Propositional Resolution

First part

Stéphane Devismes Pascal Lafourcade Michel Lévy Jean-François Monin (jean-francois.monin@imag.fr)

Université Joseph Fourier, Grenoble I

January 23, 2015

Last course

- Substitutions and replacement
- Normal Forms
- ► Boolean Algebra
- ▶ Boolean functions
- ▶ The BDDC tools

John, Peter and Mary by simplification

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

$$\neg (p \Rightarrow \neg j) \lor \neg (\neg p \Rightarrow j) \lor \neg (j \Rightarrow m) \lor m \lor p$$

$$\neg (\neg p \lor \neg j) \lor \neg (\neg \neg p \lor j) \lor \neg (\neg j \lor m) \lor m \lor p$$

$$(p \land j) \lor (\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

with
$$x \lor (x \land y) \equiv x$$

$$(\neg p \land \neg j) \lor (j \land \neg m) \lor m \lor p$$

$$x \vee (\neg x \wedge y) \equiv x \vee y$$

$$\neg i \lor i \lor m \lor p \equiv \top$$

Overview

Introduction

Some definitions and notations

Correctness

Completeness

Conclusion

Deduction methods

- ▶ Is a formula valid?
- ▶ Is a reasoning correct?

Two methods:

The truth tables and transformations

Problem

If the number of variables increases, these methods are very long

Example

By a truth table, to verify $a\Rightarrow b, b\Rightarrow c, c\Rightarrow d, d\Rightarrow e, e\Rightarrow f, f\Rightarrow g, g\Rightarrow h, h\Rightarrow i, i\Rightarrow j\models a\Rightarrow j$ we must test $2^{10}=1024$ lines.

Or, by deduction, this is a correct reasoning:

- 1. By transitivity of the implication, $a \Rightarrow j \models a \Rightarrow j$.
- 2. By definition, the formula $a \Rightarrow j$ is a consequence of its own.

Today

- ► Formalisation of a deductive system (with 1 rule)
- ► How to prove a formula by resolution
- Correctness of a deductive system
- Completeness of a deductive system
- Some properties of resolution

Intuition

Formulas are put into CNF (conjunction of clauses)

$$a \lor \neg b, b \lor c \models a \lor c$$

Can be seen as transitivity of implication

$$b \Rightarrow a, \neg c \Rightarrow b \models \neg c \Rightarrow a$$

Definitions

Definition 2.1.1

- ► A literal is a member of a clause, if it is a member of the set of literals of the clause.
- ► A clause *A* is included in a clause *B*, if all literals of clause *A* are members of clause *B*. In this case, *A* is a sub-clause of *B*.
- ► Two clauses are equal if they have the same set of literals.

Example 2.1.2

Notation

s(A) the set of literals of the clause A. By convention \bot is the empty clause and $s(\bot) = \emptyset$.

Example 2.1.3

$$s(\neg q \lor p \lor r \lor p \lor \neg p) =$$

Complementary literal

Definition 2.1.4

We note L^c the complementary literal of a literal L:

If L is a variable, L^c is the negation of L.

If L is the negation of a variable, L^c is obtained by removing the negation of L.

Example 2.1.5

$$x^c = \neg x$$
 and $\neg x^c = x$.

Resolvent

Definition 2.1.6

Let A and B be two clauses.

The clause C is a resolvent of A and B iff there exists a literal L such that $L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\}).$

"C is a resolvent of A and B" is represented by:

$$\frac{A}{C}$$

C is generated by A and B
A and B are the parents of the clause C.

Examples with resolution

Example 2.1.7

Give the resolvents of:

 \triangleright $p \lor q \lor r$ and $p \lor \neg q \lor r$

 $\triangleright p \lor \neg q \text{ and } \neg p \lor q \lor r$

 \triangleright p and $\neg p$

Property

Property 2.1.8

If one of the parents of a resolvent is valid, the resolvent is valid or contains the other parent.

Proof.

See exercise 40.

Problem with ∨

Given two clauses A and B, the formula $A \lor B$ is not a clause if one of the two operands of the disjunction is the empty clause.

Example : $\bot \lor p$ is not a clause.

Solution : $\tilde{\lor}$

Definition 2.1.9

Let C and D be two clauses.

