
Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

The Coq proof assistant :
principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 1



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Overview of Formal Methods

Understanding Formal Methods, J.F. Monin, Springer, 2003

I Static analysis
I Model Checking
I Deductive techniques
I Soundness: LCF architecture, proof terms (can be

checked independantly)

Trade off
I pencil-paper / tool support
I automatization / generality
I ...



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

In summary

I Describe a model
I Explain it
I Reason about it
I Be clean and precise

Use math and logic... and make it funny!



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Coq teaching in the world

Now routinely taught in many highly ranked universities
I France: Paris, Grenoble, Lyon, Bordeaux, Strasbourg...
I Europe: UK, Italy,...
I USA: Harvard, Yale, U. Pennsyvania, MIT, Princeton...
I Australia
I China: Coq Summer School Tsinghua, Suzhou,

Shanghai



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Some industrial uses

Spacecrafts, airplanes (Airbus, Boing)

Microsoft
Intel
French railways
Telecom Operators
Nuclear power plants
Banks
Cryptography



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Contents of this course

Discover 3 aspects of Coq

1. Coq as a proof assistant
I write precise and clear definitions
I how to state meaningful theorems
I how to prove them in a perfectly rigorous way

this task is interactive: tedious parts can be discharged
by the machine but creative part need input from a
human.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Contents of this course

Discover 3 aspects of Coq

2. Coq as a challenging programming language
I many applications of Coq to problems arising in

computer science



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Contents of this course

Discover 3 aspects of Coq

3. Applications to reasoning about non-trivial programs
I lists, trees...
I data-structures implemented with pointers



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Firsts steps to Coq



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Key idea: abstraction

I take a concrete expression
I make some value (repeated or not) a parameter
I that’s it

Simple but far reaching
The abstract thing can be

I a data, a function, a program, a type
I a family of them
I subtle combinations

e.g. a program may depend on a previously abstracted
value; programs may depend on pgms, or on types, or
conversely.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

A very powerful logic

I Statements
I Proofs: concrete data
I More powerful than Peano arithmetic:

Goodstein sequences

A way to compute proofs for given statements

⇒ Programming comes first



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

A strange programming language

I Without state!!
I Called functional programming
I Components:

Components
I lambda-calculus (pure functions)
I inductive types

Remarks
I States can be simulated
I Actually lambda-calculus has the power of Turing

machines



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

A strange programming language

State is a burden for reasoning
Immutable values are much more convenient
All proof assistants are related to a functional programming
language

In the case of Coq (and others e.g. Agda, Matita, Lego,
Nuprl) the relationship is very tight



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Lambda-calculus

Receipe (part 1)

I Take your preferred programming language
(C, Python, Ocaml, Java, Javascript,...)

I Remove objects, classes,...
I Remove state variables (global, static, local, ...)
I Remove assignments
I Remove goto statements
I Remove if statements, loops
I Remove all side effects



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Lambda-calculus

What is left?
I expressions
I constants
I function calls
I (possibly recursive) function definitions

Receipe (part 2)

I Remove recursion

What you get is essentially lambda-calculus with constants
Lambda-calculus with constants

I Built-in computations
on integers, Booleans, characters,...

I Function calls :
replacement of formal parameters by actual parameters



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Lambda-calculus

Receipe (part 3)

I Remove constants and built-in computations

What you get is essentially pure lambda-calculus

Pure lambda-calculus
I Function calls :

replacement of formal parameters by actual parameters



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Pure lambda-calculus

Just 3 things
I Variables: x , y , . . .
I Application: U V
I Abstraction: λx .U

Just 1 computation rule: β-reduction
I Variables: x , y , . . .
I Application: U V
I (λx .U)V β-reduces to U[x := V ]

(in any context, i.e., at any position inside a λ-term)



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

In Coq: lambda-calculus + definitions

Math notation
a def

== 3
f def

== λx . x + 2

Coq notation
Definition a := 3.
Definition f := fun x => x + 2.

