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ForewordThis book will attempt to give a �rst synthesis of recent works con-cerning reactive system design. The term \reactive system" has beenintroduced in order to avoid the ambiguities often associated with by theterm \real-time system," which, although best known and more sugges-tive, has been given so many di�erent meanings that it is almost in-evitably misunderstood. Industrial process control systems, transporta-tion control and supervision systems, signal-processing systems, are ex-amples of the systems we have in mind.Although these systems are more and more computerized, it is sur-prising to notice that the problem of time in computer science has beenstudied only recently by \pure" computer scientists. Until the early1980s, time problems were regarded as the concern of performance evalu-ation, or of some (unjustly scorned) \industrial computer engineering,"or, at best, of operating systems.A second surprising fact, in contrast, is the growth of research con-cerning timed systems during the last decade. The handling of time hassuddenly become a fundamental goal for most models of concurrency. Inparticular, Robin Milner's pioneering works about synchronous processalgebras gave rise to a school of thought adopting the following abstractpoint of view: As soon as one admits that a system can instantaneouslyreact to events, i.e., if the execution time of the machine is considerednegligible with respect to the response delays of its environment, the timebehavior of a system can be formalized in a very simple and elegant way.The third surprise is that this synchronous point of view was appliedto programming almost exclusively by French projects. Three projectsstarted, quite independently, in the early 1980s, aiming at designingthe three synchronous programming languages Esterel (ENSMP & IN-RIA), Signal (INRIA/IRISA), and Lustre (IMAG). Other languageslike Sml, Statecharts, or L.0, which were developed in other coun-tries, adopt some aspects of the synchronous model; but on the one hand,these languages do not thoroughly use this model, and on the other hand,they were not designed to be used for programming (Sml is a hardwaredescription language, Statecharts were designed as a speci�cation lan-xi



guage, and L.0 is a language for specifying communication protocols).The three French groups rapidly noticed that their languages were basedon the same model. A tight cooperation was set up, that focused in par-ticular on compiling methods and broadcasting the synchronous point ofview to the industrial world. This community was joined by another,more recent project, concerning the language Argos (IMAG), a purelysynchronous variant of Statecharts.This book is therefore a survey of very recent work, some of whichis still under development. Being myself strongly involved in the devel-opment of one of these languages | the language Lustre | I cannotclaim to give a fully unbiased presentation: it is often in
uenced bymy personal opinion and my present knowledge of the subjects. On theother hand, several parts of this book have been partially borrowed fromexisting papers devoted to each language. For their permission to borrowthis material, and for many helpful comments about the manuscript, Iwould like to thank G�erard Berry, Albert Benveniste, Paul Caspi, PaulLe Guernic, and Florence Maraninchi. I am also grateful to CorinnePichon, who carefully corrected the English version.A �rst draft of this book (written in French) was used as lecture notesfor a 12-hour course given at the 21th AFCET International School ofComputer Science, held in San Sebastian (Spain) in July 1991.
xii
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Chapter 1Introduction1.1 Reactive systemsReactive systems are computer systems that continuously react to theirenvironment at a speed determined by this environment. This class ofsystems has been introduced [HP85, Ber89] in order to distinguish thesesystems, on the one hand, from transformational systems| i.e., classicalsystems, whose inputs are available at the beginning of the executionand which deliver their outputs when terminating | and, on the otherhand, from interactive systems, which continuously interact with theirenvironment, but at their own rate (e.g., operating systems). Mostindustrial \real-time" systems are reactive | control, supervision andsignal-processing systems | but other examples concern communicationprotocols or man-machine interfaces.The main features of these systems are the following:They involve concurrency: At the least, the concurrency betweenthe system and its environment must be taken into account. Moreover,it is often convenient and natural to consider such a system as madeof a set of parallel components, that cooperate to achieve the intendedbehavior. Finally, these systems are sometimes implemented on parallelor distributed architectures in order to increase their performances ortheir reliability. However, let us note that the logical decomposition of asystem into parallel processes generally has nothing to do with an actual



2 Chapter 1 : Introductionconcurrent implementation, and, even if such a concurrent implementa-tion is performed, the physical decomposition is not necessarily the sameas the logical one. There is no reason for a logical decomposition of aproblem into subproblems to satisfactorily meet performance or faulttolerance criteria on a given architecture.They are submitted to strict time requirements: These require-ments concern both their input rate and their input/output responsetime. These constraints must be expressed in the system speci�cations,they must be taken into account during the system design, and theirsatisfaction must be checked on the implementation. Time-constraintful�llment obviously requires e�cient implementation, but it especiallynecessitates precise evaluation of execution time.They are generally deterministic: The outputs of such a systemare entirely determined by their input values and by the occurrencetimes of these inputs. This determinism distinguishes reactive systemsfrom interactive ones: most interactive systems are intrinsically nonde-terminist. An operating system contains, for instance, schedulers thatdynamically activate and interrupt processes according to various pa-rameters (CPU load, resource availability, priorities, : : : ). The result ofa call to the system generally depends on these parameters. The de-sign, analysis, and debugging of a deterministic system are much easier.So the inherent determinism of reactive-system speci�cations must bepreserved in their implementation.Their reliability is an especially important goal: This may betheir most important feature. It is a commonplace to say that errors inreactive systems can have dramatic consequences, involving human livesand huge amount of money. The economic and human consequencesof an error in the software driving a satellite or controlling a nuclearplant can obviously be incalculable. Therefore, these systems requireespecially rigorous design methods and constitute a �eld where formalveri�cation must be considered.Generally, they are made partly by software and partly byhardware: Many reactive systems are still implemented by hardware,for reasons of cost or performance or for historical reasons. In many



x 1.2 : Classical approaches 3other cases, they are partly implemented by hardware, and the hardwareand software parts are separated quite late during the design.1.2 Classical approachesAs noted above, reactive systems have been for a long time (and oftenstill are) implemented by hardware (analog machines, switch systems,and custom circuits). When implemented by software, they are oftenprogrammed in assembly language for e�ciency purposes. At a higherlevel, \operating system" approaches (real-time monitors) or general-purpose parallel languages are used. Models include automata or Petri-net-based models, task-based models, and communicating processes.Deterministic automata: Automata are often used to implementthe control kernel of a reactive system. Given a set of input values,the automaton selects a transition from its current state, calls the cor-responding sequential tasks, and changes its state for its next reaction.Such an approach generally leads to excellent and measurable perfor-mances; a reaction is a \linear" piece of code (neither loop nor recursiv-ity, no interrupt, no overhead due to process management), whose max-imal execution time can be accurately bounded. Moreover, automataare well-known mathematical objects for which veri�cation techniquesare available (evaluation of temporal logic formulas [CES86, QS82], re-duction and observation [Ver86, Fer90]).However, automata are \
at" objects, without any hierarchical orparallel structure. Consequently, they are very di�cult to use to designcomplex systems. Writing an automaton with about ten states only is adi�cult and error-prone task. The slightest modi�cation in the systemspeci�cations may involve a complete modi�cation and rewriting of theautomaton.Petri-net-based models: These models are mainly used to programindustrial controllers. The inherent concurrency of these models reducesthe complexity of system description. However, because of the lackof hierarchy, they are hard to apply to big systems. Moreover, theirsemantics, especially concerning time aspects, is often unclear.



4 Chapter 1 : IntroductionTask-based models: Here, we mean the approach consisting in de-signing a system as made of a set of sequential tasks, activated andcontrolled by a real-time operating system. The system is decomposedinto tasks that generally communicate with each other by means of ashared memory. In our opinion, this is a low-level approach. Time con-straints are not directly expressed in the description; they can only besatis�ed by means of scheduling instructions (interrupts, priorities, : : : )given to the operating system. Program portability is doubtful. Systemanalysis is made di�cult because of nondeterminism and lack of a globalview. Performances can deteriorate because of tasks management anddynamic scheduling.Communicating processes: General-purpose parallel languages,such as Ada [ADA83] or Occam [INM84] are on a higher level.These languages o�er high-level primitives to structure programs anddata. Communication and synchronization mechanisms (rendezvous,�fo queues, : : : ) are much cleaner than shared memory. These languageshave been designed in order to increase program portability. However,this portability is achieved at the expense of nondeterminism. For aprogram behavior to be independent of the target architecture (mono-or multiprocessor), only minimal assumptions are made about inter-process synchronization. Even if some of these languages have beenprovided with \real-time" primitives, the semantics of these primitivesis generally vague. We illustrate these problems by means of a classicalexample of an Ada program, where a task A signals \minutes" to a taskB, by counting \seconds":loopdelay 60; B.MINUTEendThis program does not provide the intended behavior: for a MINUTEto be received by B, A must have been waiting for 60 seconds, but B mustalso listen to it, and, moreover, the rendezvous must take place | andthe occurrence time of this rendezvous is left unspeci�ed in the languagesemantics. The delay separating two successive receptions of MINUTE isat least 60 seconds. On the other hand, a signal cannot be broadcast: ifA must send MINUTE to a third task C, A must also execute C.MINUTE. B



x 1.3 : The synchronous approach 5and C will never receive MINUTE at the same time. In such a language,di�erent processes never have the same view of the global state of theprogram. The last drawback of general-purpose parallel languages forreal-time programming is the tremendous overhead that can be involvedby runtime process management.As a conclusion to this brief overview of classical tools to reactive sys-tem design, let us notice that the user must choose between determinismand concurrency. All parallel languages are based on asynchronous exe-cution schemes, where processes compete with each other for resources,and where this competition is nondeterministically solved. Synchronouslanguages may be viewed as an attempt to reconcile concurrency anddeterminism.1.3 The synchronous approachSynchronous languages have been designed to make the programmer'stask easier, by providing him with \ideal" primitives, which allow aprogram to be considered as instantaneously reacting to external events.Each internal or output event of the program is precisely dated withrespect to the 
ow of input events. The behavior of a program is fullydeterministic, both from the functional and from the time point of view.In fact, the notion of physical (chronometric) time is replaced by asimple notion of order among events: the only relevant notions are thesimultaneity and precedence between events. Physical time does not playany special role (as it does in Ada); it will be handled as an externalevent, exactly as any other event coming from the program environment.This is called the multiform notion of time. As an example, let usconsider the two following requirements:\The train must stop within 10 seconds"and \The train must stop within 100 meters"Conceptually, these two constraints are of the same nature. However,in a language where physical time (counted in \seconds") plays a par-ticular role and is handled by special statements, they will be expressedin completely di�erent ways. In the synchronous model, they will beexpressed by similar precedence constraints:



6 Chapter 1 : Introduction\The event stop must precede the 10th (respectively, 100th)next occurrence of the event second (respectively, meter)"When we will speak of an instant, this notion will be understood as alogical instant: the history of a system is a totally ordered sequence oflogical instants; at each of these instants, zero, one, or several eventsoccur. Event occurrences that happen at the same logical instant areconsidered simultaneous; those that happen at di�erent instants are or-dered as their instants of occurrence. Apart from these logical instants,nothing happens either in the system or in its environment. Finally,all the processes of the system have the same knowledge of the eventsoccurring at a given instant.In practice, the synchrony hypothesis is the assumption that theprogram reacts rapidly enough to perceive all the external events insuitable order. If this assumption is satis�ed | and, more importantly,if its satisfaction can be checked | the synchronous hypothesis is rathera more realistic abstraction than the one that consists in consideringthat a machine deals with \actual" integer or real numbers. Moreover,we will see that synchronous languages can be implemented in a partic-ularly e�cient and measurable way. The object code is structured as a�nite automaton, a transition of which corresponds to a reaction of theprogram. As noted before, the code corresponding to such a transitionis linear (loop-free), and its maximal execution time can be accuratelybounded on a given machine. Therefore, the validity of the synchronyhypothesis can be checked.1.4 Complex systemsHowever, synchronous languages do not pretend to solve all the prob-lems raised by the design of real-time systems. A real-life complexsystem generally involves the cooperation of the three types of pro-grams: for instance, a programmer makes use of a reactive interface(keyboard, mouse, scrollbar) to call interactive services of the operat-ing system and to activate transformational tasks. Generally speaking,following [BG92], we can distinguish three parts in a complex real-timesystem:



x 1.5 : Summary of this book 7� A generally interactive interface with the environment, which ac-quires the inputs and processes the outputs. This level includesinterrupt management, input reading from sensors, and conver-sion between logical and physical inputs/outputs. This level canalso deal with the communication between several loosely coupled,synchronous components.� One or more reactive kernels. Such a kernel computes the outputsfrom the logical inputs, by selecting the suitable reaction (compu-tations and output emissions) to incoming inputs.� A level of data management, which performs transformationaltasks under the control of the reactive kernel.This book essentially deals with reactive kernel design, which is themost speci�c and probably the most di�cult part of the design of acomplex real-time system. One must keep in mind, however, that thesekernels are intended to be merged into more complex systems. As aconsequence, synchronous languages are not complete languages. Inparticular, they do not o�er primitives to de�ne and handle complexdata structures, which are left to a classical language (host language).Moreover, synchronous language compilers produce their object code inthe host language, for this code will later on be integrated into a largerprogram.1.5 Summary of this bookWe will present the work concerning four languages: Esterel, Argos,Lustre, and Signal. Rather than describing successively the partsconcerning each of them, we prefer to sort them according to some gen-eral topics:� Part I of this book presents each language, together with illustrat-ing examples of programs. Examples have been chosen in order tohighlight the most speci�c features of each language.� Part II deals with compilation. We will successively present:



8 Chapter 1 : Introduction{ nonclassical static veri�cations performed by compilers:causality checking in Esterel (x5.1) andArgos (x5.2), clockchecking in Lustre, (x5.3) and clock synthesis in Signal(x5.4).{ sequential code generation from Esterel (x6.1) and Lustre(x6.2) programs. Esterel and Lustre compilers share anoriginal method to synthesize the control structure of the ob-ject code as a �nite automaton. Both compilers generate thecode in a common format, called oc (for \object code"), onwhich several tools can be applied (x6.3).{ distributed code generation. Two very di�erent approacheswill be presented. The �rst one has been applied to Signaland makes use of the logical concurrency expressed in thesource program. The second approach has been developedfor Lustre, but can be applied to any language compiledtowards oc, since it requires �rst the generation of sequentialcode.{ silicon compiling, from Esterel and Lustre (Chapter 8).� Part III is devoted to program veri�cation. The language Lustreitself can be used to express properties about programs (Chapter9); these properties are checked by an exhaustive analysis of theautomaton built by the compiler. Another approach, used to verifyEsterel programs (Chapter 10), consists of reducing the gener-ated automaton according to various suitable observation criteria.



Part IFour SynchronousLanguages





Chapter 2The imperative languageEsterel2.1 IntroductionAmong the languages we will present, Esterel is the oldest, since its de-sign started in the early 1980s. It was developed in G�erard Berry's groupand is a common project of INRIA and ENSMP in Sophia-Antipolis.Esterel is an imperative, textual language, and its syntax is close tousual parallel languages. Paradoxically, because of this apparent analogywith classical languages, Esterel will be the best language to highlightthe speci�city of the synchronous approach. The formalization of funda-mental concepts of synchronous programming is mainly a consequenceof the design of Esterel, and the method to compile synchronous pro-grams into automata was �rst proposed in the Esterel compiler. To-day, Esterel is a commercial product (sold and maintained by twoFrench software companies: CISI-Ingenierie and Ilog) that is actuallyused in the industry. The following overview of the language is essen-tially derived from [BCG87, BCG88].2.2 Basic conceptsAn Esterel program communicates with its environment by meansof signals and sensors. Signals are used both as inputs and outputs,



12 Chapter 2 : The imperative language Esterelwhile sensors are used only as inputs. Signals can convey values; sensorsalways do. For instance, a train controller can receive a signal everymillisecond, a signal every wheel revolution, track signals conveying po-sitional informations, and signals coming from the operator keyboard; itcan use sensors to measure the external temperature; it can emit powercommands to the engines and brakes. It can be made of submodules,communicating with each other by means of internal signals.Signals and sensors are identi�ed by names. The notation S(v) ex-presses that the signal S conveys the value v.Signals are broadcast among all the processes (though this broad-casting may be limited by scope rules; see below). When a signal isemitted (either by the environment or by an internal process), it is in-stantaneously perceived by all the processes that listen to it. One canthink of programs as communicating via radio waves, each signal be-ing represented by a frequency. Two kinds of information are broadcaston the waves: values , which are permanent, and signal tops, which aretransient (they cannot be perceived by processes that do not listen tothe signal when it occurs). A sensor has a value but no signal top. Apure signal has a signal top but no value. A valued signal has both,and a value change is always synchronous with a signal top (hence, thesignal top is used to broadcast and detect value changes; there is no wayto detect sensor value changes).Values conveyed by signals can appear in expressions: if S is thename of a valued signal or of a sensor, ?S denotes its current value. Asignal top is a control information that is handled by special controlstatements.In Esterel, control takes no time. The occurrence of an inputsignal can instantaneously result in the emission of other signals. As aconsequence, the following program fragmentevery 60 SECOND doemit MINUTEendprecisely emits the signal MINUTE every 60 occurrences of the signalSECOND. The emission of MINUTE is simultaneous with the 60th occur-rence of SECOND.



x 2.3 : Programming primitives 13This notion of simultaneity is captured by the concept of event. Anevent is a set of simultaneous occurrences of (possibly valued) signals. Aparticular run of a program is a sequence of events, called a history. Wegive below a possible history of a speed counter, receiving two signalsSECOND and METER, and computing the valued signal SPEED every second:fMETERg ; fSECOND; SPEED(1)g ; fMETERg ; fMETER; SECOND; SPEED(2)g ; : : :There is a special built-in pure signal named tick that implicitly belongsto any event. In other words, tick occurs at any reaction of the program.The same signal may be emitted several times at the same instant(e.g., by several processes). If such a signal is pure, the result is onlythat the signal is present in the current event. If it is a valued signal, itcan be associated a \combination operator," noted by �: the result ofthe simultaneous emission of S(v1),S(v2),: : : ,S(vn) is then the occur-rence of S(v1 � v2 � � � � � vn) in the current event. As an example of theuse of this combination mechanism, in Ethernet-like local networks,signal broadcasting is physically realized on a cable. A special value NAKrepresents the collision of two messages. One sets v1 � v2=NAK for allv1; v2.2.3 Programming primitivesThe basic programming unit is the module, which contains a declarationpart and a statement part.Like all the synchronous languages considered here, Esterel is nota complete language. Data types, constants, functions, and procedurescan be imported from a host language and are only declared as abstractnames in the declaration part. Only a minimal set of types, constants,and operators are built in (integers, Boolean, usual arithmetic and logicoperators).



14 Chapter 2 : The imperative language Esterel2.3.1 DeclarationsIn the declaration part, we declare the types, constants, functions, andprocedures used by the module (and de�ned in the host language); wethen declare the signals and the sensors that de�ne the module's inter-face. Finally, the declaration part may also include \relations," whichare implication and exclusion relations among input signals; these areknown properties of the environment, which are indicated to the com-piler for optimization purposes. Here is a possible declaration part ofa TIMER module, as it appears in the digital watch program describedin [Ber91b]:module TIMERtype TIME;constant INITIAL TIME : TIME ;procedure INCREMENT TIME (TIME) () ;input SECOND, RESET;output TIMER VALUE (TIME),BEEP (combine integer with PLUS);relation SECOND # RESET ;The procedure INCREMENT TIME is declared with two lists of types:the �rst list types arguments passed by reference, and the second listtypes arguments passed by value (it is empty here). The output sig-nal TIMER VALUE conveys a value of type TIME and has no combinationoperator: its multiple emission is forbidden (it will be checked by thecompiler). The multiple emission of the output signal BEEP is allowed:the integer values conveyed will then be added. Intuitively, several com-ponents of a watch can operate the beeper: the chime beeps once asecond, the stopwatch beeps twice a second, and the alarm beeps fourtimes a second. If some of these components beep together, the beepfrequencies must be added. Finally, the given relation indicates thatsignals SECOND and RESET never occur at the same time (the # operatordenotes exclusivity).2.3.2 ExpressionsThe expressions are classically built from variables, constants, signal andsensor values (?S), and function calls.



x 2.3 : Programming primitives 152.3.3 StatementsThere are two kinds of statements: primitive statements and derivedstatements, which are de�ned in terms of primitive statements. Theprimitive statements are themselves divided into two groups: classicalbasic imperative statements, and temporal statements that deal withsignals.Basic imperative statementsHere is the list of the basic imperative statements:nothing dummy statementhalt halting statement<var> := <expression> assignmentcall <id> (<var list>)(<exp list>) external procedure call<stat>;<stat> sequenceif <exp> then <stat>else <stat> end conditionalloop <stat> end in�nite loop<stat> || <stat> parallel statementtrap <id> in <stat> trap de�nitionexit <id> exit from trapvar <var decls> in <stat> end local variable declarationsignal <signal decls>in <stat> end local signal declarationrun <name> <renaming> module instanciationThere are no shared variables: if a variable is updated in onebranch of a parallel statement, it cannot be read or written in the otherbranches.Remember that the execution machine is in�nitely fast. The onlystatement that takes time is the halt statement, which does nothingand never terminates.1 Therefore, nothing does nothing in no time,assignment and external procedure calls are instantaneous, the secondstatement of a sequence is started exactly when the �rst statement ter-1We will see later that the in�nite execution of a halt statement can be inter-rupted.



16 Chapter 2 : The imperative language Esterelminates, and the branches of a parallel statement start simultaneously;a parallel statement terminates synchronously with the last terminationof its branches. Hence, when a parallel statement is started, its brancheswork in the same signal environment.The trap exit mechanism is a classical escape mechanism: a trapde�nes a block that is instantly exited when a corresponding exit state-ment is executed. If several nested blocks are simultaneously exited, thee�ect is to instantly exit the outermost one. This mechanism is perhapsthe most powerful control mechanism in Esterel. It extends to generalexception facility.The run statement allows module reuse. Its e�ect is a copy in placeof the code of the module whose name is given. Some input/outputsignals can be renamed (by default, they are not). We will see latersome examples of use of this statement.Although statements are simultaneously executed, they are executedin the right order. Hence, a sequenceX := 0 ; X := X+1instantly yields X=1. Only �nitely many statements can be executedsimultaneously. One imposes a statically checked �niteness constraintto forbid loops likeX := 0 ; loop X := X+1 endTemporal statements and signal handlingAll statements described so far \take no time," except halt. We nowdescribe temporal statements that handle signals and can take time.The signals can be either emitted by the program's environment orby the program itself. To emit a signal S conveying the value of anexpression <exp>, one writesemit S(<exp>)or simply \emit S" if S is a pure signal. An emission is instantaneous.If several emissions occur simultaneously, the values are combined, asdescribed on page 13.



x 2.3 : Programming primitives 17For signal reception, there are two primitive statements. The �rsttests for the presence of a signal in the current event:present S then <statement1> else <statement2> endor, for a valued signal,present S(X) then <statement1> else <statement2> endThe semantics is clear: if S is present in the current event, then<statement1> is instantly started. Otherwise, <statement2> is in-stantly started. In the case of a valued signal, if the signal is present,the variable X instantly takes the value conveyed by the signal.The second statement is the most important Esterel construct. Itis called the watchdog and has the formdo <statement>watching <occ>where <statement> is any statement and where <occ> is an occurrenceof a signal. An occurrence is either a signal name (e.g., SECOND) possiblypreceded by the keyword immediate, or a signal name preceded by acount factor (e.g., 3 SECOND). This statement de�nes a time limit for theexecution of its body. The time limit is de�ned by the occurrence <occ>.If <occ> has the form S (respectively, immediate S), the time limit isthe �rst event in the strict future of the current event (respectively, inthe future, including the current event) that contains an occurrence ofthe signal S. Similarly, for an occurrence n S, the time limit is the nthevent in the strict future to contain S.The body <statement> is started simultaneously with the watchingstatement (except if <occ> has the form immediate S and if S ispresent). It is executed up to the time limit excluded:� If the body terminates strictly before the limit, the wholewatching statement terminates synchronously;� If the body is not terminated when the limit occurs, the body isinstantly killed | without being executed at that time | and thewatching statement terminates.