We denote $C \tilde{\vee} D$ the following clause :

- ▶ If $C = \bot$ then $C \tilde{\lor} D = D$.
- ▶ else if $D = \bot$ then $C \tilde{\lor} D = C$ else $C \tilde{\lor} D = C \lor D$.

Adding a literal *L* to the clause *C*, is building $C \tilde{\lor} L$.

Resolvent: another definition

Definition 2.1.10

Let A and B be two clauses.

The clause *C* is a resolvent of *A* and *B* if and only if there is a literal *L* such that :

- \triangleright L is a member of the clause A, L^c is a member of the clause B
- ▶ *C* equals a clause $A' \tilde{\vee} B'$ where $A' = A \{L\}$ is obtained by removing *L* from *A* and $B' = B \{L^c\}$ is obtained by removing L^c from *B*.

Definition of a proof

Definition 2.1.11

Let Γ be a set of clauses and C a clause.

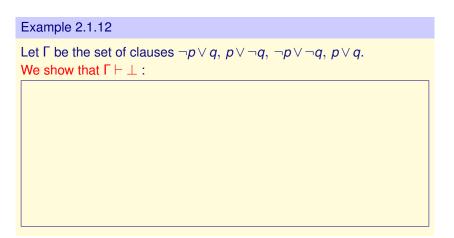
A proof of C starting from Γ is a list of clauses ending by C. Every clause of the proof is a member of Γ or is a resolvent of the two clauses already obtained.

The clause C is deduced from Γ (Γ yields C, or Γ proves C), denoted $\Gamma \vdash C$, if there is a proof of C starting from Γ .

Example

Example 2.1.12	
Let Γ be the set of clauses $\neg p \lor q$, $p \lor \neg q$, $\neg p \lor \neg q$, $p \lor q$. We show that $\Gamma \vdash \bot$:	

Proof tree



Definition 2.1.13

Proof length

A proof P of C starting from a set of clauses Γ is of length n if it contains n lines.

Monotony and Composition

Property 2.1.14

Let Γ , Δ be two sets of clauses and A, B be two clauses.

- 1. Monotony of deduction : If $\Gamma \vdash A$ and if Γ is included in Δ then $\Delta \vdash A$
- 2. Composition of deductions : If $\Gamma \vdash A$, $\Gamma \vdash B$ and if C is a resolvent of A and B then $\Gamma \vdash C$.

Proof.

Exercise 39

Definition

The correctness of a logic system states that all proofs obtained in this system are « correct ».

Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

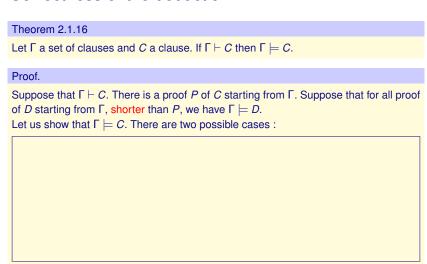
If C is a resolvent of A and B, then there is a literal L so that

$$L \in s(A), L^c \in s(B), s(C) = (s(A) - \{L\}) \cup (s(B) - \{L^c\}).$$

Let v a model truth assignment of A and B. We have $[A]_v = 1$ and $[B]_v = 1$

Let us show that $[C]_v = 1$.

Correctness of the deduction



Definition

Completeness for the refutation is the following property : If $\Gamma \models \bot$ then $\Gamma \vdash \bot$.

We prove this result for finite Γ .

$$\Gamma[L := \top]$$

Definition 2.1.18

Let Γ be a set of clauses and L a literal.

 $\Gamma[L := T]$ is the set of clauses obtained by deleting the clauses for which L is a member and by removing L^c from the other clauses.

We define $\Gamma[L := \bot]$ as $\Gamma[L^c := \top]$.

Examples

Example 2.1.19

Let Γ be the set of clauses $\neg p \lor q$, $\neg q \lor r$, $p \lor q$, $p \lor r$. We have :

$$ightharpoonup$$
 $\Gamma[p := \top] =$

$$ightharpoonup$$
 $\Gamma[p := \bot] =$

Let us observe that:

$$\blacktriangleright (\neg \top \lor q) \land (\neg q \lor r) \land (\top \lor q) \land (\top \lor r) \equiv$$

$$(\neg\bot\lor q)\land (\neg q\lor r)\land (\bot\lor q)\land (\bot\lor r)\equiv$$

Notation and definition

Intuitively, $v[L \mapsto 1]$ is the truth assignment giving to L the value 1, to L^c the value 0 and which does not change the value of the other literals.

