof.
Let p0 be a proof of P 0

Then
I f 1 (f 0 p0) is a proof of P 2
I given any nat n, f n (. . . (f 1 (f 0 p0)) . . .)

is a proof of P (S n)
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Example:
the product of 2 consecutive numbers is even

Formally: ∀n,∃k, n.(S n) = 2.k︸ ︷︷ ︸
P n

I For n = 0: we have n.(S n) = 0.1 = 0 = 2.0,
taking k = 0 yields P 0

I (Uniform) proof of ∀n, P n⇒ P(S n)
I For an arbitrary n ∈ nat, assume P n

i.e. n.(S n) = 2.y for some y
I Then (S n).(S (S n)) = (2+ n).(S n)

= 2.(S n) + 2.y
= 2.(S n + y)

I Taking k = S n + y , we get P(S n), QED.
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Constructive (i.e. functional) reading
A proof of ∃x ,P x is a pair (ex intro w p),
written (w , p) for short,
where w is a value (the witness) and p a proof of P w

Let g be the previous proof of ∀n,∃k, n.(S n) = 2.k︸ ︷︷ ︸
P n

which uses f , a proof of ∀n, P n⇒ P(S n)

Reducing a proof of g 10 yields
f 9 (f 8 (. . . (f 0 p0) . . .)

which reduces to (55, e110):
I p0 = (0, e0)
I p1 = f 0 p0 reduces to (1, e2)
I p2 = f 1 p1 reduces to (3, e6)
I . . .

Where ei : i = i which reduces to reflexivity of equality on i
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Constructive reading in Set
However, reductions are not performed in Prop
(except for theorems finishing with Defined instead of Qed)

Using the existence in Set:
A proof of {x | P x} is a pair (exist w p),
written (w , p) for short,
where w is a value (the witness) and p a proof of P w

Let g be the previous proof of ∀n, {k | n.(S n) = 2.k}︸ ︷︷ ︸
P n

which uses f , a proof of ∀n, P n⇒ P(S n)

Reducing a proof of g 10 yields
f 9 (f 8 (. . . (f 0 p0) . . .)

which reduces to (55, e110)
The proof ei reduces, in principle, to reflexivity of equality on i ,
but reductions are not performed there (but we don’t care)
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About excluded middle

In Prop
A proof of ∀n, even n ∨ ¬even n︸ ︷︷ ︸

P n
is a function f which provides for each n a precise answer:

I either yes: n is even, here is a proof
I or no: n is not even, here is a proof

E.g., reducing f 10 will answer: yes + proof of even 10

2 possibilities
I Cheating, using classical logic: ∀P,P ∨ ¬P
I Really provide a proof, by induction on n

In Set: testing functions returning additional knowledge
A proof of ∀n, {even n}+ {¬even n}︸ ︷︷ ︸

P n

must be constructive

Excluded middle not allowed
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Subtelties with induction

Consider the following version of addition
Coq syntax for function application, see below why

I addt 0m = m
I addt (S n)m = addt n (S m)

Beyond primitive recursion, see explanation below

Prove addt n m = n +m forall n and m

First try
Prove addt n m = n +m by induction on n
(Previous model) → Fails

Second try
Prove ∀m, addt n m = n +m by induction on n
Works
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Explanations on addt

I addt 0m = m
I addt (S n)m = addt n (S m)

Means

I addt 0 = fun m⇒ m
I addt (S n) = fun m⇒ addt n (S m)

Official name in the jargon of logic :
higher order primitive recursion
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More advanced example (homework)

I fib 0 = 1
I fib 1 = 1
I fib (S (S n)) = fib n + fib (S n)

Harmless shorthand for a truly primitive recursion, where we define
fib n and fib (S n) at the same time.

I lfib 0 a b = a
I lfib (S n) a b = lfib n b (a + b)

Prove ∀n, lfib n 1 1 = fib n.
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What if there is no zero?

On nat

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

P O ∀n,P n→ P (S n)
∀x ,P x

On wrongnat

Inductive wrongnat : Set :=
| Swn : wrongnat -> wrongnat.

∀n,P n→ P (Swn n)
∀x ,P x
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Interpretation

A value in an inductive type
is made with finitely many constructors

I A nat comes from O
I A wrongnat comes from nowhere

The conclusion of

∀n,P n→ P (Swn n)
∀x ,P x

can only be applied to some wrongnat
But assuming such a value is inconsistent !

I Application: take for P the predicate constantly false:
fun n→ False
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