18 Chapter 2 : The imperative language EsterelNotice that the nesting of watching statements establishes a naturalpreemption priority. Consider the following example:do do <statement1>watching S1;<statement2>watching S2If S1 and S2 occur simultaneously, then the outermost watching state-ment is terminated, and <statement2> is not executed. Hence S2 pre-empts a simultaneous S1.Let us also notice that we have now two basic ways to kill a statement<stat> on the occurrence of a signal S:- the interrupt do <stat> watching S, and- the withdrawal2trap T in<stat>; exit T|| await S; exit TendThe di�erence is that in the �rst case, when S occurs, the statement<stat> is not executed at that time (the interruption precedes the reac-tion), whereas in the second case, <stat> reacts before being killed (itcan express its last wishes!).Derived statementsMany useful temporal statements can be derived from primitive ones.For instance, one writesawait <occ> instead of do haltwatching <occ>and2see the de�nition of the await statement in the next section



x 2.3 : Programming primitives 19do <stat>upto <occ> instead of do <stat>; haltwatching <occ>The await statement has its intuitive meaning: it does nothing andterminates as soon as the awaited occurrence <occ> happens. Noticethat many \real-time" languages o�er such a statement (often with lessprecise semantics) as a primitive. However, though await can be derivedfrom the watching statement, the converse is not true. So, the watchingstatement is more primitive and powerful. The di�erence between theupto and the watching statements is that \do <stat> upto <occ>"does not terminate when its body does, but always waits for <occ>. Thewatching statement could have been derived from the upto by writingtrap T indo <stat>; exit Tupto Send instead of do <stat>watching SIt is often useful to add a timeout clause to a watchdog; this clause isexecuted if the time limit occurs before termination of the body. Wewill then writedo <stat1>watching<occ>timeout<stat2>end instead of trap T indo <stat1> ; exit Twatching <occ>;<stat2>endIf <stat1> terminates strictly before <occ>, the block \trap" is in-stantly exited, and the timeout clause <stat2> is ignored.Guarded loops are often used, by writingloop<stat>each 3 METER instead of loopdo <stat>upto 3 METERend



20 Chapter 2 : The imperative language Estereland every 5 SECOND do<stat>end instead of await 5 SECOND;loop<stat>each 5 SECONDIn a \loop : : :each <occ>" statement, the body starts immediately andis restarted on every occurrence of <occ>; an \every <occ> do : : :"�rst waits for the �rst occurrence of <occ>.Multiple waiting of signals is writtenawaitcase <occ1> do <stat1>case <occ2> do <stat2>� � �case <occn> do <statn>endUnlike similar statements in asynchronous languages, this selection isdeterministic: the �rst occurrence determines the statement to be exe-cuted. If several occurrences simultaneously happen, the statement cor-responding to the �rst such occurrence in the list is selected (therefore,the order in the list establishes a priority relation between simultaneousoccurrences). The expansion of the multiple waiting is of the formdo do � � � do haltwatching <occn>timeout <statn> end� � �watching <occ2>timeout <stat2> endwatching <occ1>timeout <stat1> endA last useful derived statement allows the emission of a signal at eachprogram reaction. It makes use of the prede�ned \always present signal"tick (cf. page 13). One can write



x 2.4 : Programming style and �rst examples 21sustain S instead of loopemit Seach tick2.4 Programming style and �rst examplesBefore giving some examples, we illustrate some speci�c aspects ofEsterel programming: the use of several time scales, the use of signalbroadcasting, and simultaneity.2.4.1 Using signals as time unitsThe multiform-time point of view, generally adopted in synchronousprogramming, has been described before. In Esterel, this point ofview consists in using any signal as a \time unit" to count \delays."An illustrating example appears in the \re
ex game," which will betreated later (x2.6). The core of the system must satisfy the followingspeci�cation:Wait for a hit on a READY button within a time limit of10 SECOND; in case of timeout, emit an ALARM; while waiting,any hit on the STOP button should ring a BELL.The corresponding program could bedo do every STOP do emit RING BELL endupto READYwatching 10 SECONDtimeout emit ALARM end(Here \upto READY" is equivalent to \watching READY;" we prefer usingupto whenever we are not interested in the termination of the body)Let us now consider the following speci�cation:Wait for 10 SECOND; if STOP is hit during that time, termi-nate and emit an ALARM; while waiting, any hit on READYshould ring the BELL.



22 Chapter 2 : The imperative language EsterelThis leads to the following program:do do every READY do emit RING BELL endupto 10 SECONDwatching STOPtimeout emit ALARM endIn some sense, this program appears to be dual to the �rst one; it canbe read asWait for 10 SECOND within a time limit of STOP; in case oftimeout, emit an ALARM; while waiting : : :This symmetry comes from the fact that all signals play a similar role.The symmetry would completely disappear in a language like Ada,where the \real-time" (counted in seconds) plays a particular role andis handled by speci�c statements.2.4.2 Use of broadcastingBroadcasting simpli�es process communication and improves modular-ity; when a process emits a signal, it does not need to know who islistening to that signal; conversely, when a process receives a signal, itdoes not need to know the emitter(s).We illustrate this with the wristwatch example described in detailin [Ber91b]. A wristwatch is an excellent example of a reactive sys-tem; it is relatively small, but surprisingly complex, and has many fea-tures encountered in other systems: folding numerous commands intofew buttons by using command modes, showing numerous data in fewdisplays using display modes, and establishing communications and in-stantaneous dialogues between submodules. The wristwatch has �vesubmodules: a WATCH that acts as a regular timekeeper, a STOPWATCH,an ALARM, a BUTTON INTERPRETER that interprets wristwatch buttons ascommands directed to the other modules according to the current com-mand mode, and a DISPLAY HANDLER that handles the various displays.Broadcasting makes life easier in several places:



x 2.4 : Programming style and �rst examples 23� The external signal SECOND is automatically broadcast to all themodules that need it.� Hitting a particular button in a particular mode provokes the tog-gling from 24H to AM/PM time display mode. This change con-cerns the watch and the alarm. The button interpreter broadcastsa message TOGGLE 24H MODE COMMAND without worrying about whois expecting this message. Adding a second alarm would not mod-ify the corresponding code.� The timekeeper broadcasts a WATCH TIME signal whenever its in-ternal time changes. This signal is used by both the alarm and thedisplay handler. Adding a second alarm can be done without anymodi�cation of the WATCH and ALARM modules.2.4.3 Instantaneous dialogueThe synchrony hypothesis allows a new form of communication, theinstantaneous dialogue. A typical example appears in the wristwatchcode, more precisely in the body of the stopwatch; it will be abstractedhere. An instantaneous dialogue can be used whenever the behavior ofa process P depends on some property of the internal state of anotherprocess Q. For simpli�cation, assume that Q is a 
ip-
op on somesignal FLIP FLOP COMMAND and that P must perform <stat1> if Q is inthe \
ip" state and <stat2> otherwise. Then we introduce two signalsARE YOU FLIP and I AM FLIP and writes Q as follows:loopdo loopemit I AM FLIPeach ARE YOU FLIP|| <flip state code>upto FLIP FLOP COMMAND;do <flop state code>upto FLIP FLOP COMMANDend



24 Chapter 2 : The imperative language EsterelNow, the intended behavior of P is ensured by the following code:emit ARE YOU FLIPpresent I AM FLIP then<stat1>else<stat2>endThis example has been given to show the power of the assumption ofsimultaneity. However, instantaneous dialogues can often be avoided byusing the sustain statement (tick and sustain were introduced late inthe design of Esterel). A simpler solution of the above example couldbe % Code for Qloopdo sustain I AM FLIP|| <flip state code>upto FLIP FLOP COMMAND;do <flop state code>upto FLIP FLOP COMMANDend % Code for Ppresent I AM FLIP then<stat1>else<stat2>endAnother way to avoid instantaneous dialogue is to use Boolean-valuedsignals: whenever Q enters its \
ip" state, it emits FLIP(true); when-ever it enters the \
op" state, it emits FLIP(false). Then P only hasto check ?FLIP to know the state of Q:% Code for Qloopemit FLIP(true);do <flip state code>upto FLIP FLOP COMMAND;emit FLIP(false);do <flop state code>upto FLIP FLOP COMMANDend % Code for Pif ?FLIP then<stat1>else<stat2>end



x 2.4 : Programming style and �rst examples 25All these solutions behave in exactly the same way, although the codegenerated for the last one may be slightly less e�cient, since a part ofthe program control is hidden in a Boolean value (see x6.1).2.4.4 A stopwatchLet us write an Esterel program implementing the stopwatch of thedigital watch presented in [Ber91b]. We will successively consider sev-eral versions, highlighting the language modularity: each version will bebuilt from the previous version.Simple stopwatchThe basic stopwatch receives an input signal START STOP that alterna-tively puts it in \running" and \stopped" states. Initially the stopwatchis stopped. It also receives a signal HS each 1/100 second. The stop-watch computes an integer TIME, whose value is the total amount of time(counted in 1/100 second) spent in the \running" state. The programis the following:module BASIC STOPWATCH :input START STOP, HS;output TIME (integer);var TIME:=0 : integer inloop % stopped stateemit TIME(TIME);await START STOP;do % running stateevery HS doTIME := TIME+1;emit TIME(TIME);endupto START STOPendend.This program computes a local variable TIME, initialized to 0, whichwill contain the value always conveyed by the signal TIME. This signalis emitted whenever the stopwatch becomes \stopped" (therefore it isemitted at the initialization, so as to give a value to ?TIME). It is also



26 Chapter 2 : The imperative language Esterelemitted, with incremented value, whenever a 1/100 second occurs in the\running" state. The alternation between the \stopped" and \running"states is realized in a fashion similar to the \
ip-
op" program (x2.4.3).Stopwatch with \reset"The second version of the stopwatch receives another input signal RESET,whose occurrence puts the stopwatch back in its initial state. Esterelallows a modular solution of this problem: whenever RESET occurs, anew basic stopwatch is instanciated. Intuitively, this is like throwingaway the old stopwatch and taking a new one!module STOPWATCH 1 :input START STOP, HS, RESET;output TIME (integer);looprun BASIC STOPWATCHeach RESET.Intermediate time handlingLet us again complexify our example. A new input signal LAP nowallows us to record an intermediate time (for instance, the time spentby a runner for one track lap) while continuing to measure the globaltime. One occurrence of LAP freezes the time on display, while theinternal stopwatch time continues to be computed as before. The nextoccurrence of LAP puts the stopwatch back in a state displaying therunning time. Once again, this new version is built from the previousone by putting it in parallel with a \lap-�lter." The role of the lap-�lteris to manage the display state (\time frozen" or \time running") andto prevent the output of the signal TIME in the \frozen" state. Thefollowing program runs in parallel the previous stopwatch | with thesignal TIME renamed as INTERNAL TIME | and the lap-�lter, which isagain similar to the \
ip-
op." Initially, and whenever RESET occurs,it enters the \running time" state, where it transmits any occurrenceof the INTERNAL TIME to the environment. The LAP signal alternativelycommutes between this state and the \frozen time" state, where theINTERNAL TIME is no longer transmitted.



x 2.4 : Programming style and �rst examples 27module STOPWATCH 2 :input START STOP, HS, RESET, LAP;output TIME (integer);signal INTERNAL TIME (integer) inrun STOPWATCH 1 [signal INTERNAL TIME / TIME]|| % lap-filterloopdo do % running timeevery INTERNAL TIME doemit TIME(?INTERNAL TIME)endupto LAP;% frozen timeemit TIME(?INTERNAL TIME);await LAPwatching RESETend % loopend.General stopwatchAn actual stopwatch has only two buttons:� the �rst one corresponds to the START STOP signal.� the interpretation of the second one depends on the global state ofthe stopwatch. When the stopwatch is stopped and the displayedtime is running, it is interpreted as a RESET command; otherwiseit corresponds to a LAP signal.Such a folding of logical inputs onto a small number of physical inputsis very common in reactive systems. In order to preserve the modularityof our program, this folding will be entrusted to a \button interpreter,"which computes the global state of the stopwatch. The correspondingmodule is the parallel composition of two 
ip-
ops, computing the \run-ning/stopped" state and the \running-time/frozen-time" state, with aprocess interpreting the signal BUTTON 2 according to these states.



28 Chapter 2 : The imperative language Esterelmodule BUTTON INTERPRETER :input START STOP, BUTTON 2;output RESET, LAP;signal STOPWATCH RUNNING, FROZEN TIME inevery BUTTON 2 dopresent STOPWATCH RUNNING then emit LAPelse % the stopwatch is stoppedpresent FROZEN TIME then emit LAPelse emit RESETendendend|| % flip-flop "running/stopped"loop % stopped stateawait START STOP;do % running statesustain STOPWATCH RUNNINGupto START STOPend|| % flip-flop "running-time/frozen-time"loop % running-time stateawait LAP;do % frozen-time statesustain FROZEN TIMEupto LAPendend.The whole stopwatch program is the following:module FULL STOPWATCH:input START STOP, HS, BUTTON 2;output TIME (integer);relation START STOP # HS # BUTTON 2;signal RESET, LAP inrun CHRONO 2|| run BUTTON INTERPRETERend.However, this program is refused by the Esterel compiler, which emitsthe following error message:



x 2.5 : Causality problems in Esterel 29user error: causality error:Signals: RESET LAP FROZEN_TIMEThis signals that our program contains a \causality loop." This typeof error is speci�c to synchronous programs and will be analyzed in thefollowing section.2.5 Causality problems in EsterelThe synchronous hypothesis may cause temporal paradoxes, similar toshort-circuits or oscillations in electronics or to deadlocks in parallelprogramming. We show here two kinds of such paradoxes, illustrated byshort examples.2.5.1 Lack of behaviorLet us consider the following program:signal S inpresent S thennothingelseemit SendendThe local signal S must be emitted if and only if it is absent, whichis clearly nonsense. This program behaves more or less like a \not"gate with output plugged on input. This kind of phenomenon causedthe error in our stopwatch: in the button interpreter, the process in-terpreting the signal BUTTON 2 decides to emit the LAP signal accordingto the presence of the signal FROZEN TIME. Assume that the 
ip-
opin charge of this signal is in its \do : : :upto LAP" statement. Eitherit emits FROZEN TIME, and the button interpreter synchronously emitsLAP, which should have killed the upto, thus preventing the emissionof FROZEN TIME; or FROZEN TIME is not emitted, so neither is LAP, andFROZEN TIME should have been emitted.The following example of a program without behavior is similar tothe positive feedback obtained by plugging the output of an ampli�er



30 Chapter 2 : The imperative language Esterelinto its input:signal S(combine integer with PLUS) inemit S(0);emit S(?S+1)endThe integer value ?S conveyed by S should satisfy ?S = ?S+1!2.5.2 Multiple behaviorA slight modi�cation of the previous example shows a second kind ofparadox:signal S inpresent S thenemit SelsenothingendendNow, the local signal S must be present if and only if it is present! Thereare obviously two possible behaviors. Below is another program, whichhas in�nitely many behaviors:signal S(integer) inemit S(?S)endThe integer value conveyed by S is completely undetermined. Esterelconsiders such programs as erroneous, since determinism is one of itsmain goals.Formally, all these problems come from the fact that the currentevent is a �xpoint of some function. Now, since this function is not al-ways monotone, it can have 0, 1, or several �xpoints. Esterel seman-tics (in contrast with most semantics given to Statecharts [HPSS86,HGd88]) only give sense to programs that have one and only one �x-point. We will see in x5.1 how this feature is statically checked by theEsterel compiler.



x 2.6 : Another example: the re
ex game 312.5.3 Putting right the stopwatchIn order to avoid the causality loop in the stopwatch button interpreter,we only need to admit that the \frozen/running" time state of the stop-watch changes at the end of the reaction, when the signal LAP occurs.We have to replace, in the corresponding 
ip-
op, an interrupt by awithdrawal (cf. de�nitions, page 18):% flip-flop "running-time/frozen-time"loop % running-time stateawait LAP;trap T insustain FROZEN TIME|| await LAP; exit Tendendend.Now, when LAP occurs, FROZEN TIME is emitted before exiting the\trap T" block.2.6 Another example: the re
ex game2.6.1 Speci�cationsWe consider a machine allowing a player to test his re
exes [Bou91]. Theplayer controls the machine with three commands: putting a coin in aCOIN slot to start the game, pressing a READY button to start a re
exmeasure, and pressing a STOP button to end a measure.The machine reacts to these commands by operating the followingdevices: a numerical DISPLAY that shows re
ex times, a GO lamp thatsignals the beginning of a measure, a GAME OVER lamp that signals theend of a game, a RED lamp that signals that the player has tried to cheator has abandoned the game, and a BELL that rings when the player hitsa wrong button.When the machine is turned on, the DISPLAY shows 0, the GAME OVERlamp is on, the GO and RED lamps are o�. The player then starts a gameby inserting a COIN, which turns o� the GAME OVER lamp. Each game



32 Chapter 2 : The imperative language Esterelconsists of a �xed NUMBER of re
ex measures. A measure starts when theplayer presses the READY button; then, after a random amount of time,the GO lamp turns on and the player must press the STOP button as fastas he can. When he does so, the GO lamp turns o� and the re
ex time,measured in milliseconds, is displayed on the numerical DISPLAY. A newmeasure starts when the player presses READY again. When the cycle ofNUMBER measures is completed, the average re
ex time is displayed aftera pause of PAUSE LENGTH milliseconds and the GAME OVER lamp is turnedon.There are �ve exception cases. Two of them are simple mistakes andmake the BELL ring:� the player presses STOP instead of READY to start a measure; or� the player presses READY during a measure.In the other three cases, the RED and GAME OVER lamps are turned on,the GO lamp is turned o�, and the game ends:� the player does not press the READY button within TIME LIMITmilliseconds when he is expected to (one assumes that the playerhas abandoned the game);� the player does not press the STOP button within TIME LIMIT mil-liseconds when he is expected to (i.e., after the GO lamp turns on;this is also assumed to be an abandon);� the player presses the STOP button after he has pressed the READYbutton but before the machine turns the GO lamp on, or at thesame time that this happens (this is cheating!).A last anomaly appears if the player inserts a COIN during a game. Thena new game is started at once.2.6.2 InterfaceThree parameters of the machine are declared as integer constants: theNUMBER of measures and the delays PAUSE LENGTH and TIME LIMIT. Theymust be de�ned in the host language. An external function RANDOM is



x 2.6 : Another example: the re
ex game 33used to determine the random delay at which the GO lamp turns onafter the READY button is hit. The input signals are the millisecondtime unit MS and the three user commands. As far as input relationsare concerned, all input signals are assumed incompatible except MS andSTOP: if the player presses STOP simultaneously with the occurrence ofMS which terminates the random delay, then he must be considered asa cheater. To control a lamp (say GO), we introduce two output signalsON and OFF (hence GO ON and GO OFF). We also have output signals forthe display and to ring the bell:module REFLEX GAME :constant NUMBER, PAUSE LENGTH, TIME LIMIT : integer;function RANDOM() : integer;input MS, COIN, READY, STOP;relation MS # COIN # READY,COIN # STOP,READY # STOP;output GO ON, GO OFF,GAME OVER ON, GAME OVER OFF,RED ON, RED OFF,DISPLAY(integer),RING BELL;2.6.3 Computation of the average re
ex timeWe use a submodule to compute the average response time. This simplemodule emits AVERAGE VALUE whenever it receives an UPDATE AVERAGEsignal with a new measure result:module AVERAGE :input UPDATE AVERAGE(integer);output AVERAGE VALUE(integer);var MEASURE NUMBER := 0 ,TOTAL TIME := 0 : integer inevery immediate UPDATE AVERAGE doTOTAL TIME := TOTAL TIME + ?UPDATE AVERAGE;MEASURE NUMBER := MEASURE NUMBER + 1;emit AVERAGE VALUE( TOTAL TIME/MEASURE NUMBER)endend



34 Chapter 2 : The imperative language EsterelNotice the keyword immediate, which ensures that even an update oc-curring at the initial instant is handled.2.6.4 The program bodyThe body is made of two successive parts: some overall initializationsand a main loop over a single game that is restarted whenever a coinis inserted. This main loop is simply controlled by an \every COIN"statement.Within a single game, we declare an ERROR trap to handle the cheat-ing tentatives and an END GAME trap to handle the normal game termina-tion. Whenever the loop is entered, an instance of the module AVERAGEis put in parallel with the main process, with which it communicatesby means of the two local signals UPDATE AVERAGE and AVERAGE VALUE.The general structure of the program is thus the following:<overall initializations>every COIN do<game initializations>trap END GAME intrap ERROR insignal UPDATE AVERAGE(integer),AVERAGE VALUE(integer) inrun AVERAGE|| <main process>endend<errors handling>end<end of a game>endOverall initializations consist in turning o� the GO and RED lamps, turn-ing on the GAME OVER lamp, and initializing the display to 0. The gameinitializations only di�er by turning o� the GAME OVER lamp.The main process of a game consists in performing NUMBERmeasures,and then in displaying the average time:



x 2.6 : Another example: the re
ex game 35repeat NUMBER times<measure>end;await PAUSE TIME MS;emit DISPLAY(?AVERAGE VALUE);exit END GAMEEach measure consists of three steps:1. Wait for the READY signal within a time limit of TIME LIMIT. Incase of timeout, an error is detected. While waiting, any occur-rence of STOP rings the bell (this is the short example given inx2.4.1):% step (1)do do every STOP do emit RING BELL endupto READYwatching TIME LIMIT MStimeout exit ERROR end2. Wait for a random delay, and after this delay, switch on the GOlamp. While waiting, any hit on the STOP button causes an error.Since an error must be detected even when the STOP button is hitsimultaneously with the end of the random delay, the interrupt bySTOP is given priority over the random delay. While waiting, anyhit on the READY button rings the bell:% step (2)do do every READY do emit RING BELL endupto RANDOM() MS;emit GO ONwatching STOPtimeout exit ERROR end;3. Wait for the STOP signal, counting milliseconds, within aTIME LIMIT delay. In case of timeout, an error is detected. Whilewaiting, any hit on the READY button rings the bell. When the STOP