Definition 2.1.20

Let a truth assignment v, the truth assignment $v[L \mapsto 1]$ is an assignment identical to v except possibly for x, the variable of L. If L = x then $v[L \mapsto 1](x) = 1$, if $L = \neg x$ then $v[L \mapsto 1](x) = 0$.

We define $v[L \mapsto 0]$ as $v[L^c \mapsto 1]$.

Property of $\Gamma[L := x]$

Property 2.1.21

Let Γ a set of clauses and L a literal. Γ has a model if and only if $\Gamma[L:=\top]$ or $\Gamma[L:=\bot]$ has a model.

Proof.

Let v be a truth assignment.

 \Rightarrow The truth assignment *v* is a model of Γ.

 $\leftarrow \Gamma[L := \top] \text{ or } \Gamma[L := \bot] \text{ has a model.}$

First case : v is model of Γ

- Suppose that *v* gives to *L* the value 1 and let us show that *v* is a model of Γ[*L* := ⊤].
 Let *C* a clause of Γ[*L* := ⊤]. There is in Γ a clause *C'* such that *C* is obtained by removing *L^c* from *C'*. Since *v* is model of Γ, *v* is model of *C'* hence of a literal which is not *L^c* (since *L^c* equals 0 in this truth assignment). Consequently, *v* is model of *C*. Since *C* is any clause of Γ[*L* := ⊤], *v* is model of Γ[*L* := ⊤].
- 2. Suppose that v gives to L the value 0. We get back to the previous case by exchanging L and L^c and we show that v is model of $\Gamma[L := \bot]$.

Second case : $\Gamma[L := \top]$ or $\Gamma[L := \bot]$ has a model

Let C be a clause of Γ .

- 1. Suppose that the truth assignment v is model of $\Gamma[L := \top]$. Let us show that $v[L := \top]$ is model of Γ . Let C be a clause of Γ .
 - 1.1 Suppose that *L* is a literal of *C*, then $v[L := \top]$ is model of *C* since this truth assignment gives to *L* the value 1.
 - 1.2 Suppose that L is not a literal of C. Then there is a clause C' member of $\Gamma[L:=\top]$ such that C' is obtained by removing L^c from C. The variable of L is not a variable of C'. Consequently V and $V[L:=\top]$ give the same value to C'. Since V is model of V is model of V therefore V is model of V. Since V is included in V, V is model of V.

Since *C* is any clause of Γ , $v[L := \top]$ is model of Γ .

2. Suppose the truth assignment v is model of $\Gamma[L := \bot]$. By an analogous proof, we show that $v[L := \bot]$ is model of Γ .

Lemma 2.1.22

Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If $\Gamma[L:=\top] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C \ \tilde{\lor} \ L^c$.

Proof.

Starting from a proof of C starting from $\Gamma[L := \top]$, we obtain a proof of C or of $C \tilde{\vee} L^c$ starting from Γ by adding a literal L^c to the clauses where it has been removed from.

Let us formalise this tentative proof. Suppose that $\Gamma[L:=\top] \vdash C$. There is a proof P of C starting from $\Gamma[L:=\top]$. Suppose that for all proof of D starting from $\Gamma[L:=\top]$, shorter than P, we have $\Gamma \vdash D$ or $\Gamma \vdash D \tilde{\vee} L^c$. There are two possible cases :

- 1. C is a member of $\Gamma[L := \top]$.
- 2. C is resolvent of 2 clauses A and B preceding C in the proof P.

First case : C is a member of $\Gamma[L := \top]$

Let us examine those two cases.

- 1. Suppose s(C') = s(C).
- 2. Suppose $s(C') = s(C) \cup \{L^c\}$.

Second case : *C* is resolvent of 2 clauses *A* and *B* preceding *C* in the proof *P*

Hence by induction hypothesis:

- ightharpoonup $\Gamma \vdash A \text{ or } \Gamma \vdash A \tilde{\vee} L^c$
- ▶ $\Gamma \vdash B \text{ or } \Gamma \vdash B \tilde{\vee} L^c$

Which results in 4 cases to examine.

property 2.1.14. $\Gamma \vdash C \tilde{\vee} L^c$.