Expansion of a definition to its body
Called δ-reduction
f a reduces (in two δ steps) to (λx . x + 2) 3
Then (λx . x + 2) 3 β-reduces to 3 + 2



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Functions with two (or more) arguments

A function of x and y is a function of x
which returns a function of y

I Example: λx . (λy . x + 2 ∗ y)
I Shorthands:
λx .(λy . x + 2 ∗ y)
λxy . x + 2 ∗ y

I Application:
(λx . (λy . x + 2 ∗ y) 5) 1

β−→ (λy . 5 + 2 ∗ y) 1
β−→ 5 + 2 ∗ 1



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Functions everywhere

Pure λ-calculus deals only with functions
I Variables actually stand for functions
I Functions return functions
I Function take functions as arguments
I Such functions are called higher-order functions

Pure λ-calculus has the power of Turing machines
I Constants (numbers, Booleans, etc.) can be encoded by

functions
I Data-structures (pairs, tuples, lists, trees) can be

encoded by functions
I Loops (iteration, recursion) can be encoded by functions



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Main properties of lambda-calculus (1)

Confluence (Church-Rosser)

I A redex is a position in a λ-term where a β-reduction is
possible.

I A λ-term may contain several redexes
I Reducing a redex may produce 0, 1 or several new

redexes
I Therefore, there are in general many ways to compute

(reduce and reduce) a given term
I However, the final result (if any) is always the same:

we say that pure λ-calculus has the Church-Rosser
property



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Main properties of lambda-calculus (2)

Termination (Normalization)

I A term without redex is said to be normal
(end of computations)

I We say that a term U is weakly (respectively strongly)
normalizing if, respectively

I there exist a reduction sequence
T = T0

β−→ T1
β−→ . . .Tn such that Tn is normal

I all reduction sequences T = T0
β−→ T1

β−→ . . .
eventually end with a normal term Tn

I (Pure) λ-calculus contains non-normalizing terms, e.g.,
Ω def

== ∆∆ with ∆ def
== λx . xx

I However, typed versions of λ-calculus, including Coq,
don’t allow such terms – actually all terms are strongly
normalizing



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Main properties of lambda-calculus (3)

The version of pure typed λ-calculus used in Coq is called
the Calculus of Constructions (CoC, or CC).
The full λ-calculus used in Coq also contains inductive types;
it is called the Calculus of Inductive Constructions (CIC).

Alltogether, confluence and normalization ensure that
functions do provide a unique result for any input.
That is, functions are total (defined everywhere).

Examples of λ-calculi with this feature include
I simply typed λ-calculus, contained in
I CoC, itself contained in
I CIC

We will see that these typed λ-calculi have a logical
interpretation. Totality is mandatory for the underlying logic
to be consistent, and then to be usable in a proof assistant!



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

A glance at typed lambda-calculus (1)

Simply typed λ-calculus
I Types are atomic types or arrow types A→ B
I All variables are provided such a type
I If U has type A→ B and V has type A, then U V has

type B
I If x has type A and U has type B, then λx .U has type

A→ B
I Example: λx .x has many types such as A→ A,

(A→ B)→ (A→ B), etc.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

A glance at typed lambda-calculus (2)

Polymorphic typed λ-calculus
I Simple types + universally quantified types,

e.g. ∀X ,X → X
(a satisfactory type for λx .x)

I Such types are called polymorphic types

CoC (Calculus of Constructions)

I simple types
I polymorphic types
I dependent types (see later)

CIC (Calculus of Inductive Constructions)

I COC + inductive types



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Expressive power of untyped lambda-calculus

Terms similar to Ω can be used to define general recursion.
E.g. Y def

== λf . (λx . f (xx))(λx . f (xx)).

Exercise: check that Y f is a fixed point of f , that is, it
β-reduces to a term which is equivalent to f (Y f ).

Any “recursive” definition of a function can be defined
using Y. Therefore, untyped pure λ-calculus has the power
of Turing machines.