36 Chapter 2 : The imperative language Esterelsignal occurs, the GO lamp is turned o� and the counted measureis displayed:% step (3)do var TIME := 0 : integer indo every MS do TIME := TIME+1 end|| every READY do emit RING BELL endupto STOP;emit DISPLAY(TIME);emit UPDATE AVERAGE(TIME);emit GO OFFendwatching TIME LIMIT MStimeout exit ERROR end;If an error occurs, the RED lamp is turned on, and the GO lamp isturned o�. At the end of a game, the GAME OVER lamp is turned on. Thewhole program is given in Figure 2.1.



x 2.6 : Another example: the re
ex game 37module REFLEX GAME :constant NUMBER, PAUSE LENGTH, TIME LIMIT : integer;function RANDOM() : integer;input MS, COIN, READY, STOP;relation MS # COIN # READY, COIN # STOP, READY # STOP;output GO ON, GO OFF, GAME OVER ON, GAME OVER OFF,RED ON, RED OFF, DISPLAY(integer), RING BELL;% overall initializationsemit GO OFF; emit RED OFF; emit GAME OVER ON; emit DISPLAY(0);every COIN do% game initializationsemit GO OFF; emit RED OFF; emit GAME OVER OFF; emit DISPLAY(0);trap END GAME intrap ERROR insignal UPDATE AVERAGE(integer), AVERAGE VALUE(integer) inrun AVERAGE|| % main processrepeat NUMBER timesdo % step (1)do every STOP do emit RING BELL endupto READYwatching TIME LIMIT MS timeout exit ERROR end;do % step (2)do every READY do emit RING BELL endupto RANDOM() MS;emit GO ONwatching STOP timeout exit ERROR end;do % step (3)var TIME := 0 : integer indo every MS do TIME := TIME+1 end|| every READY do emit RING BELL endupto STOP;emit DISPLAY(TIME); emit UPDATE AVERAGE(TIME);emit GO OFFendwatching TIME LIMIT MS timeout exit ERROR end;end;% normal end : display of the average timeawait PAUSE LENGTH MS;emit DISPLAY(?AVERAGE VALUE); exit END GAMEendend;% errors handlingemit RED ON; emit GO OFFend;% end of a gameemit GAME OVER ONend.Figure 2.1: The whole program of the re
ex game
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Chapter 3Graphic formalisms:the language ArgosThis chapter is devoted to graphical formalisms based on parallel andhierarchic automata. The best known of such formalisms is proba-bly Statecharts [Har87], which have been de�ned by D. Harel andA. Pnueli. However, we prefer to describe another formalism, appar-ently very close to Statecharts: the language Argos [Mar89, Mar90],under development at IMAG (Grenoble). This choice is motivated bythe following reasons:� The Statecharts semantics seems to still be under discus-sion [HPSS86, HGd88]. On the other hand, the given semantics isnot completely synchronous, since parallel composition may giverise to nondeterministic behaviors.� Argos solves some problems existing in Statecharts, in par-ticular those concerning modularity and causality loops. It is asimpler language, whose semantics is completely formalized andthoroughly compatible with the synchronous point of view adoptedin Esterel.



40 Chapter 3 : Graphic formalisms: the language Argos3.1 Automata and operatorsIn an Argos program, basic processes are �nite automata that receiveand emit signals, exactly as in Esterel. These automata can be putin parallel; each of their states can be re�ned into a process, which isactivated whenever its \father"-automaton enters the considered state,and which is killed whenever its father leaves this state. In any process,three kinds of signal are distinguished: internal signals are signals thathave been declared local either in the process or in one of its \ancestors";other signals are either input signals of the whole program, in which casethey cannot be emitted by the program, or output signals of the wholeprogram, in which case they cannot be used as input in any transitionof any automaton in the program.3.1.1 Simple automataIn Argos, a simple process is directly described as an automaton(cf. Figure 3.1). States are named, transitions are labeled, and an au-tomaton has one and only one initial state (signaled by a small incomingarrow). Transition labels consist of an input part and an output part,each of which is made of signals, that belong to a global vocabularyE = fa; b; c; : : :g. The input part is a conjunction of signals (at leastone) and of signal negations. The output part can only contain signals.When the output part of a label is empty, it can be omitted. The intu-itive semantics of the automaton of Figure 3.1 is that, when the processe afg/ha.e/b.c.d DC BAFigure 3.1: An Argos automaton



x 3.1 : Automata and operators 41is in state A and if the signal a occurs and the signal e does not, thenthe process enters state B while simultaneously emitting signals b, c,and d. In this example, fa,e,f,gg is the set of input signals of theprocess, and fb,c,d,hg is the set of its output signals. When the pro-cess is in state B and if the signal a (respectively, e) occurs, the stateD (respectively, C) is entered without any output emission. Clearly, ifa and e simultaneously occur, the process behavior is nondeterminis-tic. Such an explicit nondeterminism is allowed in Argos (which onlyforbids the implicit nondeterminism, involved, for instance, by parallelcomposition). However, a compiler option enables us to check that thisnondeterminism disappears in the whole program (e.g., because a and eare internal signals that are never simultaneously emitted).3.1.2 Argos operatorsOperators on behaviors are tightly connected with design methods. InArgos, two design methods are handled by operators: parallel decom-position and hierarchical decomposition.\Parallel" operatorIn Argos (as in Statecharts), the parallel composition of two pro-cesses is noted by drawing them in a box, separated from each other by adotted line. Figure 3.2 shows two examples, in which involved processesare automata (of course, they could themselves be compound processes).Process semantics will always be given by means of automata withthe same behaviors as the considered process. First, the set of statesof a parallel process is the Cartesian product of the sets of states ofits component processes. The initial state is the pair of componentsinitial states. Each component runs in an environment made of theglobal environment and of the other component. In each global state,the global reaction is de�ned by the following rules:� Whenever a component can react to an input, it must react. There-fore, the communication mechanism is similar to signal broadcast-ing in Esterel. Depending on the input, either none, or one, orboth components participate in the reaction.
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B2A2B1A1a/a' c/c'(a) ba/b B2A2B1A1 (b)Figure 3.2: Parallel compositionac/a'c' c/c'a/a'ac/c' B1,B2 B1,A2A1,B2 A1,A2(a) ac/a' A1,A2A1,B2 B1,B2aba/b a/b(b)Figure 3.3: Behavior of parallel processes� When both components react, the global output is the conjunctionof components outputs.� Components communicate with each other during the reaction.Internal signals emitted by each of them are considered as inputsby the other in the same reaction.Figure 3.3 gives the automata equivalent to the processes given by Fig-ure 3.2, under the assumption that b is an internal signal (since it ap-pears in both the input and output parts of transitions), i.e., a localsignal to a \parent" process of the given process.
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(a)b.c ca/ca/b C'B'A' CBA A,B,CA',B',C'a(b)Figure 3.4: Local signal de�nitionSo far, only binary parallel composition has been considered. How-ever, since the parallel composition is commutative and associative, itcan be generalized to any number of arguments.Local signal de�nitionSome signals can be made local to a given process by putting thisprocess into a box (if it is not already in a box) with a cartouche wherethese signals are indicated (cf. Figure 3.4(a)). This operation has twoconsequences:� From a static point of view, these signals become internal to theprocess and to any of its subprocesses. Therefore, they may appearboth in the input parts and in the output parts of their transitions.� From a dynamic point of view, this operation limits the broad-casting of these signals, which are not transmitted | and cannotcome from | outside of the box. This de�nition is very similar tothe local signal declaration in Esterel.Figure 3.4(b) gives the behavior of the process shown in Figure 3.4(a).Since the signals b and c have been made local, a is the only inputsignal of the process. When a occurs, it causes the reaction of the �rst



44 Chapter 3 : Graphic formalisms: the language Argostwo components of the \parallel" operator, and therefore b and c areemitted. The signal b is lost (since no process of its scope is listening toit). The occurrence of c causes the third component's reaction.Hierarchical decompositionThe hierarchical decomposition of an automaton A consists in consider-ing some of its states to be themselves processes. Syntactically, such adecomposition is expressed by representing the subprocess inside the boxassociated with the decomposed state (cf. Figure 3.5(a)). The followingrules de�ne the behavior of this operator:1. When A enters a state containing a subprocess, this subprocess isactivated in its initial state (it becomes active);2. When A leaves such a state, the subprocess is killed (it becomesinactive), and all information about its current state is lost.3. The signals emitted by active subprocesses of A, if they are notlocal to these processes, are visible from A;4. Conversely, any signal visible from A can be seen from an activesubprocess, if this subprocess does not have a local signal with thesame name; and5. A subprocess does not participate in the reaction that activatesit, but participates in the transition that kills it (the interruptiontakes place at the end of the reaction).Let us notice that, from rule 2, the father process can interrupt itssubprocesses, whereas from rule 5, a subprocess can commit suicide byforcing its father to interrupt it.Figure 3.5(b) gives the behavior of the process shown in Fig-ure 3.5(a), under the assumption that b is an internal signal. Initially,the process is in the state X of the subprocess associated with its stateA. From this state,� if signal c occurs and signal b does not, the subprocess enters itsY state while emitting e;
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(a)

A X YZ c/eac/b b cB c bbc/eabcbc/eac/b A,YBA,X(b)Figure 3.5: Hierarchical decomposition� if signal b occurs alone, the transition A!B of the father processkills the subprocess (which has nothing to do);� if signal a occurs and signal c does not, the subprocess enters itsZ state while emitting b. This emission of b simultaneously causesthe father process to leave its A state (thus killing the subprocess)to enter B; and� if b and c simultaneously occur, the subprocess performs its tran-sition X!Y while emitting e, and at the same time the transitionA!B of the father process kills the subprocess.When the subprocess is in state Y, the process only reacts to b, whichkills the subprocess. Finally, in state B, the subprocess is inactive. It isactivated again (in its initial state X) when c occurs.3.2 Causality problemsAs one might expect, temporal paradoxes exist in Argos as well as inEsterel. Some processes do not have any behavior; other processespresent implicit nondeterminism. In the latter case, the detection will



46 Chapter 3 : Graphic formalisms: the language Argosb/a.op.a/b B'BA'A a.bFigure 3.6: Absence of behaviorbe a bit more di�cult, since the implicit nondeterminism must be dis-tinguished from the explicit one, which is allowed in Argos automata.We only give an example of each type of paradox. A process withoutbehavior is shown in Figure 3.6: if the external signal p occurs whenthe local signal a does not, the transition A!A' happens, involving theemission of b. Thus the transition B!B' is activated, and a and o areemitted. Now, since a is present, the transition A!A' should not havehappened.Figure 3.7(a) shows an implicitly nondeterministic process: if p oc-curs, either both transitions A!A' and B!B' are activated, emitting aand b needed for their activation, or neither happens and no signal isemitted (Figure 3.7.(b)).3.3 Programming styleThe hierarchical decomposition mechanism, with interrupt or \sui-cide," is the only mechanism to kill a process in Argos (in contrastwith Esterel, which has three such mechanisms: simple termination,withdrawal by means of a \trap: : :exit," and interrupt by means of\do: : :watching"). The following discussion suggests that this singlemechanism can simulate the others; this simulation, however, cannot be
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(a) p.b/a.op.a/b B'BA'A a.b A,BA',B'p/o p

(b)Figure 3.7: Implicit nondeterminismmodularly performed.3.3.1 Termination by exceptionAssume that a subprocess containing states A and A' (respectively, Band B') \abnormally" terminates when signal a occurs in state A (re-spectively, when signal b occurs in state B). It can signal this abnormalsituation by emitting a signal s (respectively, t). Now, an exceptionhandler can be written that kills the subprocess and activates a processmanaging the exception, possibly taking into account some priority rulesamong exceptions (e.g., the exception raised by s has priority over theone raised by t). This kind of construction is shown in Figure 3.8.3.3.2 Normal terminationNormal termination is not built in in Argos. It di�ers from abnor-mal termination because a \parallel" construct abnormally terminatesas soon as one of its components abnormally terminates, whereas it nor-mally terminates only when every component is terminated. In orderto express this notion, assume that each component emits a special ter-mination signal when it enters a �nal state (without successor state).
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S,T TS ZYs.t st/Ts/Sb/ta/sA'A BB' P'PFigure 3.8: Exception handling

Ss.tb/ta/sA'A BB' St s.t/SsPs/S P' P'' t/S YFigure 3.9: Normal terminationFigure 3.9 shows how these signals can be handled to realize the overallnormal termination.
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p a/o'.pa.p/o YX BA Figure 3.10: Process interrupt3.3.3 InterruptMaking a father-process interrupt one of its subprocesses (as performedby a \do: : : watching" in Esterel) is more complicated, since the inter-rupt must take place before the reaction of the subprocess. The proposedsolution consists in inhibiting any transition of the subprocess when theinterrupt occurs. An interrupt signal (p in the example shown in Fig-ure 3.10) is emitted by each transition interrupting the subprocess, andeach transition of the subprocess is conditioned by the absence of thissignal.3.4 Examples3.4.1 The stopwatchThe stopwatch is not a very illustrative example in Argos, on the onehand because it is a single automaton, and on the other hand because thelanguage does not yet allow actions (such as time incrementation andreset) to be placed on transitions. Figure 3.11 only gives the controlautomaton.3.4.2 Control logic of the digital watchA more interesting example, again extracted from the digital watch,concerns the management of the watch running modes [Ber91b]. Thewatch is driven by means of four buttons: ul, ll, ur, lr (\up-left,"



50 Chapter 3 : Graphic formalisms: the language Argosbutton 2/resetbutton 2/lap start stopstart stopstart stopstart stopstoppednot frozenstoppedfrozen button 2/lap button 2/laphshsrunningfrozenrunningnot frozen
Figure 3.11: The control automaton of the stopwatch\low-left," \up-right," and \low-right," respectively). It has �ve runningmodes, as follows:� The TIMER mode is the initial one, where the time is displayed. Inthat mode,{ the ll button changes to STOPWATCH mode;{ the ul button changes to TIME UPDATE mode;{ the lr button alternatively toggles the time-display mode(24H or AM-PM);{ the ur button switches the light on.� In the TIME UPDATE mode,{ the ll button changes the updated item (seconds, minutes,hours, etc: : : );{ the lr button updates the selected item;{ the ul button changes back to TIMER mode.



x 3.4 : Examples 51� In the STOPWATCH mode,{ the ll button changes to ALARM mode;{ the lr button is the \start stop button" of the stopwatch;{ the ur button is the \button 2" of the stopwatch.� In the ALARM mode,{ the ll button changes to TIMER mode;{ the ul button changes to ALARM UPDATE mode;{ the lr button alternatively switches the chime on and o�;{ the ur button alternatively switches the alarm on and o�.� In the ALARM UPDATE mode,{ the ll button changes the updated item;{ the ul button changes back to ALARM mode;{ the lr button updates the selected item.In any mode, the ur button stops the bell.Figure 3.12 shows the corresponding Argos program.
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ALARM

ur/stop bell
ll llll

ululTIMER lrlr AM PM24H ur/light
CHIMEALARM ONururlrlr ulul

STOPWATCHlr/start stopur/button 2 lr/updatell/change itemUPDATEALARM
lr/updatell/change itemUPDATETIME

Figure 3.12: The running modes of the digital watch



Chapter 4Declarative languages :Lustre and Signal4.1 IntroductionReactive systems belong to a �eld in which many users come from controlscience or electronics rather than from computer science. It is thereforeappealing to provide these users with description tools that are sim-ilar to the traditional tools used in control theory: these traditionaltools often consist, at a higher level, of equational formalisms (di�eren-tial or �nite-di�erence equations, Boolean equations, etc: : :), and at alower level, of various graphic formalisms to describe operator networks(block diagrams, analog schemas, switch or gate diagrams, etc: : : ). Allthese formalisms belong to the \data-
ow" model, which is well knownin computer science [Kah74, Gra82]. In this model, a system is a net-work of interconnected operators, running in parallel and activated byinput arrivals (cf. Figure 4.1). This model was initially proposed forgeneral programming. However, it has not enjoyed much success in thiscontext, on the one hand because it goes against uses that are �rmlyrooted in users'mind, and on the other hand because no reasonablye�cient implementations have been proposed for data-
ow languages.Now, though this model goes against the habits of computer scientists,it is very natural to control scientists, who must unfortunately translatetheir \data-
ow" point of view into the classical imperative models used
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WXZY 2W = X + 1X = 2�Y + Z ++� 1Figure 4.1: Equational and graphical descriptions of a data-
ow systemin computer science. Even from the computer scientist's point of view,the data-
ow model has many advantages:� It is a �ne-grained parallel model. Conceptually, as soon as anoperator is provided with its inputs, it can compute its output. Sothe only synchronization constraints come from dependence rela-tions between data. At a time when computer scientists are seek-ing models and languages that take advantage of the increasingparallelism of computers, it seems paradoxical that some users forwhom parallelism is a natural point of view must translate it intomore or less sequential formalisms. A �ne-grained parallel descrip-tion allows a wide range of implementations, from the sequentialone to the implementation on massively parallel architectures, oreven on hardware. It is indeed much more di�cult to parallelize asequential program than to sequentialize a parallel one.� Generally, data-
ow formalisms are \mathematically cleaner" thanimperative ones, in which notions such as memory and assignmentmay involve complex side e�ects. This mathematical cleannessmakes easier the use of formal methods for program analysis, de-sign, and veri�cation.� An operator net directly provides a graphical representation of pro-grams. Moreover, this representation straightforwardly supportshierarchical decomposition: a subnet can be encapsulated into an



x 4.2 : The language Lustre 55operator. The existence of a textual formalism | the equationalone | equivalent to the graphical formalism allows the advantagesof both approaches to be combined. While the graphical descrip-tion is convenient at macroscopic levels, it becomes soon extremelycomplex at detailed levels.� The importance of hardware implementations has already beenoutlined. Another advantage of the description using operatornets is that it leads very naturally to such implementations (cf.Chapter 8).The data-
ow approach is consequently appealing in the �eld of reactivesystems. However, most data-
ow languages are essentially asynchro-nous [Kah74, KQ77, Gra82, AW85, Bro89]. A natural way to introducetime in the data-
ow model consists in relating the time to the rate ofdata arrivals. The considered variables can be naturally interpreted asfunctions of time. For instance, the descriptions given Figure 4.1 expressthe following relations:8t; X(t) = 2Y (t) + Z(t) and W (t) = X(t) + 1The temporal dimension therefore underlies any description in such amodel.Such a temporal interpretation of data-
ow networks involves somesemantic restrictions. The maximal reaction time of a program mustbe measurable, which forbids, for instance, the dynamic creation ofprocesses (which is allowed, e.g., in Kahn's nets). More generally, asynchronous data-
ow network should be implementable by means ofan extended �nite automaton with bounded memory. In Lustre andSignal, these restrictions result in clock constraints.4.2 The language LustreLustre is a textual data-
ow language, de�ned at the IMAG Institutein Grenoble. Its design started in 1984. A graphical programming envi-ronment, called Saga, was developed by Merlin-Gerin Company, whichused it to program nuclear-plant control systems. The whole environ-ment Saga+Lustre has been industrialized by the French softwarecompany Verilog.



56 Chapter 4 : Declarative languages : Lustre and SignalBasic cycles 1 2 3 4 5 6 7 8Values of C true false true true false true false trueCycles on C 1 2 3 4 5Values of C1 false true false true trueCycles on C1 1 2 3Table 4.1: Boolean 
ows and clocks4.2.1 Flows and clocksIn Lustre, any variable or expressions refer to a 
ow, which is a pairmade of� a (possibly in�nite) sequence of values, of some type; and� a clock, which represents a sequence of instants.A 
ow has the nth value of its sequence of values at the nth instant of itsclock. Any program (or program fragment) has a cyclic behavior, whichde�nes its basic clock, from which any other clock is derived. A 
owwhose clock is the basic clock takes its nth value at the nth executioncycle of the program. Other, slower clocks can be de�ned by means ofBoolean-valued 
ows: any Boolean 
ow can be used to de�ne a clock,which is the sequence of instants where the value of the 
ow is true . Forinstance, Table 4.1 gives the time-scales de�ned by a 
ow C on the basicclock, and by a 
ow C1, whose clock is the one de�ned by C. The �rstrow gives the basic cycle numbers, and the second row gives the valuesof C at each of these cycles. The sequence of cycles on the clock de�nedby C is numbered on the third row, while the fourth and the �fth rowsgive the values of C1 on this clock and the sequence of cycles of the clockde�ned by C1, respectively.The notion of clock is not necessarily related to physical time. In par-ticular, the basic clock must be considered as de�ning the �nest \grain"of time that the program can distinguish, rather than as a physical timescale. As usual in synchronous programming, the physical time will beperceived as an input to the program: for instance, a Boolean 
ow, anytrue value of which signals the elapsing of a \millisecond." This point



x 4.2 : The language Lustre 57of view meets the multiform time notion: the millisecond is a 
ow likeany other, and any Boolean 
ow can be used to de�ne a time scale.4.2.2 Variables, equations, expressions, and assertionsLustre variables refer to 
ows. Each variable is declared with thetype of its values. Any variable that is not an input to the program isde�ned by one and only one equation. Equations must be understoodin their mathematical sense: the equation \X = E" de�nes a completesynonymy between the variable X and the expression E; they have thesame sequences of values and the same clock. This expresses one ofthe main principles of the language, the substitution principle: such anequation allows X to be substituted by E anywhere in the program andconversely. Another basic Lustre principle is the de�nition principle:a variable is thoroughly de�ned from its declaration and the equationin the left part of which it appears. In particular, no information canbe inferred from the way the variable is used.1 A consequence of theseprinciples is that a Lustre program is written as a mathematical systemof equations: the order of the equations is irrelevant, and introducingauxiliary variables to name subexpressions has no consequences for theprogram semantics.Lustre contains only elementary prede�ned data types | integers,Boolean, and reals | and a tuple constructor. One can use importedtypes, de�ned in a host language and handled as abstract data types,exactly as in Esterel.Expressions appearing in the right-hand sides of equations are builtof constant, variables, and operators. Constants either belong to pre-de�ned types or are imported from the host language. They representconstant-valued 
ows on the basic clock.Standard operators on prede�ned types (arithmetic, Boolean, con-ditional operators) are available, together with imported functions. Allthese operators, hereafter referred to as data operators, can only be ap-plied to operands on the same clock on which they operate pointwise. Forinstance, if X and Y are integer-valued 
ows on the basic clock, with re-spective sequences of values (x1; x2; : : : ; xn; : : :) and (y1; y2; : : : ; yn; : : :),1This is the main di�erence between Lustre and Signal.



