
IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Introduction to Interactive Proof of Software

J.-F. Monin

Univ. Joseph Fourier and
LIAMA-FORMES, Tsinghua Univ., Beijing

2012, Semester 1

Lecture 4



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Outline

Propositions and proofs

More Logic



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Outline

Propositions and proofs

More Logic



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Another way to look at definitions and types

Definition funny :
forall (r: rgb), Set_of r :=
fun (r: rgb) => some body

Theorem plus_id_example :
∀ n m:nat, n = m -> n + n = m + m.

Or, equivalently:

Theorem plus_id_example :
∀ n m:nat, ∀ e:n = m, n + n = m + m.

Its proof is a function
I taking as arguments n, m and e a proof of n = m
I returning a proof of n+n = m+m



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Proofs are trees!

Theorems are just definitions

Hypotheses are just variables

The type of propositions is called Prop

Example: 3 = 2+ 1 : Prop

WARNING
Prop is at the same level as Set, not bool

Some subtle differences between Prop and Set to be
discussed later



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Correspondance

Section my_propositional_logic.

Variables P Q: Prop.

Inductive P_or_Q: Prop :=
| P_or_Q_intro_left : forall p:P, P_or_Q
| P_or_Q_intro_right : forall q:Q, P_or_Q.

We have
P or Q intro left : P or Q P or Q : Prop

true : bool bool : Set

P or Q is like bool:

I Enriched version of bool, where each constructor
embeds an additional proof tree

I Minor difference: it is in Prop instead of Set



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Parameterized inductive types

An inductive type may have parameters as follows:

Inductive list (A Set) : Set :=
| Nil : list A
| Cons : forall (h:A) (t:list A), list A

.

Full definition of disjunction (standard library)

Inductive or (P Q: Prop) : Prop :=
| or_intro_left : forall p:P, or P Q
| or_intro_right : forall q:Q, or P Q

.

Next, instead of or P Q, use the usual infix notation P \/ Q



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Curry-Howard

Logic Proposition Proof Lemma inlining
Programming Type Term Reduction

A little bit of history
In the 20th century, logic and functionnal programming were
developed separately

Actually the same ideas have been discovered twice with
different names



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Curry-Howard in practice

Logic ∨ ∧ ∀ → False
Programming Sum product function empty

Note: the negation ¬P of a proposition P is defined as
P → False. For instance, ¬False is easy to prove...

Correctness proofs of functions follow their shape
match −→ case or destruct
fixpoint −→ induction or fix

Choose convenient definitions
1+ n or S n better than n + 1



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Outline

Propositions and proofs

More Logic



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Special Propositions

Inductive True: Prop :=
| I : True.

Inductive False: Prop := .



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Existential Quantifier

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : forall x : A, P x -> ex P

A proof of ∃x : A, P x is a pair made of
I a witness x
I a proof of P x



IIPS

J.-F. Monin

Propositions and
proofs

More Logic

Selection of values

Inductive P248 : nat -> Prop :=
| is2 : P248 2
| is4 : P248 4
| is8 : P248 8.

Elimination principle?
P 2→ P 4→ P 8→ ∀n, P248 n→ P n

Remark
I (P248 2) has a proof – it is like True
I similar for 2 and 4
I (P248 1) has no proof – it is like False

but not that easy


	Propositions and proofs
	More Logic