- 1. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$.
- 2. Suppose $\Gamma \vdash A$ and $\Gamma \vdash B \tilde{\vee} L^c$. Since C is resolvent of A and B, there is M such that $M \in A$ and $M^c \in B$ and $s(C) = (s(A) \{M\}) \cup (s(B) \{M^c\})$. No clause of $\Gamma[L := \top]$ involves the literal L^c . Hence B which deducts from it, does not contain the literal L^c (see exercise 41) and consequently $L^c \neq M^c$. Consequently $(s(B) \{M^c\}) \cup \{L^c\} = (s(B) \cup \{L^c\}) \{M^c\} = (s(B \tilde{\vee} L^c) \{M^c\})$. We therefore have $s(C \tilde{\vee} L^c) = (s(A) \{M\}) \cup (s(B) \{M^c\}) \cup \{L^c\} = (s(A) \{M\}) \cup (s(B \tilde{\vee} L^c) \{M^c\})$ And consequently $C \tilde{\vee} L^c$ is a resolvent of A and $B \tilde{\vee} L^c$. Hence according to
- 4. Suppose $\Gamma \vdash A \tilde{\vee} L^c$ and $\Gamma \vdash B \tilde{\vee} L^c$, as above we obtain $\Gamma \vdash C \tilde{\vee} L^c$.

Lemma 2.1.23

Lemma 2.1.23

Let Γ a set of clauses, C a clause and L a literal.

If
$$\Gamma[L := \bot] \vdash C$$
 then $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\lor} L$.

Proof.

Suppose $\Gamma[L := \bot] \vdash C$. Since $\Gamma[L := \bot] = \Gamma[L^c := \top]$ and since $L^{cc} = L$, according to lemma 2.1.22 we have $\Gamma \vdash C$ or $\Gamma \vdash C \tilde{\lor} L$.

Completeness of propositional resolution

Theorem 2.1.24

Let Γ a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \bot$.

Proof.

Suppose that Γ is unsatisfiable.

We show that $\Gamma \vdash \bot$ by induction on the number of variables of Γ .

Hypothesis: Suppose that for all set Δ of unsatisfiable clauses with less than n variables, we have $\Delta \vdash \bot$.

Let Γ unsatisfiable with n variables. Let us show that $\Gamma \vdash \bot$. We distinguish two cases depending on whether n is null or not.

The base case (basis)

Suppose that n is null.

Hence $\Gamma=\emptyset$ or $\Gamma=\{\bot\}$. The first case is impossible, since the empty set is valid (any truth assignment is a model of it). Hence $\Gamma=\{\bot\}$ and consequently $\Gamma\vdash\bot$.

Inductive step

Suppose that *n* is not null.

```
Let x a variable appearing in \Gamma. According to the property 2.1.21, \Gamma[x:=\bot] and \Gamma[x:=\top] are unsatisfiable. Since the variable x does not appear in these two sets of clauses, the induction hypothesis applies, hence : \Gamma[x:=\bot] \vdash \bot and \Gamma[x:=\top] \vdash \bot. From lemmas 2.1.22 and 2.1.23, we deduce either \Gamma \vdash \bot, or \Gamma \vdash \neg x and \Gamma \vdash x. In the first case, the proof is finished. In the second case, since \bot is a resolvent of \neg x and x, we also have \Gamma \vdash \bot.
```

Conclusion

Corollary 2.1.25

Let Γ a finite set of clauses. Γ is unsatisfiable if and only if $\Gamma \vdash \bot$.

Conclusion: Today

- Formalisation of a deductive system
- Correctness of the system
- ► Completeness of the system

Conclusion: Next course

- ► Comprehensive strategy
- ▶ Davis-Putnam

Homework

Hypotheses:

- ► (H1): If Peter is old, then John is not the son of Peter
- ► (H2): If Peter is not old, then John is the son of Peter
- ► (H3): If John is Peter's son then Mary is the sister of John

Conclusion (C): Either Mary is the sister of John or Peter is old.

Prove, using resolution, that we can derive the conclusion C from the premises H1, H2, H3.

Hint: Transform into clauses the premises and the negation of the conclusion.

Conclusion

Thank you for your attention.

Questions?