58 Chapter 4 : Declarative languages : Lustre and Signalthe expression \if X>0 then Y+1 else 0" is the 
ow on the basic clockwhose nth value, for any n, is yn + 1 if xn > 0, and 0 otherwise.In addition to those data operators, Lustre has only four sequenceoperators that explicitly operate on 
ows.� The \previous" operator \pre" memorizes the value of its argu-ment at the preceding instant of its clock: if (e1; e2; : : : ; en; : : :)is the sequence of values of the expression E, pre(E) is a
ow on the same clock as E, whose sequence of values is(nil; e1; e2; : : : ; en�1; : : :), where nil is an unde�ned value (akin tothe value of an uninitialized variable in imperative languages).� The \->" operator (read \followed by") is used to de�ne initialvalues: if E and F are two expressions on the same clock and of thesame type, with respective sequences of values (e1; e2; : : : ; en; : : :)and (f1; f2; : : : ; fn; : : :), \E -> F" is a 
ow on the same clock as Eand F, whose sequence of values is (e1; f2; f3 : : : ; fn; : : :). In otherwords, \E -> F" is initially equal to E, and then forever equal toF.As a very �rst example, the equation \N = 0 -> pre(N) + 1" de�nesthe variable N to be initially 0, and then forever to be its preceding valueincremented by 1. Since the constants 0 and 1 are on the basic clock, sois N. N is, in some sense, a counter of basic cycles. The following tableshows the involved 
ows:Basic cycles 1 2 3 4 5 60 0 0 0 0 0 01 1 1 1 1 1 1pre(N) nil 0 1 2 3 4pre(N) + 1 nil 1 2 3 4 50 -> pre(N) + 1 0 1 2 3 4 5The last two operators, whose e�ects are shown in Table 4.2, permitus to de�ne expressions on di�erent clocks:� The \when" operator is used to \�lter" its �rst argument accordingto a slower clock: if E is an expression, and if B is a Booleanexpression on the same clock as E, \E when B" is a 
ow on the



x 4.2 : The language Lustre 59B false true false true false false trueX x1 x2 x3 x4 x5 x6 x7Y = X when B x2 x4 x7Z = current(Y) nil x2 x2 x4 x4 x4 x7Table 4.2: Filtering and projectionclock de�ned by B, whose sequence of values is extracted from thesequence of E by selecting only those corresponding to an instantwhen B is true . In other words, it is the sequence of values of Ewhen B is true .� The last operator is used to \project" an expression on a fasterclock. Let E be an expression on a clock de�ned by some Booleanexpression B (so E is not on the basic clock). Then \current(E)"is a 
ow on the same clock as B, whose value at each instant ofthis clock is the value of E at the last instant where B was true .Notice that, for this de�nition to make sense, any nonbasic clock issyntactically associated with the Boolean expression that de�nesit.The body of a Lustre program consists of equations and assertions.Assertions generalize equations: an assertion is a Boolean Lustre ex-pression that is assumed to be always equal to true at any instant of itsclock. Assertions also generalize Esterel relations: they are generallyused to specify to the compiler some known properties of the program en-vironment for optimization purposes. For instance, if two input events,represented by two Boolean 
ows x and y, are known to be exclusive,this can be expressed by the assertion \assert not(x and y)." In thesame way, the assertionassert (true -> not(x and pre(x)))expresses that the event x never occurs twice consecutively. Noticethe initialization to true , which is necessary to avoid a nil value: anassertion, a clock, and an output 
ow may not take the value nil .



60 Chapter 4 : Declarative languages : Lustre and SignalN0pre+ ->1Figure 4.2: Operator net of the counterLet us remark that an equation \X=E" is equivalent to the assertion\assert(X=E)." Initially introduced for optimization purposes, likeEsterel relations, Lustre assertions play an essential role in programveri�cation (cf. Chapter 9).4.2.3 Program structureAs mentioned in the introduction, a Lustre system of equations can begraphically represented as an operator net. For instance, the equationN = 0 -> pre(N) + 1;corresponds to the net shown in Figure 4.2. This graphical representa-tion naturally suggests a notion of subprogram: a subnet can be encap-sulated into a new operator. Such a Lustre user-de�ned operator iscalled a node. A node declaration consists of an interface speci�cation| giving the input and output parameters, with their types and possi-bly their clocks | and a system of equations and assertions that de�nesthe outputs, and possibly local variables, as functions of inputs.For instance, the following declaration de�nes a general counter, pa-rameterized with the initial value, the increment value, and a reset event:



x 4.2 : The language Lustre 61B true false true false true(0,1,false) when B (0,1,false) (0,1,false) (0,1,false)COUNTER((0,1,false) when B) 0 1 2COUNTER(0,1,false) 0 1 2 3 4(COUNTER(0,1,false)) when B 0 2 4Table 4.3: Nodes and clocksnode COUNTER(init value,incr value: int; reset: bool)returns (N: int);letN = init value -> if reset then init valueelse pre(N) + incr value;tel.Once declared, such a node can be used in any expression as a function.One can writeeven = COUNTER(0, 2, false);modulo5 = COUNTER(0, 1, pre(modulo5)=4);to de�ne the sequence of even numbers and the cyclic sequence of integersmodulo 5 on the basic clock.A node can return several output parameters; in that case, the resultis a tuple. With respect to clocks, in accordance with the data-
ow pointof view, the basic clock of a node is de�ned from the clock of its actualinput parameters. For instance, the callCOUNTER( (0, 1, false) when B )only counts when B is true . In that example, the \when" operatoris applied to the tuple (0, 1, false).2 Table 4.3 shows the resultof this expression, together with the di�erence with the expression\COUNTER(0, 1, false) when B," where the node outputs are �lteredinstead of its inputs.A node can take input parameters on di�erent clocks. If the clock of2An equivalent expression would be \COUNTER(0 when B, 1 when B, false whenB)."



62 Chapter 4 : Declarative languages : Lustre and Signalan input parameter is not the basic clock of the node, that clock must bea parameter and must appear in the interface. In the following examplenode N(millisecond:bool;(x:int ; y:bool) when millisecond) returns ...the node N takes a Boolean parameter \millisecond" on its basic clock,and two parameters \x" and \y" on the clock de�ned by \millisecond."A node can also return parameters on di�erent clocks, with the con-straint that these clocks must be visible from outside the node.4.2.4 Causality in LustreCausality problems, already encountered in Esterel and Argos, ap-pear in Lustre as cyclic de�nitions: a variable may not instantaneouslydepend on itself, since the compiler does not give sense to implicit def-initions like \X = 3*X + 1." Such a de�nition is similar to a deadlock.These deadlocks are detected by a single analysis of static dependencies.Lustre forbids also \false" deadlocks, such asX = if C then Y else Z;Y = if C then Z else X;since the exact detection of deadlocks, in the general case, is obviouslyan undecidable problem.4.2.5 Some examplesWatchdogsWe will �rst write three versions of a \watchdog," a device to managedeadlines. The �rst version receives three events: two commands toswitch the watchdog on and o�, and a \deadline" event. The watchdogmust emit an \alarm" whenever the deadline occurs when the watchdogis on. Initially it is turned o�.All the events are represented by Boolean variables, whose \true"value indicates an occurrence of the event. The watchdog is a Lustrenode, taking as inputs three Boolean parameters \set," \reset," and



x 4.2 : The language Lustre 63\deadline," and returning a Boolean variable \alarm." We get theinterface:node WATCHDOG1 (set, reset, deadline: bool)returns (alarm: bool);Since the equation order is irrelevant, we can �rst de�ne the output:\alarm" is true when and only when \deadline" is true when the watch-dog is on. Let us introduce an auxiliary variable \watchdog is on" thatrecords the state of the watchdog. Then we can writealarm = deadline and watchdog is onThe auxiliary variable \watchdog is on" remains to be de�ned. Itsinitial value is false, it becomes true whenever the input \set" is true ,and it is turned to false whenever the input \reset" is true :watchdog is on = false -> if set then trueelse if reset then falseelse pre(watchdog is on)Moreover, one can assume that the \set" and \reset" commands neveroccur at the same time, which is expressed by an assertion. The wholeprogram is the following:node WATCHDOG1 (set, reset, deadline: bool)returns (alarm: bool);var watchdog is on: bool;letalarm = deadline and watchdog is on;watchdog is on = false -> if set then trueelse if reset then falseelse pre(watchdog is on);assert not(set and reset);telWe consider now a second version, in which the watchdog receivesthe \set" and \reset" commands again, but must emit an alarm whenit has remained set for a given delay, counted as a number of basiccycles. The new program makes use of the previous one, providing itwith a suitable parameter \deadline": whenever it is switched on, the



64 Chapter 4 : Declarative languages : Lustre and Signalwatchdog initializes a counter to the current value of the delay. Thecounter is then decremented at each cycle, and the \deadline" is truewhen the counter reaches zero. It is de�ned by means of a node \EDGE,"of general usage, which returns true whenever its parameter has a risingedge (i.e., is switched from false to true):node EDGE (b: bool) returns (edge: bool);letedge = false -> (b and not pre(b));telnode WATCHDOG2 (set, reset: bool; delay: int)returns (alarm: bool);var remaining delay: int; deadline: bool;letalarm = WATCHDOG1(set, reset, deadline);deadline = EDGE(remaining delay = 0);remaining delay = if set then delay else(0 -> pre(remaining delay)-1);telLet us �nally assume that a watchdog similar to the previous oneis desired, but that the delay must be counted according to some timeunit, i.e., as a number of occurrences of some event \time unit." Weonly have to call WATCHDOG2 on some suitable clock: WATCHDOG2 mustperceive any occurrence of \time unit," any switching command, andthe initialization:node WATCHDOG3 (set, reset, time unit: bool;delay: int)returns (alarm: bool);var clock: bool; letalarm = current(WATCHDOG2((set, reset, delay) when clock));clock = true -> set or reset or time unit;telFrom these examples, one could discuss the advantages of such adeclarative expression with respect to an imperative one. It is doubtfulthat an imperative language would allow such a natural and modularexpression of this simple problem.



x 4.2 : The language Lustre 65The stopwatchWe will now progressively3 build the stopwatch program, while attemt-ing to show that the program is straightforwardly derived from its in-formal speci�cations.Simple stopwatch: The �rst version has only two buttons,\start stop" and \reset," which will be handled by Boolean vari-ables, as usual. It receives also the 1/100 second by means of a Booleanparameter \hs." It returns a \time" together with its state \running."The program interface is the following:node Simple Stopwatch (start stop, reset, hs: bool)returns (time: int; running: bool);The computed \time" is initially zero, it is incremented whenever theevent \hs" occurs while the stopwatch is \running," and it is reset tozero whenever the event \reset" occurs:time = 0 -> if hs and running then pre(time) + 1else if reset then 0 else pre(time)We could also use the node COUNTER, de�ned in x4.2.3, called on a suit-able clock:time = current(COUNTER((0,1,reset) when clock));clock = (hs and running) or (true -> reset);The state of the stopwatch is initially \stopped" and changes wheneverthe button \start stop" is pushed:running = false -> if start stop then not pre(running)else pre(running)The whole program is as follows:3However, we cannot build the stopwatch with \reset" from a version without\reset," as is done in Esterel. Because of the lack of control structure, the possibilityof resetting the stopwatch must be taken into account from the beginning.



66 Chapter 4 : Declarative languages : Lustre and Signalnode Simple Stopwatch (start stop, reset, hs: bool)returns (time: int; running: bool);lettime = 0 -> if hs and running then pre(time) + 1else if reset then 0 else pre(time);running = false -> if start stop thennot pre(running)else pre(running);telGeneral stopwatch: The second version permits us to record anintermediate time. The stopwatch now manages two times: the\internal time," computed as before, and the \displayed time,"which remains constant when the stopwatch is \frozen" and which equalsthe \internal time" otherwise. The \reset" button is used to togglethe state \frozen/not frozen" of the stopwatch. Initially the stopwatchis not frozen; if \reset" occurs when the stopwatch is running and notfrozen, it becomes frozen; when \reset" is pushed when the stopwatchis frozen, it becomes not frozen. The \reset" button is interpreted asan actual reset command only when it is pushed when the stopwatch isstopped and not frozen.The node interface is the following:node Stopwatch(start stop, reset, hs: bool)returns(displayed time: int; running, frozen: bool);As usual, we start by the de�nition of outputs. The de�nition of thevariable \frozen" is straightforwardly deduced from the speci�cation:frozen = false ->if reset and pre(running) then trueelse if reset and pre(frozen) then falseelse pre(frozen)The \displayed time" is de�ned by means of the \internal time" (alocal variable to be de�ned):



x 4.2 : The language Lustre 67displayed time = if frozen then pre(displayed time)else internal timeIt can also be de�ned by using a clock:displayed time =current(internal time when not frozen)The node \Simple Stopwatch" is used to de�ne the \internal time"and the output \running":(internal time, running) =Simple Stopwatch(start stop, actual reset, hs)As stated in the speci�cation, the stopwatch is only reset when the\reset" button is pushed when the stopwatch is stopped and not frozen:actual reset =reset and pre(not running and not frozen)The �nal program is shown below:node Stopwatch(start_stop, reset, hs: bool)returns(displayed_time: int; running, frozen: bool);var internal_time: int; actual_reset: bool;letfrozen = false ->if reset and pre(running) then trueelse if reset and pre(frozen) then falseelse pre(frozen);displayed_time =current(internal_time when not frozen);(internal_time, running) =Simple_Stopwatch(start_stop, actual_reset, hs);actual_reset =reset and pre(not running and not frozen);tel



68 Chapter 4 : Declarative languages : Lustre and Signal4.3 The language SIGNALSignal was developed in IRISA (Rennes, France) by a team directed byAlbert Benveniste and Paul Le Guernic. Signal has been industrializedby the Company TNI. Like Lustre, Signal is a declarative language,where a program expresses relationships between timed sequences ofvalues. However, these two languages di�er signi�cantly:� Lustre is a functional language: any program (fragment) | ifwe ignore assertions | and any operator de�ne a function fromits input sequences to its output sequences. From this point ofview, Lustre is truly a \data-
ow" language, since the \input
ows" completely determine the program behavior.� In contrast, Signal is a relational language: generally speaking,a Signal program de�nes a relation between its input and output
ows. The way an output 
ow is used may constrain the input
ows of the operator that produces it (some operators behave as\data pumps"). The programming style in Signal is then closeto \programming by constraint": any program component inducesits own constraints, which restrict the nondeterminism of the pro-gram. The conjunction of all these constraints must result in adeterministic description: this will be checked by the compiler.Here, we will only give a sketchy description of the language. The in-terested reader can consult the bibliography [LBBG85, BL90, GGB87,LGLL91].4.3.1 Signals, clocks, and operatorsA signal is a sequence of values associated with a clock.Data domains: In addition to usual scalar types (Boolean, integer,
oat), Signal contains arrays of arbitrary dimension with scalar el-ements, and the prede�ned type event, which has only one value (asignal of type event can only be present or absent; it is similar to a\pure" signal in Esterel).



x 4.3 : The language Signal 69Clocks: A clock is a discrete set of instants, taken from a totally or-dered set. With each signal X is associated a clock CX , which de�nes(like in Lustre) the sequence of instants when its values are present.Therefore, a signal can be viewed as a function from its associated clockonto its domain of values. X = (Xt)t2CX .Given a clock C, let us introduce the following notations:� 0C = minft j t 2 Cg� 8t 2 C; t 6= 0C ; t C� 1 = maxft0 2 C; t0 < tg.� More generallyt C� (k + 1) = maxft0 2 C; t0 < t C� kg; if t C� k 6= 0CA clock itself can be considered as a signal of type event.Operators: Signals are de�ned by elementary processes, which arewritten using two kinds of operators:� usual operators (arithmetic, Boolean) extended, as in Lustre,to operate pointwise on sequences. One writes \Y := f(X1,...,Xn)." Applying such an operator induces the constraint thatall of its arguments must have the same clock, which is also theclock of the result.� three speci�c temporal operators:{ The delay: \Y := X $ k" speci�es that X and Y have thesame clock C, and that 8t 2 C such that t C� k exists, Yt =XtC�k . Initial values can be speci�ed in the declaration of Y.{ The extraction: \Y := X when B," where B is a Booleansignal, speci�es that the clock CY of Y is the set of instantst 2 CX \ CB such that Bt = true , and that at each of theseinstants we have Yt = Xt.



70 Chapter 4 : Declarative languages : Lustre and Signal{ The deterministic merge: \Y := X default Z" speci�esthat the clock CY of Y is the union of the clocks of X andZ, and that8t 2 CX [ CZ ; Yt = ( Xt if t 2 CXZt otherwiseAn equation is an elementary process. Two operators are used to com-pose processes:� The parallel composition: If P and Q are processes, \P j Q" isthe process resulting of their parallel composition. This processspeci�es the conjunction of the constraints speci�ed by P and Q.The parallel composition is commutative and associative.� The scoping restriction: If P is a process and if X is a signal identi-�er, \PnX" is the process obtained by considering X as being localto P (i.e., X is not visible from outside P).Example: The following Signal process builds a signal MIN, emit-ted each minute, from a clock SEC coming from its environment andsupposed to occur each second:(| S := (0 when MIN) default (ZS + 1)| ZS := S $ 1| MIN := SEC when (ZS=59)| synchro {S,SEC} |)Let us explain this example:� \S:= (0 when MIN) default (ZS +1)": the integer signal Scounts the number of occurrences of SEC modulo 60: it is resetto zero at each occurrence of MIN; otherwise it is set to its previ-ous value (ZS) incremented by 1;� \ZS := S $ 1" de�nes ZS to always carry the previous value of S;both signals are implicitly synchronous;� \MIN := SEC when (ZS=59)": the signal MIN occurs wheneverSEC happens when the previous value of the counter is 59: MINoccurs every 60 seconds;



x 4.3 : The language Signal 71� \synchrofS,SECg" forces the synchrony between the counter Sand the input signal SEC: S counts seconds; synchro is an operatorwithout outputs, whose only role is to constrain its inputs to besynchronous.Remarks:� The conditional operator is not built in in Signal. Conditionalselection can be performed by combining extraction and merge.To express that X equals either Y or Z according to the value of aBoolean signal B, we can write \X := (Y when B) default Z."Notice that this construction is not equivalent to the Lustreequation \X = if B then Y else Z," since here there are no con-straints on the clocks of Y, Z, and B.� A speci�c feature of Signal is the existence of programs that emitoutputs at a faster rate than their inputs. In that sense, a Signalprogram is not necessarily reactive: the following process emits 10occurrences of S for each receptions of E:(| N := (0 when E) default (ZN + 1)| ZN := N $ 1| synchro{N,S}| synchro{E, N when (ZN = 9)} |)4.3.2 Program structureSignal is a modular language in the same sense as Lustre:� Signals are de�ned by composing (elementary or compound) pro-cesses.� A set of signal de�nitions can be encapsulated into a model (likea Lustre node) that can be used as a \black box," by meansof an interface that describes its static parameters (dimensions,initializations) and its connections (input/output signals).� Such a model can use other submodels, or even external modelsthat are only known by their interfaces.



72 Chapter 4 : Declarative languages : Lustre and SignalMINDAYHOURSEC SIGNAL(59) SIGNAL(23)SIGNAL(59)Figure 4.3: Model instanciationExample: The model SIGNAL contains the process presented above,where the value 59 becomes a static parameter N, and the signals SECand MIN are renamed into the connection signals IT and OT:processus SIGNAL = {integer N} { ? event IT ! event OT }(| synchro {S, IT}| ZS := S $ 1| OT :=IT when (ZS=N)| S := (0 when OT) default (ZS +1) |)whereinteger S, ZS init NendTo emit signals each minute (MIN), each hour (HOUR), and each day(DAY), one can use this model as in the following process (graphicallyrepresented by Figure 4.3):(| MIN := SIGNAL(59){SEC}| HOUR := SIGNAL(59){MIN}| DAY := SIGNAL(23){HOUR} |)
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Chapter 5Static veri�cations5.1 Causality checking in EsterelAs seen in x2.5, an Esterel program can raise some temporal para-doxes, which involve either the absence of any behavior or a non-deterministic behavior. This phenomenon, which appears in all reallysynchronous languages, comes from the fact that a program reaction,while considered instantaneous, is made up of a sequence of elementaryactions (sometimes called \microsteps" [HPSS86]) that are performed in�xed order1: the �rst statement of a sequence is performed \before" thesecond one, a \present S do <stat>" statement checks the presenceof S \before" any signal emission involved by \<stat>," and so forth.In Esterel this point of view is expressed by the \execution seman-tics" [BG92]. Let us sketch here how this semantics allows the detec-tion of causality problems. If we admit that the statements \present,"\do ... watching," and any statement containing an expression \?S"correspond to signal readings, while an \emit" is a signal writing, then asignal may only be read, in a reaction, once all the writing of this signalhas been performed. In particular, one may not conclude that a signal1Another, more formal point of view on these problems is to de�ne the programreaction as the least �xpoint of some function. Microsteps correspond to iterations inthe iterative computation of this �xpoint. Now, since the involved functions are notalways monotone, it may happen that either they do not have any �xpoint (in whichcase a \no behavior" paradox appears) or they admit several minimal �xpoints (inwhich case a \nondeterminism" paradox occurs).



