
http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Program Verification in Coq

Guillaume Melquiond

August 9th, 2013

Cheat Sheet (1/4)

Things that are always good to do:

I When an assumption states x <> x, change the goal to
False using exfalso, then conclude.

I When two assumptions are in contradiction, change the goal
to False using exfalso, then conclude.

I When an assumption states C1 ... = C2 ... with C1 and
C2 two different constructors, discriminate it.

I When the goal is an equality x = x, use reflexivity.

I When the goal is True, apply I.

Cheat Sheet (2/4)

Things that are (almost) always good to do:

I When the goal is a forall, an implication, a negation,
introduce its left-hand side with intros.

I When an assumption is a conjunction or an inductive object
with a single constructor (e.g. a pair), destruct it.

I When the goal is a disjunction, select the provable side using
left and right as soon as you know it.

I Perform computations with simpl, or with change if simpl
goes too far.

Cheat Sheet (3/4)

Things that are good to do, but as late as possible:

I When the goal is a conjunction, split it.

I When an assumption is a disjunction or an inductive object
with several constructors, destruct it.

Cheat Sheet (4/4)

Things to do in the remaining cases:

I When the goal contains an application f x with f a fixpoint
definition, perform an induction on x.

I Before doing the induction, revert all the arguments that
are not constant in the recursive call of f.

I When the goal contains a match on a value, destruct it.

I Do apply lemmas or rewrite with equalities.

Some Simple Functions on Lists

Definition head {T : Type} (l : list T) : option T :=
match l with
| nil => None
| cons h _ => Some h
end.

Definition tail {T : Type} (l : list T) : list T :=
match l with
| nil => nil
| cons h q => q
end.

Accessing the n-th Element of a List

Fixpoint get {T : Type} (l : list T) (n : nat)
{struct l} : option T :=

match l with
| nil => None
| cons h q =>

if n == 0 then Some h else get q (n - 1)
end.

Modifying the n-th Element of a List

Fixpoint set {T : Type} (l : list T) (n : nat) (v : T)
{struct l} : list T :=

match l with
| nil => l
| cons h q =>

if n == 0 then cons v q
else cons h (set q (n - 1) v)

end.

Note: the original list is not modified; a new list is returned.

Time Complexity for Standard Lists

Time complexity: how many lists have to be constructed /
destructed in order to perform a given operation.

I cons: T -> list T -> list T O(1)

I head: list T -> option T O(1)

I tail: list T -> list T O(1)

I get : list T -> nat -> option T O(n)

I set : list T -> nat -> T -> list T O(n)

Note: get and set are slow!

Random Access Lists (Chris Okasaki)

Time complexity: how many lists have to be constructed /
destructed in order to perform a given operation.

I racons: T -> ralist -> ralist O(1)

I rahead: ralist -> option T O(1)

I ratail: ralist -> ralist O(1)

I raget : ralist -> nat -> option T O(log n)

I raset : ralist -> nat -> T -> ralist O(log n)

Note: get and set went from O(n) to O(log n).

Random Access Lists (Chris Okasaki)

Internal representation:

I List of balanced trees with nodes labeled by elements of T.

I Trees of the list have strictly increasing heights.
Exception: the first two trees may have the same height.

I The older the elements, the further in the list of trees they are.
Tree elements are stored with a depth-first pre-order traversal.

0

1 2

−→ 3

4 5

−→ 6

7

8 9

10

11 12

−→ 13

Note: the reduced complexity comes from the fact that 2n
operations suffices to access the 2n first elements.

Adding an Element to a RA List

I If the first two trees have different heights,

1

2

· · · −→ x
1

2

· · ·

I If the first two trees have the same height,

1 2

3

· · · −→
x

1 2 3

· · ·

Coq Types for Representing RA Lists

Variable T : Type.

Inductive tree :=
| Leaf : T -> tree
| Node : T -> tree -> tree -> tree.

Inductive ralist :=
| raNil : ralist
| raCons : tree -> nat -> ralist -> ralist.

Note: raCons stores a tree, its height, and the remaining
of the list.

Definition of Head

Definition rahead (l : ralist) : option T :=
match l with
| raNil => None
| raCons t _ _ =>

match t with
| Leaf x => Some x
| Node x _ _ => Some x
end

end.

Correctness of Head

In order to verify that rahead is correct,
one has to prove that it has the same behavior as head.