However, strong normalization is lost, since such a
computation contains infinite sequences of reductions
(Hint : look a the redex inside Y).
Untyped pure λ-calculus is logically inconsistent
(Technically, Y could be used to prove False).



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Expressive power of typed lambda-calculi

Y is not typable even in CoC
I Good news: the underlying logic is consistent
I Bad news: general recursion is lost; is it serious?

Limited forms of recursion are typable:
(higher order) iteration and primitive recursion.

Expressive power of some typed λ-calculi
I simply typed λ-calculus: very weak (polynomials),

moreover unconvenient
I CoC: very powerful – any practically provably total

function can be represented
(reminder: Goodstein sequences);
however, still not very convenient

I CIC: very powerful (similar to CoC)
but much more convenient



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Live Demo



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Types everywhere

Very powerful types
Everything has a type, even types
We can compute on types and on values at the same time.

Examples: families of types.
I Example: n-tuples, with n = 1, 2... even 0.

... So it will become complex...

We start with a graphical syntax



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Types having finitely many values

The simplest are called an enumeration

Example

Red : color
Orange : color
Yellow : color
Green : color
Blue : color
Indigo : color
Violet : color

Red f : rgb

Green f : rgb
Blue f: rgb

Warning: a value has only one type



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

What is the type of color and rgb?

color : Set
rgb : Set

What is the type of Set?

Set : Type

What is the type of Type?

Type(i) : Type(i + 1)



Graphical syntax

Red
color

Orange
color

Yellow
color

Green
color

Blue
color

Indigo
color

Violet
color



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Graphical syntax

Red
color

Orange
color

Yellow
color

Green
color

Blue
color

Indigo
color

Violet
color

The horizontal bar means: MAKES

Red, Orange,. . . are called CONSTRUCTORS

At the same time we have color
Set



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Intermezzo: definitions

In order to save space, we use definitions.
E.g. (Coq syntax)

Definition R := Red.

means that R is definitionally the same as Red.

Definition co := color.

means that co is definitionally the same as color.

Hence
Red:color, Red:co, R:color and R:co
are all the same judgement



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Graphical syntax

Definition O := Orange. Definition Y := Yellow.
Definition G := Green. Definition B := Blue.
Definition I := Indigo. Definition V := Violet.

R
co

O
co

Y
co

G
co

B
co

I
co

V
co

Definition Rf := Red f. Definition Gf := Green f.
Definition Bf := Blue f.

Rf
rgb

Gf
rgb

Bf
rgb



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Using a value

We know how to make (or construct) a value in color
or in rgb.

Next issue: how to use a value
I use a given value
I use a (still) unknown value



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Composition of n-tuples

Making a 4-tuple of rgb

rgb rgb rgb rgb
Mk4

tuple4

The constructor Mk4 makes a tuple4 from
I a rgb
I a rgb
I a rgb
I a rgb

At the same time we have tuple4
Set



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Pluging rgb into Mk4

Building blocks

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

rgb rgb rgb rgb
Mk4

tuple4

Connecting them yields the concrete 4-tuple of rgb

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

Mk4
tuple4



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Others trees for 4-tuples

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

Mk4
tuple4

Bf
rgb

Gf
rgb

Bf
rgb

Gf
rgb

Mk4
tuple4

Rf
rgb

Rf
rgb

Rf
rgb

Rf
rgb

Mk4
tuple4



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Another view on Mk4

As a building block

rgb rgb rgb rgb
Mk4

tuple4

As a tree

↓x1
rgb

↓x2
rgb

↓x3
rgb

↓x4
rgb

Mk4
tuple4

This is called an open tree



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Closed and open trees

The meaning (or value) of

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

Mk4
tuple4

is completely defined: this is called a closed tree.