76 Chapter 5 : Static veri�cationsis absent as long as its emission by some process remains possible. An-swering such a question obviously raises undecidable problems (since asignal emission can depend on conditions involving arbitrary data). TheEsterel compiler performs an approximate analysis, which can result,in some cases, in rejecting intuitively consistent programs.This analysis consists in associating with each program fragmenta potential, which is the set of signals that can be emitted during its�rst reaction. The de�nitive status (present/absent) of a signal is only�xed, at a program control point, when this signal does not belong to itsassociated potential. Actions that read this signal are then freed, andthe control advances consequently. When this derivation happens to beblocked because all the processes are waiting for the status or the valueof a signal that belongs to the current potential, the compiler detects acausality cycle and rejects the program.We illustrate this analysis on a program fragment extracted from theStopwatch, where a causality cycle appears (cf. x2.4.4):signal FROZEN TIME in1 every BUTTON 2 do2 present STOPWATCH RUNNING then emit LAP3 else present FROZEN TIME then emit LAP4 else emit RESET5 end6 end7 end8 ||9 loop10 await LAP;11 do12 sustain FROZEN TIME13 upto LAP14 endend.The �rst step of the analysis is as follows: Initially, the con-trol is stopped at lines 1 and 10. The corresponding potential isfLAP,RESET,FROZEN TIMEg. Now,



x 5.2 : Causality checking in Argos 77� If the external signals BUTTON 2 and STOPWATCH RUNNING both oc-cur, when the control reaches lines 2 and 10, the signal LAP isemitted. Its status becomes \present," and the second processprogresses to line 12 and emits FROZEN TIME (which is ignoredsince nobody listens to it). The reaction terminates with controlat lines 1 and 12.� If the external signal BUTTON 2 occurs alone, the control jumps tolines 3 and 10 with the same potential. Since FROZEN TIME belongsto that potential, the �rst process cannot decide its status and isblocked. In the same way, for the second process, the emissionof FROZEN TIME depends on the presence of LAP, whose status isstill unknown since it belongs to the potential. Therefore, bothprocesses are blocked, and the causality cycle is detected.5.2 Causality checking in ArgosThe Argos compiler thoroughly checks program causality. As a matterof fact, since there are no numerical data in Argos, causality checking isdecidable. On the other hand, the problem is simpler than in Esterel,because of some features of the language:� there is no sequence operator (semicolon);� there is one interruption operator only; and� output signals cannot be read.However, there is a price in complexity: causality checking is quadraticin Esterel, and exponential in Argos.Causality loops are detected when the local signal operator is applied.Only local signals can involve causality loops, since they can appear inboth the input and output parts of transitions. When some signals aremade local to a process, one must check:� that the resulting process is complete, i.e., that any input event(input signal combination) can be accepted in any of its states;and



78 Chapter 5 : Static veri�cationsb/a.op.a/b B'BA'A a.b A,Bp.a.b/b.a.op.a.b/b.a.o p.a.bp.a.bp.a.bp.a.b/a.op.a.bp.a.b/a.op.a.b/a.oA'B' AB'Figure 5.1: Lack of behavior� that no implicit nondeterminism take place.Intuitively, the following procedure is applied:� The whole automaton of the process is built, so that the inputparts of the transitions are complete monomials of input and localsignals.� Illegal transitions are removed. A transition is illegal in two cases:{ when it contains both a signal and its negation; or{ when its input part contains a local signal that does not ap-pear in its output part.� One checks the existence of one and only one transition from eachstate and for each monomial of input signals.Let us illustrate this procedure on the example processes considered inx3.2:� Figure 5.1 gives the process of Figure 3.6 with its whole automaton.One can easily check that all the transitions involving the signal pare illegal.



x 5.2 : Causality checking in Argos 79AA' BB'p.a/b p.b/a.oa.b
a.b.op.a.b/p.a.b/b AB'A'B'A'B AB p.a.b/a.op.a.bp.a.bp.a.bp.a.bp.a.b p.a.bp.a.b/a.b.oABA'B' p.a.bFigure 5.2: Nondeterminism� Figure 5.2 gives the process of Figure 3.7, its whole automaton,and the result of removing all the illegal transitions. This result isclearly nondeterministic.This procedure does not distinguish between implicit and explicitnondeterminism. To accept explicit nondeterminism, one can hide it�rst by introducing some auxiliary signals (whose role is to distinguishtransitions with identical input parts), and then apply the procedure,detect the implicit nondeterminism, and remove the auxiliary signals.



80 Chapter 5 : Static veri�cations5.3 Clock checking in LustreIn this section we will brie
y show how clock consistency is checkedby the Lustre compiler, since this veri�cation is a speci�c feature ofthe language. The compiler associates a clock with each expressionappearing in the program, and then checks that any operator is appliedto operands on suitable clocks, i.e.:� any basic operator with more than one argument is applied tooperands on the same clock; and� the clocks associated with actual parameters of any node instan-ciation satisfy the constraints imposed by the node interface.First, we have to make precise what we mean by \the same clock." Ide-ally, two expressions are on the same clock if their clocks are de�ned byidentical Boolean 
ows. Now, the equality of two Boolean 
ows beingobviously undecidable | since it would involve the proof of theoremssuch as \whenever x>y holds, we have z=2*u, and conversely" | thecompiler considers a more restrictive notion: two Boolean expressionsB1 and B2 de�ne the same clock if and only if they can be made syntac-tically identical by applying syntactic substitutions. So, in the followingexample:x = a when (y>z);y = b+c;u = d when (b+c>z);v = e when (z<y);x and u are on the same clock, which is considered di�erent from theclock of v.The rules for computing clocks are formally described in [CPHP87,Pla88]. These rules satisfy the de�nition principle: the clock of a vari-able cannot be inferred from the use of the variable. For instance, thefollowing program, where M and N are nodes returning results on thesame clock as their inputs contains a clock error:22Notice that, if the output of either M or N depends only on the strict past of itsinput, this program does not contain a deadlock.



x 5.4 : The clock calculus of Signal 81X = M(Y); Y = N(X); Z = X+Y+1;As a matter of fact, although one can infer from the de�nition of Z thatX and Y should be on the same clock as 1 (i.e., the basic clock), thisinformation does not result from the de�nition of X and Y. From theirde�nition, one can only infer that they are on the same clock.5.4 The clock calculus of SignalClocks play a much more important role in Signal than in Lustre,since they are used in any conditional de�nition. In contrast withLustre, where all clocks are built by sampling a faster clock, Signalclocks are implicitly de�ned by a set of constraints scattered in the pro-gram. The goal of the clock calculus is the synthesis of these constraints,and the veri�cation of their consistency (they admit a solution) and oftheir completeness (they admit only one solution). Moreover, the con-straints must uniquely determine each clock with respect to a masterclock, which is not necessarily the fastest one.Let us �rst introduce some notations:� Any signal S has an associated clock, which is noted CS.� Any Boolean signal B de�nes a clock ttB, which is the set of instantst 2 CB such that Bt = true (so, ttB � CB).Each Signal operator induces clock constraints on its parametersand its result, together with constraints on the values of its Booleanparameters. The following table subsumes these constraints:1 Y := f(X1,...,Xn) CY = CX1 = : : := CXn2 Y := X $ k CY = CX3 Y := X when B CY = CX \ ttB4 Y := X default Z CY = CX [ CZLine 1 expresses that all the arguments of a data operator must beon the same clock, which is also the clock of the result. Line 2 expressesthat the $ operator returns a result that is on the same clock as its inputargument. Line (3) speci�es that the result of a when operator is present



82 Chapter 5 : Static veri�cationswhenever both of its argument are present while the value of its secondargument is true . Line 4 speci�es that the result of a default operatoris present whenever one of its arguments is present.These constraints, together with standard evaluation rules forBoolean expressions, provide a system of equations. In the Signalcompiler, these equations are encoded and analyzed in the �nite �eldZZ =3ZZ of integers modulo 3, where 0 encodes signal absence, 1 and �1encode true and false values respectively , and 1 encodes the presenceof a non-Boolean signal. The analysis of such a system of equationsprovides an answer to some important questions (see [BL90]):� Does a program admit a behavior? If the only solution of theequation system consists of assigning the empty set to each clock,then surely the program cannot execute. This happens in thefollowing example:(| x := a when (a>0)| y := a when not(a>0)| z := x + y |)which provides tta>0 = Ca n tta>0, i.e., since tta>0 � Ca, Ca = ;.� If the program admits a behavior, is this behavior in�nite? Ifsome input values are not accepted, the program can deadlock.For instance,(| x := a when (a>0)| z := x + a |)provides tta>0 = Ca, which means that the input a must alwaysbe positive.� Is the program deterministic? If there exists more than one masterclock, some parts of the program can run at independent rates. Inthe following example:(| x := (x $ 0) + 1| y := x when c |)/x



x 5.4 : The clock calculus of Signal 83we get only one equation hy = hx \ ttc, which leaves the clocksof x and c unrelated. The variable x is a counter that is notsynchronized by any external signal. Thus, its computation rate isleft undetermined, and the output y, which samples the values of xwhen the input c is true , can be any subsequence of the sequenceof integers.� If the program is deterministic, is it{ a function from input signals, where clocks are obtained bysampling a basic clock, as in Lustre (this is the case whenall the clocks in the solution are functions of the input signalclocks), or{ a function of input signals that restricts these input signalsaccording to some computed clocks?A last consequence of the clock calculus is the precise determination ofdependencies among variables. The compiler builds a conditional depen-dence graph, which speci�es, for any pair (X,Y) of signals, under whatcondition the signal X instantly depends on Y. The veri�cation that theprogram does not contain cyclic de�nition is then made by computingthe conjunction of all the conditions associated with each loop of theconditional dependence graph, and by checking that this conjunctionis identically false. The detection of causality cycle is then more pre-cise than in Lustre, where only static (unconditional) dependencies areconsidered (cf. x4.2.4).



84 Chapter 5 : Static veri�cations



Chapter 6Sequential code generation6.1 The Esterel compilerThe compiling method that synthesizes the sequential code control struc-ture as a �nite automaton was �rst introduced in the Esterel compiler.This method was applied later on to Lustre and Argos. Our presen-tation basically follows [BCG87].6.1.1 PrinciplesThe operational semantics of Esterel is described in [BG92, Gon88] bymeans of structural inference rules in the style of [Plo81]. Let us consideran Esterel program P containing pure signals only and no variables.If the program does not raise causality problems, then for each inputevent e, the semantic rules uniquely determine the corresponding outputevent s | which is made of signals emitted by P in response to e |together with a new program Q | which represents the continuation ofP after receiving e. The notation \P es!Q" expresses that \in presenceof the input event e, the program P emits the output event s, and willafterwards behave as Q." The language determinism exactly correspondsto the uniqueness of this transition for a given e.Since P only has a �nite and known number of input signals, it alsoadmits a �nite number of input events, and any continuation Q admitsthe same set of input events. Let fe1; e2; : : : ; eng be this set of input



86 Chapter 6 : Sequential code generationevents, and let us note @@iP the continuation of P (often called deriva-tive) according to ei: For all i = 1 : : :n, we have P eisi! @@iP . More gener-ally, for any �nite word w = w1:w2 : : :wk on the alphabet f1; 2; : : : ; ng,we note @@wP the continuation obtained from P after reacting succes-sively to input events ew1 ; ew2 ; : : : ; ewk . Formally, @@w:wkP = @@wk ( @@wP ).Computing these derivatives simply consists in developing the behaviorof P into an in�nite tree. The following result states that this tree canbe folded into a �nite graph:Proposition 1 Any program P admits only a �nite number of syntac-tically distinct derivatives, i.e., the set f @@wP j w 2 f1; 2; : : : ; ng�g is�nite.This result is closely related with Brzozowski's theorem [Brz64, BS87]which expresses the termination of the algorithm of the \residual" onregular expressions. The �nite graph, whose vertices are derivatives, andwhose edges correspond to the relation es!, is a �nite automaton whosebehavior is equivalent to that of P . Once this graph is built, the deriva-tives associated with vertices can be withdrawn and replaced by statenumbers. In fact, as we will see in the example, each derivative corre-sponds to a set of control points of the program, and the computationof the next derivatives consists in moving these control points.For general programs, involving variables and valued signals, thesame technique can be applied, but operations on values are consideredat a purely symbolic level. Transitions will be labeled by actions onvariables and signal values (in fact, transitions are branching, becauseof conditional statements). A �nite control automaton is built, extendedwith an interpretation that handles the memory operations.6.1.2 ExampleLet us illustrate this method on the \Button Interpreter" of the stop-watch (cf. x2.5.3):



x 6.1 : The Esterel compiler 87module BUTTON INTERPRETER :input START STOP, BUTTON 2;relation START STOP # BUTTON 2;output RESET, LAP;signal STOPWATCH RUNNING, FROZEN TIME inevery BUTTON 2 dopresent STOPWATCH RUNNING then emit LAPelse present FROZEN TIME then emit LAPelse emit RESETendendend|| loopawait START STOP;do sustain STOPWATCH RUNNINGupto START STOPend|| loopawait LAP;trap T insustain FROZEN TIME|| await LAP; exit Tendendend.This program has two input signals, so it can admit four input events,fg; fSTART STOPg; fBUTTON 2g; fSTART STOP; BUTTON 2gor, more precisely,ftickg; ftick; START STOPg; ftick; BUTTON 2g; ftick; START STOP; BUTTON 2gThe latter event is forbidden by the relation \START STOP # BUTTON 2"which states that the input signals are exclusive. The body of the pro-gram is �rst translated into basic statements. The resulting program isshown below:



88 Chapter 6 : Sequential code generation1 signal STOPWATCH RUNNING, FROZEN TIME in2 loop3 do halt watching BUTTON 2;4 present STOPWATCH RUNNING then emit LAP5 else present FROZEN TIME then emit LAP6 else emit RESET7 end8 end;9 end10 || % flip-flop "running/stopped"11 loop12 do halt watching START STOP;13 do % running state14 loop15 do16 emit STOPWATCH RUNNING; halt17 watching tick18 end;19 halt20 watching START STOP21 end22 || % flip-flop "running-time/frozen-time"23 loop % running-time state24 do halt watching LAP;25 trap T in26 loop27 do28 emit FROZEN TIME; halt29 watching tick30 end31 ||32 do halt watching LAP;33 exit T34 end35 end36 end.Initially, the control is stopped at halt statements, lines 3, 12, and24.1 From this �rst state (let us call it S0),1In general, this control state is reached after a �rst step, in which initial valuesare assigned to variables and which does not properly correspond to a reaction.



x 6.1 : The Esterel compiler 89� If no input signal occurs, the control does not progress, since noactive statement is waiting for tick. SoS0 tick!S0� If START STOP occurs, the \do: : :watching" line 12 is interrupted,and the control of the second process progresses until beingstopped by the halt statement, line 16, thus emitting the localsignal STOPWATCH RUNNING, which has no e�ect. The new globalstate is made of the halt statements lines 3, 16, and 24. Let S1be this state. We haveS0 START STOP!S1� If BUTTON 2 occurs, the \do: : :watching" line 3 is interrupted.Since neither STOPWATCH RUNNING nor FROZEN TIME can be presentat that time, the �rst process emits the output signal RESET, andcomes back to the halt statement line 3. So, the global state isagain S0.S0 BUTTON 2RESET!S0Computing in the same way the successor states of S1, we successivelyget:� From S1, which corresponds to lines 3, 16, and 24,- S1 tick!S1, with a useless emission of the local signalSTOPWATCH RUNNING;- S1 START STOP!S0; and- S1 BUTTON 2LAP !S2, with an internal transmission of FROZEN TIME,where S2 is the state where the control is stopped at haltstatements lines 3, 16, 28, and 32.� From S2, which corresponds to lines 3, 16, 28, and 32,- S2 tick!S2, with useless emissions of STOPWATCH RUNNINGand FROZEN TIME;
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Figure 6.1: The control automaton of the button interpreter- S2 START STOP!S3, with a useless emission of FROZEN TIME,where S3 is the state where the control is stopped at haltstatements lines 3, 12, 28, and 32; and- S2 BUTTON 2LAP !S1, with an internal transmission of FROZEN TIME.� From S3, which corresponds to lines 3, 12, 28, and 32,- S3 tick!S3, with useless emission of FROZEN TIME;- S3 START STOP!S2, while STOPWATCH RUNNING and FROZENTIME are uselessly emitted; and- S3 BUTTON 2LAP !S0, with an internal transmission of FROZEN TIME.All the reached states have been processed. The result is then an au-tomaton with four states, represented in Figure 6.1. The correspondingsequential code could be:



x 6.1 : The Esterel compiler 91S0:if BUTTON 2 then emit RESET; goto S0else if START STOP then goto S1else goto S0S1:if BUTTON 2 then emit LAP; goto S2else if START STOP then goto S0else goto S1S2:if BUTTON 2 then emit LAP; goto S1else if START STOP then goto S3else goto S2S3:if BUTTON 2 then emit LAP; goto S0else if START STOP then goto S2else goto S36.1.3 CommentsThis technique is nothing but an exhaustive exploration of the set ofcontrol states of the program. It can be applied to any language thatforbids the creation of dynamic process (an obvious condition for ter-mination), and thus, to many asynchronous languages. However, in theasynchronous case, it involves a tremendous explosion of the number ofstates, which makes the technique inapplicable in practice. Synchronygenerally reduces this explosion for the following reason: in an asyn-chronous language, each internal statement corresponds to a transitionleading to a particular state. In contrast, in a synchronous language,transitions are only triggered by input events, and all the internal state-ments involved in such a reaction are factorized on the correspondingtransition. All the states that are built are \real" states with respect tothe input/output behavior, and there is no \intermediate" state due tothe internal behavior.Several remarks can be made about this technique:� It is useless to minimize the resulting automaton, since experienceshows that, generally, it is already minimal.



92 Chapter 6 : Sequential code generation� The algorithm translates the initial parallel program into a strictlyequivalent, purely sequential one. Running such a program doesnot involve any process management, so it is simpler and faster.The whole interprocess communication is compiled away and en-coded in the automaton.� As noted in the introduction (x1.2), automata constitute an idealexecution scheme for most real-time systems. The transition timeis near optimal, and does not depend on the size of the automaton.If we know the execution time of the elementary computations puton the transitions, the maximal reaction time can be accuratelybounded, and then the validity of the synchrony hypothesis canbe checked.� Many statements, like internal communications, do not generateany code in the object program. This is an excellent way to runin�nitely fast!� Once the automaton is built, existing automata-based veri�cationtools [QS82, CES86, BRdSV90] can be applied to it (cf. Chap-ter 10).� The correspondence between the source program and the gener-ated code is far from being obvious. The slightest change in theEsterel program can involve a complete modi�cation of the au-tomaton. This phenomenon is well known for grammars and reg-ular expressions. It shows that writting automata by hand is dif-�cult and unreasonable.First implemented in the Esterel-V2.2 compiler [Cou90], this tech-nique has been greatly optimized in the V3 compiler, thanks to GeorgesGonthier's work [Gon88]. This new compiler uses an intermediate code,called ic [SP90], which is a good candidate to be used for any imperativesynchronous languages. A translator of Argos into ic has been imple-mented, that allows the automaton generator to be shared by Estereland Argos.



x 6.2 : The Lustre compiler 936.2 The Lustre compiler6.2.1 Node expansionThe Lustre compiler generates a purely sequential code. Now, it iswell known that, from a concurrent program, sequential code cannotbe generated, in general, in a modular way: one cannot sequentializea concurrent subprogram independently of its context of use. A verysimple Lustre program (suggested by [Gon85]) illustrates this problem.Let us consider the following node:node two_copies (a,b: int) returns (x,y; int);let x = a ; y = b endObviously, there are two possible sequential codes implementing a singlereaction of this \program": either \ x:=a ; y:=b; "or \y:=b; x:=a;."The problem that arises is that the suitable choice between these twocodes may depend on the way the node is called within another node.For instance, for the call(x,y) = two_copies(a,x);which corresponds to Figure 6.2, the �rst code only is correct.two copiesa xyFigure 6.2: A looping callThus, before code generation, the compiler �rst expands recursivelyeach node call in the source program,2 i.e., replaces each node call by thenode body, after a suitable renaming of parameters, local variables, and2The Esterel compiler proceeds in the same way, by expanding the \run"statements.



94 Chapter 6 : Sequential code generationclocks. So, the code generation starts from a \
at" program, withoutnode calls.36.2.2 Single loopThe most obvious way to translate a Lustre program into an imper-ative code consists in building an in�nite loop whose body performs abasic cycle of the program. To obtain this body, one has to choose thevariables of the target code (the output variables and the least possiblenumber of local variables, which implement either memories or tempo-rary bu�ers), to build the actions that update these variables, and toput these actions in the right order, according to the dependencies be-tween variables induced by the network structure of the node. As anillustration of this simple technique, let us consider an expanded versionof the program WATCHDOG3 (cf. x4.2.5):node WATCHDOG4(set, reset, time_unit: bool; delay: int)returns (alarm: bool);var watchdog_is_on: bool; remaining_delay: int;letalarm = watchdog_is_on and (remaining_delay = 0) andpre(remaining_delay)>0;watchdog_is_on = false -> if set then trueelse if reset then falseelse pre(watchdog_is_on);remaining_delay =0 -> if set then delayelse if time_unit and pre(remaining_delay)>0then pre(remaining_delay)-1else pre(remaining_delay);assert not(set and reset)telThe single loop code could be the following:3However, it has been shown in [Ray88] that a Lustre node can be separatelycompiled thanks to a preliminary restructuring into a set of nodes that cannot becalled in loop | and that can thus be separately compiled | together with a mainnode that subsumes their sequencing constraints. Only this main node must beexpanded in the calling program.



x 6.2 : The Lustre compiler 95_init := true;while true doread(set,reset,time_unit,delay);if _init then % first cycle %watchdog_is_on := false; remaining_delay := 0;alarm := false; _init := false;else % other cycles %if set thenwatchdog_is_on:= true; remaining_delay:= delay;elseif reset then watchdog_is_on:= false endif;if time_unit and (_pre_remaining_delay>0) thenremaining_delay := _pre_remaining_delay-1;endif;endifalarm := watchdog_is_on and (remaining_delay=0) and(_pre_remaining_delay>0);endifwrite(alarm); _pre_remaining_delay := remaining_delay;endwhile;Remarks:� To generate this code, the compiler has introduced some auxil-iary variables (whose identi�ers begin with an \underscore" char-acter): the variable init | the value of which is true at the�rst cycle only, and which is used to implement the \->" operator| and the variable pre remaining delay | which stores theprevious value of remaining delay. Notice that the expression\pre(watchdog is on" did not result in the creation of a memoryvariable, since the compiler found a way to avoid it.� While it is quite easy to �nd a computation order that is compat-ible with dependency relations among variables (the static causal-ity checking ensures that such an order exists), choosing a \good"order is di�cult. In particular, the order according to which con-ditional statements are opened and closed is critical with respectto code length.