Definition abs : ralist -> list T := ...

Lemma rahead_correct :
forall l : ralist ,
rahead l = head (abs l).

Abstracting from RA Lists to Standard Lists

Fixpoint abs_tree (t : tree) {struct t} : list T :=
match t with
| Leaf x => cons x nil
| Node x t1 t2 =>

cons x (app (abs_tree t1) (abs_tree t2))
end.

Fixpoint abs (l : ralist) {struct l} : list T :=
match l with
| raNil => nil
| raCons t _ q => app (abs_tree t) (abs q)
end.

Definition and Correctness of Cons

Definition racons (x : T) (l : ralist) : ralist :=
match l with
| raNil => raCons (Leaf x) 0 l
| raCons t s raNil => raCons (Leaf x) 0 l
| raCons t1 h1 (raCons t2 h2 q) =>

if h1 == h2 then raCons (Node x t1 t2) (1 + h1) q
else raCons (Leaf x) 0 l

end.

Lemma racons_correct :
forall (x : T) (l : ralist),
abs (racons x l) = cons x (abs l).

Definition and Correctness of Tail

Definition ratail (l : ralist) : ralist :=
match l with
| raNil => raNil
| raCons t h q =>

match t with
| Leaf _ => q
| Node _ t1 t2 =>

raCons t1 (h - 1) (raCons t2 (h - 1) q)
end

end.

Lemma ratail_correct :
forall l : ralist ,
abs (ratail l) = tail (abs l).

Summary

What was done:

I Defining tree and list.

I Defining rahead, racons, and ratail.

I Proving that they behave like head, cons, and tail,
according to the abs mapping.

What has not be done yet:

I Proving that racons and ratail produce trees that are both
balanced and of (strictly) increasing height.

I Defining raget and raset.

I Proving that they are correct.

Data Invariant

Fixpoint height (t : tree) {struct t} : nat :=
match t with
| Leaf _ => O
| Node _ t1 _ => 1 + height t1
end.

Fixpoint balanced (t : tree) {struct t} : Prop :=
match t with
| Leaf _ => True
| Node _ t1 t2 =>

height t1 = height t2 /\
balanced t1 /\ balanced t2

end.

Note: height assumes that the tree is balanced.

Data Invariant

Fixpoint structured_aux (l : ralist) (h : nat)
{struct l} : Prop :=

match l with
| raNil => True
| raCons t h’ q =>

balanced t /\ height t = h’ /\ h <= h’ /\
structured_aux q (1 + h’)

end.

Definition structured (l : ralist) : Prop :=
match l with
| raNil => True
| raCons t h q =>

balanced t /\ height t = h /\
structured_aux q h

end.

Note: these are functional predicates, rather than inductive ones.

Preservation of Invariant

Lemma structured_racons :
forall (l : ralist) (x : T),
structured l ->
structured (racons x l).

Lemma structured_ratail :
forall (l : ralist),
structured l ->
structured (ratail l).

Definition of Get

Fixpoint tree_get (t : tree) (h : nat) (n : nat)
{struct t} : option T :=

match t with
| Leaf x => if n == 0 then Some x else None
| Node x t1 t2 =>

if n == 0 then Some x
else

let s := height2size (h - 1) in
if n <= s then tree_get t1 (h - 1) (n - 1)
else tree_get t2 (h - 1) (n - 1 - s)

end.

Fixpoint raget (l : ralist) (n : nat)
{struct l} : option T :=

match l with
| raNil => None
| raCons t h q =>

let s := height2size h in
if n < s then tree_get t h n
else raget q (n - s)

end.

Code Extraction

Principles:

1. Write a library in Coq.

2. Prove its correctness using Coq.

3. Extract it to a functional language, e.g. OCaml or Haskell.

4. Profit!

Code Extraction

I Map Coq types to types from the target language:

Extract Inductive bool =>
"bool" ["true" "false"].

Extract Inductive option =>
"option" ["Some" "None"].

Extract Inductive nat => "int" ["0" "succ"]
"(fun fO fS n ->

if n=0 then fO () else fS (n-1))".

Note: the mapping of nat is unsafe.

I Map Coq functions:

Extract Inlined Constant leb => "(<=)".
Extract Inlined Constant eqb => "(==)".
Extract Inlined Constant plus => "(+)".
Extract Inlined Constant minus => "(-)".

Note: the mapping of minus is terribly wrong.