In contrast, the meaning of the open tree

Gf
rgb

↓x2
rgb

Rf
rgb

↓x4
rgb

Mk4
tuple4

depends on x2 and x4.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

General shape: trees

4

1 2 3 Interpretation
I At positions 1, 2, 3, 4:

types
I 1, 2, 3: inputs
I 4: output (or result)

Makes the output from the
inputs



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Pluging trees

3

1

8

1 3

118

12
12

=

4

6

11

6 4



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Environment

The tree

Gf
rgb

↓x2
rgb

Rf
rgb

↓x4
rgb

Mk4
tuple4

has a meaning for all trees plugged into x2 and x4.

The variables x2 : rgb and x4 : rgb make up the
environment of this tree



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Outline

Introduction

Coq

Lambda-calculus

Inductive types (graphically: trees)

Graphical syntax

Composition of trees

Trees with variables

More general trees
Several constructors
Polymorphic trees



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

More 4-tuples

WRONG
4-tuple of rgb

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

Mk4
tuple4

4-tuple of color

O
co

Y
co

B
co

V
co

Mk4
tuple4

Mk4 must be applied to arguments of a given type



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

How to make 4-tuples more general

Solution 1: have different constructors
↓x1

rgb

↓x2
rgb

↓x3
rgb

↓x4
rgb

Mk4rgb
tuple4

↓x1
color

↓x2
color

↓x3
color

↓x4
color

Mk4co
tuple4

↓x1
tuple4

↓x2
tuple4

↓x3
tuple4

↓x4
tuple4

Mk4t4
tuple4

At the same time we have tuple4
Set



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

How to make 4-tuples more general

Remark
Beyond Mk4rgb, Mk4co, Mk4t4, we can imagine
hererogeneous 4-tuples, for instance:

↓x2
rgb

↓x5
color

↓x3
tuple4

↓x6
rgb

Mk4het
tuple4

Many possibilities... to be considered again later.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

How to make 4-tuples more general

Solution 2: only one constructor, but more general

A A A A
Mk4

gtuple4

But where does A come from?

We want the previous tree for all A...



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

The magic

Solution 2: only one constructor, but more general

↓
A

Set

↓x1
A

↓x2
A

↓x3
A

↓x4
A

Mk4
gtuple4

As usual, at the same time we have

gtuple4
Set



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Intermezzo: a shorthand for trees

====== t1
tuple4

====== t2
tuple4

====== t3
tuple4

====== t4
tuple4

Mk4t4
tuple4

Where t1 is for example defined as

Gf
rgb

Rf
rgb

Gf
rgb

Bf
rgb

Mk4rgb
tuple4

And so on for t2, etc.



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Concrete example

rgb
Set

=== u1
rgb

=== u2
rgb

=== u3
rgb

=== u4
rgb

Mk4
gtuple4



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

General homogeneous 4-tuples

=== A
Set

=== u1
A

=== u2
A

=== u3
A

=== u4
A

Mk4
gtuple4

The type A can be many things beyond rgb
I gtuple4
I a complex tree

The trees u1, u2, u3, u4 and A can be open
(they can depend on variables).



Coq

J.-F. Monin

Introduction
Expected benefits from this
course

Coq

Lambda-calculus

Inductive types
(graphically: trees)

Graphical syntax

Composition of
trees

Trees with
variables

More general trees
Several constructors

Polymorphic trees

Exercises

1) Write trees for examples of 4-tuples of 4-tuples using
tuple4 and gtuple4.
Some of them, closed, some of them open
E.g. 〈〈R, Y, B, B〉, 〈B, O, x4, R〉, 〈x7, x7, x7, V〉, 〈V, Y, O, R〉〉

2) Trees for heterogeneous pairs (2-tuples) and for
heterogeneous triples.

3) Trees for homogeneous n-tuples, where n can be 1, 2 or 3.

4) Trees for heterogeneous n-tuples, where n can be 0, 1 or 2.


	Introduction
	Coq
	Lambda-calculus
	Inductive types (graphically: trees)
	Graphical syntax
	Composition of trees
	Trees with variables
	More general trees
	Several constructors
	Polymorphic trees