96 Chapter 6 : Sequential code generation� The code speed could be improved. The most obvious ine�ciencyappears from the fact that the variable init is checked at eachcycle. A solution consists in using more complex control structuresthan the single-loop structure. This is now discussed.6.2.3 Compiling Lustre into automataAccording to some options, the Lustre compiler can improve the codeperformances by synthesizing a more or less involved control structure.This synthesis is borrowed from the Esterel compiling technique, andis based on the following remarks:� In a declarative language like Lustre, control structures, whichare available in imperative language, are replaced by operationson Boolean expressions (conditional, clock changes).� Obviously, if a condition or a clock depends on values of a Booleanvariable computed at previous cycles | by means of an expressionlike pre(B) or current(B)| the code of the current cycle can bemade simpler if that value is known. In other words, the code tobe executed at the next cycle could be selected according to thecurrent value of B.The control structure synthesis consists in choosing a set of statevariables, which are Boolean expressions, and in simulating, at compiletime, the behavior of these variables. There are several possible choicesof state variables among� Boolean expressions returned by pre and current operators; and� auxiliary variables init Ck, which represent, for each clock Ckappearing in the program, the expression \(true when Ck) ->(false when Ck)"; these variables, whose value indicates whetherthe current cycle is the �rst one on the clock Ck, are used to im-plement the \->" operators.Starting from the initial con�guration of the state variables, and for eachreached con�guration, the simulation consists in building a di�erent code



x 6.2 : The Lustre compiler 97for the rest of the program. The result is a �nite automaton, whose tran-sitions are associated with the code corresponding to a program reaction.We illustrate the method on the program WATCHDOG4(cf. x6.2.2):We choose \pre(watchdog is on)" and \ init" (an auxiliary vari-able that stands for \true -> false") as state variables.1. The �rst cycle yields \pre(watchdog is on)=nil" and\ init=true." Let S0 be this initial state. Since \ init=true"in this state, all \->" operators evaluate as their �rst operand.Thus, \watchdog is on=false," and \remaining delay=0." El-ementary Boolean computation yields \alarm=false." Further-more, since watchdog is on evaluates to false, this will be thevalue of \pre(watchdog is on)" at the next cycle. The nextstate, S1, thus corresponds to \pre(watchdog is on)=false" and\ init=false." The code corresponding to S0 looks like:S0 : remaining_delay := 0;alarm := false;_pre_remaining_delay := remaining_delay;goto S1;2. In state S1, since \pre(watchdog is on)" is assumed to be false,watchdog is on evaluates to true if and only if the input set istrue. Let S2 be the state where \pre(watchdog is on)" is trueand init is false. The code for S1 isS1 : if set thenremaining_delay := delay;alarm := (remaining_delay = 0) and(_pre_remaining_delay > 0);_pre_remaining_delay := remaining_delay;goto S2;elseremaining_delay :=if time_unit and _pre_remaining_delay > 0then _pre_remaining_delay - 1else _pre_remaining_delay;



98 Chapter 6 : Sequential code generationalarm := false;_pre_remaining_delay := remaining_delay;goto S1;endif3. The code of the state S2, where \pre(watchdog is on)" is as-sumed to be true and init is false, is as follows:S2 : if set thenremaining_delay := delay;alarm := (remaining_delay = 0) and(_pre_remaining_delay > 0);_pre_remaining_delay := remaining_delay;goto S2;elseremaining_delay :=if time_unit and _pre_remaining_delay > 0then _pre_remaining_delay - 1else _pre_remaining_delay;if reset thenalarm := false;_pre_remaining_delay := remaining_delay;goto S1;elsealarm := (remaining_delay = 0) and(_pre_remaining_delay > 0);_pre_remaining_delay := remaining_delay;goto S2;endifendifAll the reached states have been processed, so the code generation isterminated. Figure 6.3 displays the resulting automaton.Remarks:� The obtained transition codes (particularly for S0 and S1) aremuch simpler than the single-loop code. This reduction is oftenmore impressive for larger programs.
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S1 set: set resetS0 : resetS2Figure 6.3: The control automaton of the watchdog� In contrast, the overall length of the code may become very large.That is why, in practice, an action code table is built that uniquelyidenti�es actions that may belong to several transitions, and tran-sition codes refer to actions by means of their indexes in the table.� Boolean expressions depending on non-Boolean variables, whichare needed to compute state variables (integer comparison for in-stance), are handled as inputs by means of tests on their value.� Assertions are taken into account. Assertions are computed inthe same way as state variables, and any branch yielding a falseassertion is deleted. A state whose total code has been deleted isthen declared unreachable, and branches already computed thatlead to that state are recursively deleted. It should be noticed thatassertions may increase the number of state variables and reachablestates, as well as increase code length, by involving extra tests andcomputations.� In contrast with Esterel automata, the obtained Lustre au-tomata are often far from being minimal. This entails a needfor minimization. The Lustre-V3 compiler uses an original algo-rithm [BFH+92, HRR91] directly generating a minimal automa-ton.



100 Chapter 6 : Sequential code generation6.3 The OC code and associated toolsAutomata generated by Esterel and Lustre compilers are encodedinto a common intermediate format, called oc (\object code") [PS87]).As mentioned at the end of x6.1, Argos can be compiled into the inter-mediate format ic [SP90] used by the Esterel compiler before generat-ing the automaton; thus, Argos can also be translated into oc. Froman oc �le, several common tools can be applied (cf. Figure 6.4) :Code generators: Translators to high-level host languages (C, Ada,: : : ) are available. They generate a procedure whose call performs areaction of the automaton. To activate this procedure, one has to writea main program that handles physical inputs and deals with outputs.The interface protocol is as follows [BBB89]:� For each input signal X, the code generator provides a procedureI X, which must be called | with the carried value as parameter| to signal the presence of X to the automaton;� For each output signal Y, one has to write a procedure O Y |taking the carried value as parameter | which is called by theautomaton when Y is emitted.The overall structure of the main program is thus the following:InitializationsIn�nite loopInput handlingCall of the selected I : : : proceduresCall of the automaton(which will call some O : : : procedures by itself)end loopAutomaton minimizer: The minimization tool Aldebaran [Fer90]has been connected with the oc code. The resulting tool, called Ocmin,allows minimal equivalent automata to be obtained in oc, and this isparticularly useful in the case of Lustre.
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Veri�cationvisualizationAutomata Code generatorsminimizationAutomataArgos Esterel
AUTOAUTOGRAPH

ocminOCIC Lustre
ocauto occocadaoc2repDistributed codegeneration OC codedistributed

saharaGraphicsimulationinterfacegeneration C codeAda code
Figure 6.4: The common environment Esterel/Lustre/ArgosInterfaces with veri�cation tools: Automata are a common basicmodel in many analysis and veri�cation tools for parallel systems. It wastherefore appealing to experiment with the use of such tools operatingon oc automata. Thus, oc has been interfaced with Auto [BRdSV90](see Chapter 10). Some experiments have also been performed withEmc [CES86] and Xesar [RRSV87].
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Figure 6.5: The Sahara intrument panel of the re
ex gameDisplay tools: The oc format has been designed for internal coderepresentation, and thus it is hardly readable. For checks and debuggingpurposes, translators towards readable representations, and a graphicdisplay based on the Autograph [RdS90] tool, have been developed.Graphic interface generator: As noted before, reactive programsare generally embedded into more complex programs. In particular, torun such a program, one has to write a main program implementing theinterface (input/output handling), and this often is a tedious task. Tomake easier the experiments on reactive programs, the interface gen-erator SaharaSahara [Ghe92] is available. A simple language allowsthe description of a graphic instrument panel (buttons, lamps, displays,etc.) connected with an oc program. The Sahara compiler generatesa main program that activates the reactive program in connection withthis graphic panel. For instance, Fig. 6.5 shows an instrument panelcorresponding to the re
ex game (cf. x2.6).Distributed code generation: We will see in x7.3 a method to gen-erate distributed code from an oc program.



Chapter 7Distributed codegeneration7.1 IntroductionReactive systems are often implemented on distributed architectures, forseveral reasons:� the code distribution is imposed by the physical architecture (sen-sor and actuator localization, protocols, etc.);� the code is implemented concurrently to improve its performances;and� the code distribution is performed to achieve fault-tolerance (re-dundancy, degraded behavior, etc.).Such a distributed implementation is made of several cooperating pro-grams running on di�erent processors connected by a suitable communi-cation network. Several methods are available to build such programs:� The separate programming of each processor is a di�cult anderror-prone task. Settling and debugging a distributed programis di�cult, because of the absence of global view on the programstate and because of the indeterminism that results from executionand communication times.



104 Chapter 7 : Distributed code generation� General parallel languages, like Ada orOccam, allow an easy pro-gramming of distributed systems, since no assumption is made onthe target architecture. A program can be developed and debuggedon a single processor, and then implemented on a network of com-municating processors. However, to achieve this transparency withrespect to the actual architecture, these languages are nondeter-ministic, which makes program development more di�cult.The automatic distribution of a synchronous, deterministic program isdi�cult. We brie
y describe two very di�erent approaches, which havebeen initially proposed, respectively, for Signal and Lustre.7.2 Code distribution in SignalThe code distribution proposed for Signal is based on the structure ofthe source program. Ideally, from a program P = (|P1|P2|...|Pn|),we would like to obtain a sequential code for each process Pi, in sucha way that the parallel execution of these codes implements the initialprogram. However, such a translation is not possible, in general, for thesame reasons that make impossible the separate compilation (cf. x6.2.1):Let us consider, for instance, the following program:P = (| y := g(b) | x := f(a) |)where f and g are arbitrary functions. As in the example considered inx6.2.1, two sequential codes are possible:loopread(b); y:= g(b); write(y);read(a); x:= f(a); write(x)endand loopread(a); x:= f(a); write(x)read(b); y:= g(b); write(y);end



x 7.2 : Code distribution in Signal 105but if P is executed in parallel with the program Q = (| a := h(y) |),the latest code will involve a deadlock, since P waits for a value for a,while Q needs y to compute a. However, let us notice that the programP|Q = (| a := h(y) | y := g(b) | x := f(a) |)may be restructured into (| R | S |), whereR = (| a := h(y) | y := g(b) |)and S = (| x := f(a) |)For this structure, one can separately generate sequential codes for Rand S, without regards to their running context. As a matter of fact,these processes have the property that all their outputs instantly dependon all their inputs. No running context can introduce an instantaneousdependence from an output to an input, without involving an intrinsicdeadlock in the global program.This simple example illustrates the problem we are faced with. Wewant to restructure a program into a set of parallel processes, each ofwhich having the following property. Let \�" be the partial order ex-pressing the instantaneous dependence between inputs and outputs of aprocess: \i � o" (or fi,og 2\�") means that the current value of theinput i is needed in the current computation of the output o. We want\�" to be strengthened into a total order >, in such a way that, forany pair fo,ig, if the relation \>" augmented with the pair fo,ig is nolonger an order, neither is \�" augmented with fo,ig. In other words,the desired property states that there exists a sequential code such thatany legal (deadlock-free) loop from an output into an input does notinduce a deadlock in the sequential code.7.2.1 Static dependencesFirst, we only consider static dependences (without clocks). This casehas been studied in [Ray88] to separately compile Lustre programs.Two solutions can be applied:



106 Chapter 7 : Distributed code generationFunctional restructuring: A process is said to be \functional" if allits outputs instantly depend on all its inputs. Such a process can only bestarted, at a given cycle, when all its input values are available (no legalloop). The sequential code corresponding to an execution cycle can begenerated as a function, taking all the input values as parameters andreturning all the output values.In our example, the processes R and S are functional. The corre-sponding functions areFR = read(b); y := g(b); a := h(y); write(y); write(a)FS = read(a); x := f(a); write(x)Coroutine restructuring: Let o be an output of the process. LetI(o) be the set of inputs needed for computing the current value of o(I(o) = fi j i � og). We de�ne the following partial order among theprocess outputs:o� o' () I(o) � I(o')Then, if o � o', any loop of o onto an input belonging to I(o') isillegal, since it introduces a deadlock on o. So o can be computed aftero' without introducing additional deadlocks. This remark entails thefollowing result: if the relation \�" is a total order, the process canbe translated into a coroutine | reading its inputs and emitting itsoutputs within its execution cycle. The code is generated by dealingwith outputs according to increasing \�" order; dealing with an outputo consists in generating the code that reads the inputs that are strictlyneeded to compute o and still unavailable, together with the code thatcomputes and emits o. For instance, let us consider the processP' = (| y := g(b) | x := f(a,b) |)We haveI(y) = fbg � fa; bg = I(x)so, x�y. The coroutine code for P' could beread(b); y := g(b); write(y);read(a); x := f(a,b); write(x)



x 7.3 : OC code distribution 107which allows an external loop from y onto a.7.2.2 Dynamic dependencesThe solution actually applied in Signal is more complicated, since itdoes not only consider static dependences. Dependence relations amongvariables are now conditioned by clocks (cf. x5.4). Let us note \X �h Y"the fact that at any instant of the clock h, the value of Y depends ofthe current value of X. This relation is extended to any pair (i; o) ofinput/output variables: A dependence path from i to o is any set ofvariables c = fX0; X1; : : : ; Xkg such thati = X0 �h1 X1 �h2 : : : �hk Xk = oLet h(c) = \1�i�k hiand let C(i; o) be the set of dependence pathes from i to o. Then theinput/output conditional dependence relation is de�ned byi �h o i� h = [c2C(i;o)h(c) 6= ;An analysis of these input/output conditional dependence relations pro-vides a partition of the set of instants, and, when possible, allows thegeneration of a coroutine code, whose sequential ordering varies accord-ing to clock values. The Signal distributed code generator restructuresa program into processes that can be compiled into such coroutines andthat are activated by a control process. The physical distribution is thenperformed by the tool Syndex [GMP+90], which provides also a mea-sure of the performances of the distributed code. Further details can befound in [LGLL91, LeG89].7.3 OC code distributionWe consider now another approach to generate distributed code, whichwas initially developed for Lustre [BCP88]. In fact, it works on the



108 Chapter 7 : Distributed code generationcommon object code oc (cf. x6.3), and so it can also be applied toEsterel and Argos.This approach aims at generating a distributed code when the dis-tribution is imposed a priori. Thus, we do not look for a \good" dis-tribution with respect to performance improvement. We assume thata set fs1; : : : ; sng of execution sites (processors) is given, and that theuser (or an optimization tool) has associated an execution site with eachaction of the oc automaton. For Lustre programs, this association isspeci�ed by assigning a computation site to each variable of the mainnode. Propagating this assignment inside internal nodes provides a siteassignment for each variable in the expanded program.1In the remainder of this section, we will assume that each site isresponsible for the computation of some variables.The basic idea of the method is extremely simple:� the code of the automaton is replicated on each site;� on each replication, the instructions that do not concern the con-sidered site are erased;� for any pair (si; sj) of sites, since we know in what order si com-putes its own variables and in what order sj uses these variables,we can introduce statements to communicate values computed bysi and used by sj , without introducing deadlocks. These commu-nications are made by simple FIFO queues; and� auxiliary \dummy" communications are added for synchroniza-tion.The communication scheme consists of a queue for each ordered pair ofsites. The processor of the site si can send a value v to the site sj byexecuting a statement \put(v,j)"; this corresponds to writing v in theQi;j queue, and does not involve any waiting. sj can read and extractthe �rst value in the Qi;j queue by performing \get(i)"; if the queue isempty, this statement stops the processor until si writes a value on thequeue.1The syntactic means to specify a site assignment in Esterel and Argos remain tobe studied.



x 7.3 : OC code distribution 109Using a short example, let us sketch the method to generate thecode. We consider a transition of an oc automaton,2 and we show howthis code is distributed on three sites. We give the transition code,with the index of the concerned sites in front of each statement (controlstatements concern all the sites):read(I1); (1)read(I2); (2)read(I3); (3)L3 := F(I2); (3)O2 := G(I2,L3); (2)if I3 then (1,2,3)O3 := true; (3)O1 := H(I1,L3); (1)goto STATE2; (1,2,3)elseO3 := K(I1,I2); (3)goto STATE1; (1,2,3)7.3.1 Code replicationThe code is copied in three versions (one for each site). In each copy, weerase the statements that do not concern the considered site; however,when the erased statement uses some variables that are computed onthat site, this information is recorded (as a comment). The result isshown in Table 7.1.7.3.2 Placement of emission statementsFirst, we place, in each copy, the emission statements (\put"). We usethe information about the variables computed by the considered siteand used by the other sites. The following strategy is used: Values areemitted as soon as possible (in order to minimize the possible waiting)but only when needed. The informations concerning variable uses arepropagated backward in the program: when a variable is computed bythe current statement, if it appears in the list of variables used by some2Of course, we use a readable version of the OC code.



110 Chapter 7 : Distributed code generationCode of s1 Code of s2 Code of s3read(I1); read(I2); read(I3);% 3 uses I2 % L3 := F(I2);O2 := G(I2,L3); % 2 uses L3 %% 1 and 2 use I3 %if I3 then if I3 then if I3 thenO3 := true;O1 := H(I1,L3); % 1 uses L3 %goto STATE2; goto STATE2; goto STATE2;else else else% 3 uses I1 % % 3 uses I2 % O3 := K(I1,I2);goto STATE1; goto STATE1; goto STATE1Table 7.1: Code replicationother sites, it is sent to them and removed from the lists; the remainderof the lists is back-propagated to the previous statement. If the state-ment is a conditional, we get two lists Lthen and Lelse of used variables,corresponding to the two branches of the conditional. In the \then"(respectively, \else") branch, the variables belonging to Lthen nLelse (re-spectively, Lelse n Lthen) are emitted, and the intersection Lthen \ Lelseis back-propagated. We give in Table 7.2 the result on our example.7.3.3 Useless emission eliminationThe preceding procedure sometimes causes useless value emission. Inour example, it is the case of the second emission of I2 from s2 to s3. Itis due to the fact that s3 uses I2 twice, the second use being conditional.Thus, we can withdraw any emission of a variable that is already knownby the receiver site, as long as this variable has not been updated sinceits last emission. This elimination process uses a forward propagation ofthe available variables of each site: At the beginning of the transition,the sites do not know any variable value. After a \put(X,j)" statement,the site sj knows the value of X but loses it after each assignment to X.Any \put(X,j)" statement executed when sj knows X can be withdrawn.



x 7.3 : OC code distribution 111Code of s1 Code of s2 Code of s3read(I1); read(I2);put(I2,3); read(I3);put(I3,1);put(I3,2);L3 := F(I2);O2 := G(I2,L3); put(L3,2);if I3 then if I3 then if I3 thenput(L3,1);O3 := true;O1 := H(I1,L3);goto STATE2; goto STATE2; goto STATE2;else else elseput(I1,3); put(I2,3); O3 := K(I1,I2);goto STATE1; goto STATE1; goto STATE1Table 7.2: Placement of emission statementsThis procedure eliminates the last \put(I2,3)" in the code of s2.7.3.4 Placement of receiving statementsWe have now to insert the \get" statements, so that, on each site si, thestatements \x = get(j)" appear in the same order as the statements\put(x,i)" in the code of sj . If the communication network is assumedto preserve the message order, then the transmitted value will alwayscorrespond to the same variable on both sites, without need of anyadditional identi�cation.The algorithm for placing the \get" statements is the following: Wesimulate the state of each queue Qi;j , i.e., the list of variables emittedfrom si to sj and still unread by sj . These images of the queues arepropagated forward in the global program as follows:� Each \put(x,j)" statement performed by si adds the identi�er xat the end of (the image of) Qi;j .� When sj has to perform a statement using a variable x that belongs



112 Chapter 7 : Distributed code generationto si, then one of the three following situations occurs:1. The identi�er x does not appear in Qi;j . Since its value hasnecessarily been emitted, therefore the value has already beenread (by a \x = get(i)" statement), and there is nothing todo.2. x appears in front of Qi;j , and a \x = get(i)" must be in-serted to extract the value. The identi�er is removed fromthe (image of) the queue.3. Other identi�ers appear before x in Qi;j . The correspondingvalues must be extracted �rst, by means of a sequence of\get" statements.� When a conditional is opened, the queue images are duplicatedalong each branch.� Before closing a conditional, the suitable \get" statements are in-serted on each branch, so that the queue images become the same.The complements of the greatest common su�x are extracted.This algorithm is illustrated in Table 7.3.7.3.5 SynchronizationThe method applied so far provides a deadlock-free distributed program,whose functional semantics is the same as the initial program. However,nothing ensures that the temporal semantics is preserved. For instance,if some sites produce value to other sites only, they can take an arbi-trary lead over other sites (\pipeline" behavior). The notion of cycle ofthe initial program is lost, and such a behavior may need unboundedcommunication queues. Several synchronization solutions can be pro-posed, according to the degree of \time �delity" we want to achieve,with respect to the centralized program:Strict synchronization: To strictly preserve the temporal semanticsof the initial program, no process may start its (n+1)th reaction beforeall the others have terminated their nth reaction. To ensure this prop-erty, we have to force synchronization, for instance by introducing some
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Code of s1 Code of s2 Code of s3 Q12 Q13 Q21 Q23 Q31 Q32read(I1); read(I2);put(I2,3); read(I3); I2put(I3,1); I2 I3put(I3,2); I2 I3 I3I2:=get(2); I3 I3L3:=F(I2); I3 I3put(L3,2); I3 L3,I3I3:=get(3); I3 L3L3:=get(3); I3I3:=get(3); O2:=G(I2,L3);if I3 then if I3 then if I3 thenput(L3,1); L3L3:=get(3); O3:=true;O1:=H(I1,L3);goto STATE2; goto STATE2; goto STATE2;else else elseput(I1,3); I1I1:=get(1);O3:=K(I1,I2);goto STATE1; goto STATE1; goto STATE1
Table7.3:Placementofreceivingstatements



114 Chapter 7 : Distributed code generationadditional \dummy" communications at the beginning of the reaction,so that any ordered pair of processes are connected by the transitiveclosure of the relation \si has emitted a dummy message to sj ."Weak synchronization: To avoid the proliferation of dummy mes-sages needed in the preceding case, one can prefer a weaker property:the nth reactions of two arbitrary processes must overlap. If the prob-lem speci�cations can tolerate such a loose temporal interpretation, thecorresponding synchronization is much less expensive, because the nor-mal communications participate in the synchronization: if a value istransmitted from si to sj , then the emission precedes the reception. Ananalysis of these precedence relations allows the determination of a re-duced set of additional \dummy" communications that ensures the weaksynchronization. In our example, the solution given in Table 7.4 onlyadds two dummy communications | one from s1 to s2 and one from s2to s1 | to ensure the weak synchronization, since� the beginning of the reaction of s1 precedes the emission of thedummy message by s1, which precedes the reception of the dummymessage by s2, which precedes both{ the end of the reaction of s2, and{ the emission of I2 from s2 to s3, which precedes the receptionof I2 by s3, which precedes the end of the reaction of s3;� the beginning of the reaction of s2 precedes the dummy commu-nication between s2 and s1 which precedes the end of the reactionof s1; and� s2 and s3 exchange messages.7.3.6 Final processingApplying this method to each transition of the initial oc automaton, weget n communicating oc programs, whose cooperation exactly imple-ments the semantics of the initial program. Each program can separatelybe optimized (for instance, by minimizing the corresponding automaton)without modifying the global behavior.
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Code of s1 Code of s2 Code of s3put dummy(2); put dummy(1);read(I1); read(I2);get dummy(1);put(I2,3); read(I3);put(I3,1);put(I3,2);I2 := get(2);L3 := F(I2);put(L3,2);I3 := get(3);L3 := get(3);I3 := get(3); O2 := G(I2,L3);if I3 then if I3 then if I3 thenput(L3,1);L3 := get(3); O3 := true;O1 := H(I1,L3);get dummy(2);goto STATE2; goto STATE2; goto STATE2;else else elseput(I1,3); I1 := get(1);get dummy(2); O3 := K(I1,I2);goto STATE1; goto STATE1; goto STATE1Table 7.4: Example of distributed code
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Chapter 8Circuit generation fromsynchronous programs8.1 IntroductionAs noted in the �rst chapter, the problem of time constraints in syn-chronous programming reduces to the property that the maximum re-action time of a program is shorter than the minimum delay separatingtwo successive external events. Minimizing this reaction time is there-fore a basic goal in compiling a synchronous program. The compilationinto extended automata is a software approach to that goal. Another,more radical approach to obtain very short reaction times consists inimplementing a synchronous program on a circuit. Synchronous lan-guages are good candidates for silicon compiling, since most circuits canbe considered as synchronous machines from some level of abstraction.Some synchronous languages [BC85, BL85] have been designed to de-scribe hardware.One can wonder about the practical value of a hardware implemen-tation because of the cost of circuit manufacturing. A �rst answer tothis question has already been given : in practice, many reactive sys-tems are actually implemented, at least in part, on hardware. Anotheranswer is provided by new con�gurable circuits (\�eld programmablegate arrays)." The hardware implementations of Esterel and Lustre,which are described in this chapter, are tested on a Programmable Active



118 Chapter 8 : Circuit generation from synchronous programsMemory (Pam [BRV90]) designed in the Paris Research Laboratory ofDigital Equipment Corp. (DEC-PRL). The Pam is a board that can becon�gured into any circuit by loading a bit-stream | an operation thatrequires only a few milliseconds. The reaction times of the resultingcircuit are then of the order of 50-200 nanoseconds.An implementation of Lustre on the Pam [RH91a] will be pre-sented �rst, since it is very simple thanks to the data-
ow nature ofthe language. Then we will present the hardware implementation ofEsterel [Ber91a], which can be viewed as a translation of Esterelinto Lustre.8.2 Implementing Lustreon a programmable active memory8.2.1 Programmable active memoriesThe general concept of \programmable active memory" is de�ned asfollows in [BRV90]:A Pam is a uniform matrix of identical cells, all connected inthe same repetitive fashion. Each cell, called aPab (for \pro-grammable active bit)," must be general enough so that thefollowing holds true: Any synchronous digital circuit can berealized (through suitable programming) on a large enoughPam for a slow enough clock.To support intuition, we will consider a particular Pam, each Pab ofwhich has (see Figure 8.1(a)):� Four bits of input < i0; i1; i2; i3 >� One bit of output O� A one-bit register (
ip-
op) with input R and output r, synchro-nized on the Pam 's global clock� A universal combinatorial gate, with inputs < i0; i1; i2; i3; r > andoutputs < O;R >. This gate can be con�gured into any Booleanfunction with �ve inputs and two outputs, by means of 2�25 = 64control bits, which specify the truth table of the function.
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(b)(a)i1i2i3 r R Oi0

Figure 8.1: A simple programmable active memoryBetween the rows and the columns of cells, there are communicationlines (see Figure 8.1(b)) to which the pins of the cells can be connected.These connections and the connections between horizontal and verticallines can also be con�gured by means of additional control bits.Such a Pam, with n active bits, can be con�gured by downloading asequence of control bits to con�gure the Pabs and their connections.We will keep this simple model as intuitive support, although the ac-tual target machine of the prototype compilers is slightly more compli-cated. The target machine is the Perle family, studied and built in DEC-PRL, and based on Logic Cell Arrays designed by Xilinx Inc. [Xil88].The presently available Perle-0 prototype is a matrix of 40�80 (double)Pabs, and the next version will be about four times larger.Building the control bitstream corresponding to a given circuit con-�guration is, of course, a nontrivial problem, in spite of available tools.In the case of Perle, the standard tools provided by Xilinx, together withthe tools developed in DEC-PRL, take as input a logical description ofeach Pab, together with optional placement indications. They �nish the



120 Chapter 8 : Circuit generation from synchronous programsplacement, perform automatic routing, and produce the bitstream. Thegoal is to translate a Lustre program into a description that is usableas the input of these tools.8.2.2 Translation of Boolean LustreWe brie
y describe the translation of a Boolean Lustre program intoa layout for the Pam (see [Roc89, RH91a, RH91b] for more details). Itrequires� translating Lustre operators in terms of hardware operators(gates, 
ip-
ops); and� implementing the resulting operator net by means of connectedPabs.Translation of Lustre operatorsThe �rst step of the compilation of a Boolean program consists in trans-lating its corresponding operator net into a net of gates and 
ip-
ops.The operator net corresponding to a Boolean Lustre program con-tains Boolean operators (or, and, not, =), conditional (if then else),and temporal (pre, ->) operators.1Notice that what we call \Boolean operators" in Lustre are notstrictly Boolean because of the unde�ned value nil. However, althoughmost of the Lustre operators are strict with respect to nil , in a le-gal Lustre program, the occurrence of a nil value may not in
uencethe outputs of the program. This property is checked by the com-piler. So, in a legal program we can replace the unde�ned value byany Boolean value without changing the outputs of the program. As aconsequence, Lustre Boolean operators can be straightforwardly trans-lated into gates. The conditional operator can also be translated into aset of gates, using the Boolean identityif A then B else C = (B and A) or (C and not A)1We do not consider clocks here, though they are not much more di�cult toimplement.



x 8.2 : A hardware implementation of Lustre 121The \previous" operator will be obviously implemented by means ofa 
ip-
op (noted \Flop"). In the technology used, the initial value of
ip-
ops is 0, so nil is considered to be 0. The \followed-by" operatoris implemented by means of the reset input of the circuit:A -> B = if RESET then A else B= (RESET and A) or (not RESET and B)For instance, the equationwatchdog is on = false -> if set then trueelse if reset then falseelse pre(watchdog is on)will be translated intowatchdog is on =(false and RESET) or(not RESET and ((true and set) or(not on and ((false and reset) or(not reset and Flop(watchdog is on))))))which obviously can be simpli�ed intowatchdog is on = not RESET and(set or (not reset and Flop(watchdog is on)))\Packing" operators into PabsThe next task concerns the expression of the resulting net of gatesand 
ip-
ops by means of Pabs. The simplest way to perform this taskconsists in using one Pab for each operator in the net. Of course, thissolution is very ine�cient, but we will use it as a starting point. It isthen improved by applying a set of packing rules. Figure 8.2(b) showssome of these rules, using the notations of Figure 8.2(a). The rules areapplied according to some simple heuristics. For instance, the net thatcomputes the variable watchdog is on (see Figure 8.3) may be packedinto one Pab.
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(b) Rules

(a) Notations CellFlip-
opCombinatorial gate

Figure 8.2: Some rules for packing operators into Pabs



x 8.2 : A hardware implementation of Lustre 123watchdog is onresetsetRESETFigure 8.3: The cell computing the variable \watchdog is on"8.2.3 Translating full LustreWe have shown that the implementation of Boolean Lustre on the Pamis quite straightforward. If we want to deal with a larger subset of thelanguage, we have to implement integer variables by vectors of bits. Onthe other hand, Lustre is a good candidate as a high-level language toprogram the Pam, but lacks some features concerning regular structures(arrays) and net geometry. Some extensions to the language have beenproposed [RH91a, RH91b], which permit� to deal with a greater subset of Lustre than the purely Booleanpart. In particular, integers will be considered as vectors of bits.� to make easier its use to describe circuits. Arrays will be availableto describe regular structures. They will also carry placementinformations.Arrays in LustreAlthough they were considered in the very �rst design of the language,arrays have not yet been introduced in Lustre, since their translation tosequential code raises di�cult problems concerning the order of compu-tations. These problems disappear when a fully parallel implementationis considered. We propose here a notion of array, compatible with theprinciples of the language. Introducing arrays will allow integer values



124 Chapter 8 : Circuit generation from synchronous programsto be considered as Boolean arrays, with arithmetic operators operat-ing on arrays. Considering a number as, e.g., a 32-bit array instead of32 unrelated Boolean variables, is also interesting for placement on thePam: it strongly suggests implementing it as a register.In Lustre, the only way to build compound types is by tupling: if�0, �1, : : : , �n are types, so is [�0; �1; : : : ; �n], which is the type of tuples[X0; X1; : : : ; Xn] of Lustre variables, where Xi is of type �i. If X is anexpression of type tuple and i is an integer constant, X[i] denotes the(i+ 1)th component of X (tuple components are numbered from 0).The proposed notion of array is a special case of tuple. Let us de�nean index to be a nonnegative integer constant, known at compile time.If � is a type and n is an index, then �^n is the type of arrays of nelements of type � , numbered from 0 to n-1 (this notation refers toCartesian power of �). An array is a tuple, all components of whichhave the same type. As a consequence, if X is an array of type �^n andi is an index, X[i] denotes the ith component of X (provided 0�i<n).One can also access a slice of an array: if X is as above and i and j areindexes smaller than n, then X[i..j] is the array� [X[i],X[i+1],: : :,X[j]] of type �^(j-i+1), if i�j� [X[i],X[i-1],: : :,X[j]] of type �^(i-j+1), otherwise.If E1, E2, : : : , En are expressions of the same type � , then [E1,E2,: : :,En]denotes the array whose ith component is Ei. By extension, E^n denotesthe array [E,E,: : :,E].Of course, polymorphic Lustre operators can be applied to arrays.We introduce also the following notion of polymorphism: any operatorop of the sort�1 � �2 � : : : �i ! � 01 � � 02 � : : : � 0j(i.e., taking i parameters of respective types �1; �2; : : : ; �i and returning jresults of respective types � 01; � 02; : : : ; � 0j) is implicitly overloaded to havethe sort�1^n� �2^n� : : : �i^n ! � 01^n� � 02^n� : : : � 0j^nfor any index n. For instance, the operator and, of sort bool� bool!bool may be applied to two arrays A and B of type bool^n, returningthe array C such that C[i] = (A[i] and B[i]), for any i=0: : :n-1.



x 8.2 : A hardware implementation of Lustre 125nullNULL[n-1]NULL[2]NULL[1]NULL[0] A[n-1]A[2]A[1]A[0] Figure 8.4: The net of the zero comparatorImplementing the full watchdogWe will translate the program WATCHDOG4 (see x6.2.2) into a Booleanprogram. First, we have to express arithmetic operators as operating onBoolean vectors. Let us give a comparator to zero and a combinatorialdecrementer:Zero comparator : It takes a vector of Booleans, representing aninteger, together with its size, and returns true if and only if the repre-sented integer is zero (see the resulting net in Figure 8.4):node NULL(const n:int; A: bool^n) returns(null:bool);var NULL: bool^n;letnull = NULL[n-1];NULL[1..n-1] = NULL[0..n-2] and not A[1..n-1];NULL[0] = not A[0];tel;Combinatorial decrementer: It is made of a general adder:node DECR(const n:int; A:bool^n) returns (D:bool^n);var carry out: bool;let(S,carry out) = ADD(n,A,true^n);tel;The n-bits adder is standard; it is made of n one-bit adders:



126 Chapter 8 : Circuit generation from synchronous programsnode ADD(const n:int;A,B:bool^n)returns (S:bool^n; carry out:bool);var CARRY: bool^n+1;letCARRY[0] = false;(S,CARRY[1..n]) = AD1(A,B,CARRY[0..n-1]);carry out = CARRY[n];tel;node AD1(a,b,carry in: bool)returns (s, carry out: bool);lets = XOR(a, XOR(b,carry in));carry out = (a and b) or(b and carry in) or (carry in and a);tel;Full watchdog: Using these Boolean implementations of arithmeticoperators, the watchdog program can be translated into a Boolean pro-gram. Here we choose an eight-bits representation of integers:const size = 8;type Int = bool^size;node WATCHDOG4(set, reset, millisecond: bool; delay: Int)returns (alarm: bool);var watchdog_is_on: bool; remaining_delay: Int;letalarm = watchdog_is_on and NULL(size,remaining_delay);watchdog_is_on = false ->if set then trueelse if reset then falseelse pre(watchdog_is_on);remaining_delay =if set^size then delayelse if (watchdog_is_on and millisecond)^sizethen DECR(size, pre(remaining_delay))else pre(remaining_delay);tel;The automatic translation of the initial program into this one is notyet implemented. However, a prototype silicon compiler, called Pollux,
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wiord[0] alarm(i)rd[1]rd[2]rd[3]
(g) PR[1]D[1]decrsetdelay[1] rd[1](f) PR[2]delay[2]setdecrD[2] rd[2](e) PR[3]delay[3]setdecrD[3] rd[3]

(d) C[0]PR[0] D[0](c) C[1]C[0]PR[1] D[1](b) C[2]C[1]PR[2] D[2]PR[3]C[2] D[3](a)
(h) PR[0]delay[0]setdecrD[0] rd[0](j) wiodecrRESETresetsetFigure 8.5: Layout of the watchdog on Perle-0



128 Chapter 8 : Circuit generation from synchronous programstranslates the above program into the layout (for Perle-0 ) shown inFigure 8.5 (where \rd" and \wio" stand for \remaining delay" and\watchdog is on," respectively), described in a format that can be pro-vided to standard CAD tools. This layout must be interpreted as follows:� Cell (a) computes the fourth bit of remaining delay-1, accordingto the equationD[3] = PR[3] xor 1 xor C[2]� Cells (b) and (c), respectively, compute the third and second bitsof remaining delay-1 and the corresponding carry, according tothe equationsD[2] = PR[2] xor 1 xor C[1]C[2] = PR[2] or C[1]D[1] = PR[1] xor 1 xor C[0]C[1] = PR[1] or C[0]� Cell (d) computes its �rst bit and the �rst carryD[0] = not PR[0]C[0] = PR[0]� Cells (e), (f), (g), and (h) compute the four bits ofremaining delay and pre(remaining delay), according to theequations:PR[i] = Flop(remaining delay[i])remaining delay[i] =(set and delay[i]) or (decr and D[i]) or PR[i]� Cell (i) computesalarm = watchdog is on and not(remaining delay[0] orremaining delay[1] or remaining delay[2] orremaining delay[3])



x 8.3 : Hardware implementation of pure Esterel 129� Cell (j) computeswatchdog is on = set or (not reset and not RESET andFlop(watchdog is on))decr = watchdog is on and millisecondIts critical path is of about 60ns (much less than the time needed by aMC-68000 to perform a \load register" statement!).8.3 Hardware implementation of pure EsterelImplementing Esterel on hardware is much less obvious. The trans-lation method is formally derived from Esterel behavioral semantics,and its correctness, which is not straightforward, is proven in [Ber91a].The following intuitive presentation is essentially borrowed from the sec-tion 5 of [Ber91a].8.3.1 Basic componentsWe here consider pure Esterel programs, i.e., programs handling puresignals only, without variables. The translation is structural. It resultsin a network of interconnected basic cells. There are �ve basic cells,which can be described in Lustre. In that sense, the translation canbe viewed as a compilation of Esterel into Lustre. The basic cellsare the following:� The Boot cell has no input, and returns an output b, which is trueat the initial instant, and always false afterward:b = true -> false;� The Halt cell has two inputs c and r, and returns two outputs sand c' de�ned as follows:s = false -> pre(c and not r);c' = c;



130 Chapter 8 : Circuit generation from synchronous programs� The Watch cell has three inputs a, c, and s, and returns threeoutputs a', c', and s':a' = c;c' = s and as' = s;� The Present cell has two inputs c and s and two outputs ct andcf: ct = c and s;cf = c and not s;� Finally, a family of Parallel cells is de�ned, the Parallel[n] cellcomputing n + 4 outputs from its n+ 4 inputs:s' = s; a' = a;c' = c; r' = r or c2 or c3 or ... or cnc'i = ci and not(ci+1 or ci+2 or ... or cn)8.3.2 First exampleLet us consider the following program:module M:input I, R;output O;looploopawait I ; await I; emit Oendeach R.After an initial instant when the input signals are ignored, it emitsthe signal O whenever it has received two occurrences of the input sig-nal I, unless it is reset by an occurrence of R. Expanded into kernelstatements, the body becomes



x 8.3 : Hardware implementation of pure Esterel 131loopdo loopdo haltwatching I;do haltwatching I;emit Oendwatching RendThe corresponding circuit is represented by Figure 8.6. Signals arerepresented by wires | which carry the value 1 (or true) at a givenclock cycle, if and only if the corresponding signal occurs. The circuitcontains three kinds of wires: the selection wires s0-s4, the activationwires a0-a4, and the control wires c0-c8. The unconnected pins of Haltcells are assumed to carry 0. Whenever two wires go to the same place,they are implicitly assumed to be combined by an or gate (\wired or").The selection and activation wires go in reverse directions and form atree, which is called the skeleton of the circuit. This tree is determined bythe nesting of halt, watching, and parallel statements in the sourceprogram, as revealed by the source code indentation. The leftmost Haltand Watch cells correspond to the �rst await statement, the rightmostones to the second await. The selection wires are used to determinewhich part of the circuit can be active in a given state: in our example,both await statements are in mutual exclusion, and one of them onlycan be active at a time. When the �rst await is active, the wires s2,s1, and s0 are on and select the leftmost branch of the tree. When thesecond await is active, the wires s4, s3, and s0 are on. The sources ofthe selection wires are the Halt cell registers.The activation and control wires bear the 
ow of control. The acti-vation wires handle preemption between watching statements.
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Figure 8.6: First circuitA sample execution: At boot time, the Halt cell registers contain0, and the selection wires are all 0. The boot control wire b is set andloads the leftmost Halt register.On the next clock tick, assume that I is present and R is absent.



x 8.3 : Hardware implementation of pure Esterel 133Then s2, s1, and s0 are set by the leftmost Halt register. The wires s0and a0 being identical, the control 
ows down from a0 to c0 in order totest for R in the upper Present cell. Since R is not there, the control 
owsthrough the cf pin and sets c2, which is connected to the c pin of theupper Watch cell. This pin is directly connected to the activation wiresa1 and a4. Since both s2 and a1 are on, the leftmost Watch cell sets c3and the leftmost Present cell sets c4, since I is present. This loads therightmost Halt register. Having no incoming control set, the leftmostHalt register is reset. This terminates the �rst \await I" statement.On the next clock tick, if I is present, the execution is symmetrical:the rightmost Halt is reset and the leftmost one is set. The wires set to 1are s3, s4, s0=a0, c0, c2, a1=a4, c6, and c7. Since c7 is also connectedto the output O, this output is set. If instead R is present, the wires setare s3, s4,s0=a0, c0, and c1 which loads the leftmost Halt register, andone is back to the state just after boot. If no signal is present, the wiresset are s3, s4,s0=a0, c0, c2, a1=a4, c6, c8, and a3, the rightmost Haltregister is loaded, and the state is simply restored.8.3.3 Translating Parallel and ExceptionsThe most complex operator is, of course, the \parallel," since it mustsynchronize the termination of its branches and propagate exceptions.Consider the following program fragment:trap T inawait S|| present I then exit T endendThe corresponding circuit fragment is shown in Figure 8.7. Theleftmost Watch-Present-Halt cell group is generated by \await S."The rightmost Present cell is generated by \present I." The branchesare simply put in parallel and synchronized by the Parallel cell. Thecircuit fragment starts when it receives control by the c0 wire.The Parallel cell has two parts: the fork part, which involves thesix leftmost pins, and the synchronization part, which involves the eightrightmost ones. The fork part is simple: selection wires are gathered, and
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ISFigure 8.7: Second circuitactivation and control are dispatched to branches. The synchronizationpart is more subtle. A branch can stop in one of three cases (we willspeak of termination levels):(level 0) The branch terminates normally. In our example, the �rstbranch normally terminates when S is present, and the secondbranch normally terminates when I is absent.(level 1) The branch stops, waiting for a signal. In our example, the�rst branch stops, waiting for S when it is absent.



x 8.3 : Hardware implementation of pure Esterel 135(level 2) The branch executes an \exit," like the second branch of ourexample, in the presence of I (in fact, we should consider n + 2levels instead of three, for a process nested in n trap statements).The basic observation is that the termination level of a \parallel"statement is the maximum termination level of its branches:� If both branches normally terminate (level 0), so does the\parallel."� If a branch stops and waits (level 1) and if the other does notexecute an \exit" (level � 1), then the \parallel" waits.� If a branch executes an \exit" from a \trap" at n levels (leveln+ 1), the \parallel" is killed and performs the \exit."The synchronization part of the Parallel cell computes this maximumlevel.In our example, the left branch can halt, as signaled by wire c5, orterminate, as signaled by wire c3. The rightmost branch can terminateor exit T, as signaled by wires c7 and c6, respectively. According tothe maximum termination level, the leftmost branch is killed by thewire r1 (which sends an inhibition signal to the Halt register), and thetermination level is transmitted to the global context by means of wiresc8, c9, and c10.A sample execution: Assume that the circuit receives control by c0and therefore sets c1. Then consider the following cases:� Assume I is present. Then c5 is set by the Halt cell, and c6 is setby the right Present cell. The parallel cell selects the appropriatecontinuation c10 and inhibits the Halt register by setting r1.� Assume instead that I is absent. Then c5 is set by the Halt celland c5 is set by the right Present cell. The selected continuationis c9, which signals halting to the global context. Since the resetwire r1 is not set, the Halt cell register is loaded. The circuitremains in the same state as long as the activation wire a0 is setand S is not present: the wires set are s2, s1, s0, a1, c2, c4 a2, c5,



136 Chapter 8 : Circuit generation from synchronous programsand c9. If a0 remains high and S occurs, the wires set are s2, s1,s0, a1, c2, c3, and c8. The whole construct terminates and theregister is reset, since c1 and a2 are low. The incoming activationwire a0 can also get down before S occurs, for instance because anenclosing watchdog elapses. Then the Halt register is also reset.OptimizationHardware experts will �nd that the obtained circuits are of very badquality because of many useless gates and wires. This is because thesecircuits are obtained by a structural translation process, and there ismuch room for automatic optimization. Many wires are simply con-nected with each other; many logical functions are readily grouped bylogic optimizers. Constant folding can also be used: for instance, the topactivation wire is always set; using this fact, one can statically simplifymany gates. Therefore, these circuits should be �rst treated by logic op-timizers before actual implementation. For instance, optimizers based onBinary Decision Diagrams (BDD [Bry86]); see [BHSV90, CM90, STB91]drastically reduce the actual size of the circuit. They can also discoverredundancies between registers and suppress some of them [BCM90a].Let us reiterate that we have only tried here to provide an intuitiveunderstanding about this translation from Esterel to circuits. Theexact technique is more subtle (see [Ber91a]).



Part IIIProgram Veri�cation





Chapter 9Lustre programveri�cation: the tool LesarAs noted in the introduction, reactive systems often concern criticalapplications, and thus program veri�cation is a key issue. However,many practitioners in the �eld are skeptical about the use of formalveri�cation methods, and convincing arguments need to be provided inorder to support the claim that such methods are indeed of practicalinterest. This is the object of the following discussion.The research on program veri�cation, which started in the early1970s, intended to provide complete proofs of very general programs.Though this work has led to important contributions concerning pro-gramming techniques and language design, one should admit that itsuse is very limited in practice.However, the goal concerning reactive systems may be less ambitious.Almost always, the safety of a critical application does not depend onthe total correctness of its control program, but rather on an small set ofproperties that the program should ful�ll. For instance, the occurrenceof a critical situation should raise an alarm within a given delay. Fromour experience, the proof of such properties can often be handled withinthe framework of simple decidable theories, since these properties seldomdepend on numerical relations and computations.Furthermore, most of these properties are \safety" properties, whichstate that a given situation should never appear or that a given state-



140 Chapter 9 : Lustre program veri�cation: the tool Lesarment should always hold, in contrast with \liveness" properties, whichstate that a given situation should eventually appear in the future.1 Forinstance, a relevant question is not that a train will eventually stop, butthat it will never cross a red light. This is an important point becauseproof techniques for safety properties are known to be much simplerthan for liveness properties:� A safety property can be checked on an abstraction of the actualprogram. Informally, if a safety property holds for a program, italso holds for programs whose set of behaviors is a subset of theinitial one. Thus it is possible to abstract programs by ignoringdetails, for instance, numerical computations; their set of behaviorswill become larger, and properties that hold on these abstractionswill also hold on the actual programs.� A safety property can be veri�ed by simply checking properties ofreachable states, instead of execution pathes. This allows the useof very e�cient methods based on reachability [Hol87].� Safety properties can be checked modularly. Properties of sub-modules can be combined so as to derive a property of the wholemodule. This allows proof complexities to be reduced, thanks tomodular decomposition according to a program structure.In view of this discussion, we will propose methods to specify and checksimple safety properties about Lustre programs.9.1 Speci�cation of safety propertiesMany formalisms have been proposed in order to express properties ofreal-time parallel programs. Two main approaches can be distinguished:those based on temporal logics (e.g., [Pnu77, MM84]), and those basedon automata theory (Petri nets, Statecharts, timed graphs [ACD90],and process calculi [Mil83]).Such formalisms should clearly allow any interesting property to beexpressed, but they should also provide an easy and readable expression1In fact, liveness properties often result from abstracting time from a real-timeconstraint. In a reactive system, time constraints are fully taken into account.



x 9.1 : Speci�cation of safety properties 141of it; proving a given property does not have much value if one cannotbe convinced that it is actually the desired property of the system!From its declarative nature, Lustre appears to be also a good lan-guage to express properties of Lustre programs [HPOG89, RHR91].This claim is based on the following arguments:� Lustre can be considered as a subset of a temporal logic [PH88,BFH90]. The proposal is then to express any safety property P bya Boolean expression B, such that P holds if and only if expressionB keeps holding true during any execution of the program. Ac-cording to [BFH90], any safety property can be expressed in thatway.� The above proposal is easily implementable by using the assertionmechanism of Lustre: Lustre assertions are already a way toexpress properties of a program's environment.� The use of a programming language to express both programs andtheir properties is interesting, since all the structuring facilities ofthe language become available for readability and expressiveness.For instance, as we will show, the node concept will allow the userto de�ne its own temporal operators.Let us show here how some useful nontrivial temporal operators can beexpressed as Lustre nodes. Consider the following property:\Any occurrence of a critical situation must be followed byan alarm within a �ve-second delay."Such a property relates three events: the critical situation occurrence,the alarm, and the deadline. The latter can be provided externally, andit can also be easily expressed in Lustre. A general pattern for thisproperty is the following:\Any occurrence of event A is followed by an occurrence ofevent B before the next occurrence of event C."However, this formulation is not directly translatable into Lustre, sinceit refers to what happens in the future following an A occurrence, whileLustre only allows references to the past with respect to the current



142 Chapter 9 : Lustre program veri�cation: the tool Lesarinstant. That is why it is �rst translated into the equivalent past ex-pression:\Anytime C occurs, either A has never occurred previously,or B has occurred since the last occurrence of A."Let us de�ne a node, taking three Boolean input parameters A, B, C,and returning a Boolean output X such that X is always true if and onlyif the property holds:node onceBfromAtoC(A,B,C: bool) returns (X: bool);letX = implies(C, never(A) or since(B,A))telThe equation de�ning X uses three auxiliary nodes:� The node implies implements the ordinary logical implication:node implies(A, B: bool) returns (AimpliesB: bool);let AimpliesB = not A or B tel� The node never returns the value true as long as its input hasnever been equal to true. Then it returns false forever:node never(B: bool) returns (neverB: bool);letneverB = (not B) -> (not B and pre(neverB))tel� Finally, the node since has two inputs, and it returns true if andonly if either its second input has still not been true, or its �rstinput has been true at least once since the last true value of thesecond input:node since(X,Y: bool) returns (XsinceY: bool);letXsinceY = if Y then Xelse (true -> X or pre(XsinceY))tel



x 9.2 : Veri�cation 143A realistic example has been studied in [Glo89]: most critical prop-erties of a nuclear plant monitoring program have been expressed inLustre, thanks to a small set of general purpose temporal operatorssimilar to \onceBfromAtoC," \never" or \since."9.2 Veri�cationThe proposed veri�cation method is very similar to \model check-ing" [CES86, RRSV87]: �rst, the state graph of the program is built(this obviously assumes a �nite number of states), and then each prop-erty is checked on this state graph. The critical issue in this approachis clearly the number of states, which can be very large for realistic pro-grams. We will see that the restriction to safety properties, and theexpression of properties in the same language as the program, may helpin solving this problem.In the Lustre case, a state graph already exists corresponding to thecontrol automaton built by the compiler. This graph is an abstractionof the actual state graph, since it only expresses the control and ignoresmany details concerning non-Boolean variables and Boolean variablesthat do not in
uence that control. As noticed above, if properties to bechecked essentially depend on Booleans taken into account in the controlgraph, and if these properties are safety ones, such an abstraction is asensible one for checking purposes and generally yields much smallergraphs.An important observation to decrease the total graph size consists intaking into account the property to be checked when building the stategraph. In the case of Lustre this is easily achieved, since the samelanguage applies to properties and programs: in order to prove that anexpression B is an invariant of the program P , we build a new programP 0 made of the body of P and of the system of equations de�ning B, andwhose only output is B (cf. Figure 9.1). Since the compiler is then onlyrequested to compute B, it will only take into account the part of theprogram concerning that computation, and this can be expected to yielda smaller graph. Given that graph, verifying the property corresponds tochecking that in none of the states does the code perform an assignmentof the output to false.
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BP' PFigure 9.1: Veri�cation programA third issue in reducing the size of the graph consists in usingassertions to express assumptions under which the property is intendedto hold. Assertions are also useful to express properties of numbers thatwould otherwise be ignored by the compiler. For instance, if a programuses numerical tests such as X<=Z and Y<=Z, the assertionassert implies(X<=Y and Y<=Z, X<=Z);prevents the compiler from generating states satisfying Z<X�Y�Z, whichof course would not be reachable by the actual program.As an example, let us consider the following general purpose node,2which represents a switch: its output alternates from true to false ac-cording to input events ON and OFF; a third input de�nes its initial value.A �rst version of this node could benode SWITCH 1(ON, OFF, INIT: bool) returns (STATE: bool);letSTATE = INIT -> if ON then trueelse if OFF then falseelse pre(STATE);tel.2Such a node could have been used in de�ning the variable watchdog in on in theWATCHDOG programs, and in de�ning the states of the STOPWATCH.



x 9.2 : Veri�cation 145However, this version has a 
aw: in the callstate = SWITCH_1(button, button, init)the output does not change each time the button is pushed, as we mightexpect. Thus a more general version should take into account the pre-vious STATE when checking the inputs ON and OFF:node SWITCH(ON, OFF, INIT: bool) returns (STATE: bool);letSTATE = INIT -> if ON and not pre(STATE) then trueelse if OFF and pre(STATE) then falseelse pre(STATE);tel.We could wish to verify that this generalization is correct, in the sensethat both versions behave in the same way as long as the inputs ON andOFF are never true at the same time. This is achieved by constructing acomparison node that calls both nodes with the same inputs and com-pares their outputs, under the assumption that ON and OFF inputs areexclusive (cf. Figure 9.2):node COMPARE(ON, OFF, INIT: bool) returns (OK: bool);var state, state_1 : bool;letstate = SWITCH(ON, OFF, INIT);state_1 = SWITCH_1(ON, OFF, INIT);OK = (state = state_1);assert not(ON and OFF);tel.Compiling this node yields a �ve-state automaton, each transition ofwhich assigns the value true to the output OK.The last way to tackle the state explosion problem is modular veri-�cation. Having to prove that an expression B is always true during theexecution of a program P calling a node Q (cf. Figure 9.3(a)), the ideais to decompose the proof into a subproof concerning Q and a subproofconcerning P without Q:
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SWITCH 1 =SWITCH OKOFFONINITFigure 9.2: Assumption-dependent equivalence of programsQPQP (b)(a) assert CFigure 9.3: Modular veri�cation� Find (by intuition) a property of Q, i.e., an expression C on theinput/output parameters of Q, and prove that C is always trueduring any execution of Q.� Now, consider Q as being part of the environment of P, i.e., replacein P the call to Q by the assertion assert C. Then try to provethe invariance of B on the modi�ed program (cf. Figure 9.3(b)).An example making use of this modular decomposition may be foundin [HLR92].A prototype veri�cation tool called Lesar (by analogy with the Cesar



x 9.2 : Veri�cation 147family of model checkers) has been implemented: given a program witha single Boolean output, it goes through the states and checks that theoutput is never assigned false. If such a situation is found, a diagnosticis provided. Otherwise, Lesar concludes that the property is satis�ed.In fact, two \veri�cation engines" are available:� The �rst engine explicitly enumerates the reachable states, as doneby standard model checkers [CES86, QS82]. The main limitationof such an approach is obviously the number of states that can beconsidered. The present version of the tool deals with programs ofabout one million states in a reasonable time (less than one hour).� The second engine proceeds symbolically: starting from a Booleanformula F0, characterizing the set of states where the output istrue , it iteratively computes a sequence F1; F2; : : : ; Fn of formu-las, where Fi+1 characterizes the set of states, belonging to Fi andnecessarily leading (in one execution step) into Fi. As soon as theinitial state does not satisfy Fi, we can conclude that the propertyis not satis�ed, since there exists an execution path leading to astate where the output is false. Otherwise, since the state spaceis �nite, the sequence of formulas converges after a �nite numberof steps. Our tool performs symbolic computations over formu-las using binary decision diagrams [Bry86], a compact canonicalencoding of Boolean formulas. This approach is sometimes called\symbolic model checking" [BCM+90b, CBM89, CMB90].The two approaches are complementary: in some cases, the enumerativemethod is more e�cient than the symbolic one, and conversely.Of course, the validity of the proof relies on the satisfaction of thesynchrony hypothesis: the whole proof is performed \inside" the syn-chronous model, and has nothing to do with performance analysis. Asmentioned before, checking the validity of the synchrony hypothesisamounts to evaluate the maximum reaction time of the program ona given machine.
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Chapter 10Using Auto for Esterelprogram veri�cationAnother approach to program veri�cation, also based on automata, hasbeen applied to Esterel. It starts from the statement that programspeci�cation is a di�cult task, almost as error-prone as program writ-ing. The basic idea, therefore, is not to write a speci�cation, but rathersimply to observe the behavior of the generated automaton. Of course,a complete automaton cannot be manually analyzed; even a small au-tomaton, of about ten states, can be quite complex. The proposedapproach o�ers reduction methods, providing partial views on the au-tomaton, on which one can easily detect anomalies and check properties.The veri�cation tool Auto [Ver86, BRdSV90, RdS90] has been devel-oped at INRIA, in order to perform such reductions. The graphic editorAutograph [RS89, Roy90] allows (reduced) automata to be visualized.The main goal of Auto is automaton reduction. These reductionspreserve some semantic properties. They are based on process calcu-lus and mainly use the notions of bisimulation and observation crite-ria [Mil80].Let us illustrate this approach for synchronous program veri�cationby means of a simple example borrowed from [BS91]. This example isan Esterel program implementing a lift controller. The full automa-ton produced by Esterel compilation is shown on Figure 10.1 in itsAutograph postscript output. Each transition corresponds to a pro-
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Figure 10.1: The full automaton of a lift controllergram reaction. Transitions are labeled by received (S?) and emitted (S!)signals.Now, assume we want to check that the lift cannot move while thedoor is open. Even for such a simple program, the automaton is rathercomplex and this property is not obvious. For the considered prop-erty, the only relevant signals are the input signals LIFT STOPPED andDOOR CLOSED and the output signals OPEN DOOR COMMAND and MOTOR. Inorder to observe the behavior of the automaton with respect to these sig-nals, Auto �rst renames any other signal by the same \dummy" name,which is usually denoted by � . The resulting simpli�ed automaton isgiven by Figure 10.2.The automaton reduction then consists in considering some states asbeing equivalent. Of course, the choice of a \good" equivalence relationis critical: the coarser it is, the most e�ective the reduction is, but if
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Figure 10.2: Simpli�ed automatonit is too coarse, it may not preserve some properties. Here, we willuse the observational congruence, whose construction is illustrated now.Reducing an automaton according to this relation consists of two steps:� The \� -saturation" aims at assimilating any sequence of transi-tions ( ��!)� a�!( ��!)� | made of some dummy transitions, fol-lowed by a signi�cant transition, followed by some dummy tran-sitions | with the signi�cant transition a�!. This is made byadding transitions to the automaton. The result in our example isshown by the transition table 10.1.� The \� -saturated" automaton is then reduced by bisimulation. Wedetail this second step below.Let A = (S; L;!) be an automaton, where S is a set of states, L isa set of labels, and ! is a transition relation included in S�L�S. Let



152 Chapter 10 : Using Auto for Esterel program veri�cations0 � s0s0 � s1s0 OPEN DOOR COMMAND! s2s0 OPEN DOOR COMMAND! s7s0 OPEN DOOR COMMAND! s4s0 MOTOR! s3s0 MOTOR! s5s0 MOTOR! s6s1 � s1s1 OPEN DOOR COMMAND! s2s1 OPEN DOOR COMMAND! s7s1 OPEN DOOR COMMAND! s4s1 MOTOR! s3s1 MOTOR! s5s1 MOTOR! s6s2 � s2s2 � s7s2 � s4s2 OPEN DOOR COMMAND! s2s2 DOOR CLOSED? s1
s3 � s3s3 � s5s3 � s6s3 LIFT STOPPED?OPEN DOOR COMMAND! s2s3 LIFT STOPPED?OPEN DOOR COMMAND! s7s3 LIFT STOPPED?OPEN DOOR COMMAND! s4s4 � s4s4 OPEN DOOR COMMAND! s2s4 DOOR CLOSED? s1s5 � s5s5 � s6s5 LIFT STOPPED?OPEN DOOR COMMAND! s2s5 LIFT STOPPED?OPEN DOOR COMMAND! s7s5 LIFT STOPPED?OPEN DOOR COMMAND! s4s6 � s6s6 LIFT STOPPED?OPEN DOOR COMMAND! s2s6 LIFT STOPPED?OPEN DOOR COMMAND! s7s6 LIFT STOPPED?OPEN DOOR COMMAND! s4s7 � s7s7 � s4s7 OPEN DOOR COMMAND! s2s7 DOOR CLOSED? s1Table 10.1: Transition table of the � -saturated automatonus recall that a relation � among the states of A is a bisimulation if andonly if 8s1; s2 2 S,s1 � s2 ()8s01 such that s1 a�!s01; 9s02 � s01 such that s2 a�!s02and 8s02 such that s2 a�!s02; 9s01 � s02 such that s1 a�!s01The reduction of A according to a bisimulation � is the automatonA= � = (S= �; L;!), whose states are equivalence classes of �, andsuch that, 8C1; C2 2 S=�,C1 a�!C2 i� 9s1 2 C1; 9s2 2 C2 such that s1 a�!s2



Chapter 10 : Using Auto for Esterel program veri�cation 153s0 � C00s0 OPEN DOOR COMMAND! C00s0 MOTOR! C00s1 � C00s1 OPEN DOOR COMMAND! C00s1 MOTOR! C00s2 � C00s2 OPEN DOOR COMMAND! C00s2 DOOR CLOSED? C00s3 � C00s3 LIFT STOPPED?OPEN DOOR COMMAND! C00
s4 � C00s4 OPEN DOOR COMMAND! C00s4 DOOR CLOSED? C00s5 � C00s5 LIFT STOPPED?OPEN DOOR COMMAND! C00s6 � C00s6 LIFT STOPPED?OPEN DOOR COMMAND! C00s7 � C00s7 OPEN DOOR COMMAND! C00s7 DOOR CLOSED? C00Table 10.2: Result of the �rst reduction stepThe reduction of an automaton according to the coarsest bisimulationis a well-known problem, and e�cient algorithms have been proposedfor its construction [AHU74, PT87]. For simplicity, we apply here astraightforward algorithm. We will build a sequence (�0; �1; : : : ; �n; : : :)of equivalence relations as follows:� �0 is the trivial equivalence (all the states are equivalent).� Let fCn0 ; Cn1 ; : : : ; Cnk g be the equivalence classes of �n. We note bys a�!Cni the fact that there exists s0 in Cni such that s a�!s0. Therelation �n+1 is de�ned from �n as follows:(s1; s2) 2 �n+1 () 8a 2 L; 8Cni ; s1 a�!Cni i� s2 a�!CniThe algorithm stops when �n = �n+1. In our example the followingiterations take place:� Initially, all the states are considered equivalent. Let C00 be theunique equivalence class. All the transitions are thus consideredto lead to C00 . The transition table is given by Table 10.2. In this
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s4 � C11s4 OPEN DOOR COMMAND! C11s4 DOOR CLOSED? C10s5 � C12s5 LIFT STOPPED?OPEN DOOR COMMAND! C11s6 � C12s6 LIFT STOPPED?OPEN DOOR COMMAND! C11s7 � C11s7 OPEN DOOR COMMAND! C11s7 DOOR CLOSED? C10Table 10.3: Result of the second reduction steptable, three classes obviously appear (the states of a given classhave the same outgoing transitions):C10 = fs0; s1g ; C11 = fs2; s4; s7g ; C12 = fs3; s5; s6g� Replacing, in the initial transition table, each target state by theunique class to which it belongs, we get Table 10.3, which givesthe same classes as before. All the states belonging to a given classhave the same outgoing transitions. The algorithm has converged,and we have the classes of the coarsest bisimulation.The result of the reduction is given in Figure 10.3. In this �gure, theproperty is obvious if we assume that� the door is initially closed;� the door can only be opened between an emission ofOPEN DOOR COMMAND and the next reception of DOOR CLOSED; and� the lift can only be moving between an emission of MOTOR and thenext reception of LIFT STOPPED.
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Figure 10.3: Reduced automaton
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Chapter 11ConclusionThe Esterel, Lustre, and Signal compilers are now commercialproducts (see the industrial contacts given in the Foreword). The indus-trialization of Argos will start soon.As a conclusion, we will present an ongoing project that aims atnormalizing a common environment for synchronous languages, and wewill outline some works in progress and perspectives.11.1 The common environment of synchro-nous languagesIn Section 6.3, we have presented the common tools developed aroundEsterel and Lustre and presently used also by Argos through theic format. A more ambitious ongoing project concerns a common en-vironment to be used by all the synchronous languages. This projectconsists of de�ning and normalizing a set of common formats on whichmany tools of general usage will be connected. Experiences with ic andoc show that this goal is more realistic than de�ning a single commonformat. As a matter of fact, to minimize the translation e�ort fromsource languages to a common format, we were led to distinguish a for-mat well suited to imperative languages (an extension of ic is undernormalization) and a format adapted to declarative languages (this newformat will be called gc, for \graph code") on which speci�c tools willbe available. A translator from ic to gc, called icgc, will be built,
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Interfacegenerator
Analysis andVeri�cation toolsSimulation toolsLinker LinkerlanguagesOther declarativeLustreSignallanguagesOther imperativeArgosEsterel

OC GCIC gcocicoc icgc optimization toolsDistributed codegeneratorSilicon compilerSequential code generatorsSimulation toolsVeri�cation toolsInterface generatorDistributed code generatorFigure 11.1: The common environment of synchronous languageswhich is inspired from the hardware implementation of Esterel. So icand gc form the input level of the environment. At a low level, the occode will be used as a target format for sequential code. Two compilersto this code will remain, one from ic (which corresponds to the presenticoc module of the Esterel compiler) and one from gc, since the au-tomaton generation from declarative languages needs the minimizationof the target automaton [HRR91].The projected environment is pictured in Figure 11.1. An importantgoal of this project is to permit several modules, written in variouslanguages, to be interfaced at the internal formats level.



x 11.2 : Works in progress 15911.2 Works in progressIn addition to this common project, some extensions to each languageare under investigation (some of them are already implemented):Asynchronous tasks in Esterel: A new primitive is being addedto Esterel [Par92, AMP92] that allows external asynchronous tasks tobe called from an Esterel program. The statement \exec T" launchesthe external task T and waits for its termination. Nontrivial problemsarise because of the interactions of this new statement with the inter-ruption mechanisms provided by the language: when a program frag-ment running an external task is interrupted, the task must be killedif it is not already terminated. Moreover, several instances of the sametask can run at the same time, and the suitable instance only must bekilled. Many applications of this mechanism have been identi�ed, e.g.,in robotics [CM91].Adding actions to Argos: Some work remains to be done in order tomake Argos a full programming language. Obviously, an Argos pro-gram must be able to handle variables and to perform actions on them.Until now, emphasis has been placed on speci�c control structures, butthe data part will be readily added to the language.Arrays in Lustre: We have seen in x8.2.3 that an array mechanismhas been added to Lustre in order to describe regular hardware de-vices. This mechanism is being inserted in the standard language, butits compilation must be further studied: it is presently performed by\macro-expansion," by associating a variable with each array element.Compiling Lustre arrays into real arrays raises many problems con-cerning causality checking and �nding the right computation order.Randomized Signal: An probabilistic extension of Signal is underinvestigation [Ben91], which takes advantage of the fact that Signalallows the description of nondeterministic systems. The idea is to re-strict this nondeterminism by means of probabilistic laws. Applicationsconcern fault-tolerant systems and simulation of random processes.
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