
On the equality of probabilistic terms?

Gilles Barthe1, Marion Daubignard2, Bruce Kapron3, Yassine Lakhnech2, and
Vincent Laporte4

1 IMDEA Software, Madrid, Spain
2 VERIMAG, Grenoble, France
3 University of Victoria, Canada

4 ENS Cachan, France

Abstract. We consider a mild extension of universal algebra in which
terms are built both from deterministic and probabilistic variables, and
are interpreted as distributions. We formulate an equational proof sys-
tem to establish equality between probabilistic terms, show its soundness,
and provide heuristics for proving the validity of equations. Moreover, we
provide decision procedures for deciding the validity of a system of equa-
tions under specific theories that are commonly used in cryptographic
proofs, and use concatenation, truncation, and xor. We illustrate the ap-
plicability of our formalism in cryptographic proofs, showing how it can
be used to prove standard equalities such as optimistic sampling and
one-time padding as well as non-trivial equalities for standard schemes
such as OAEP.

1 Introduction

Provable security [15] is a methodology used by cryptographers for providing
rigorous mathematical proofs of the correctness of cryptographic schemes. One
of the popular tools for provable security is the game-based technique [4], in
which cryptographic proofs are organized as a sequence of game/event pairs:

G0, A0 →h1 G1, A1 → · · · →hn Gn, An

where G0, A0 formalises the security goal—e.g. IND-CPA and IND-CCA for
an encryption scheme or UF-CMA and EF-CMA for signature schemes—and
the scheme under study, and hi are monotonic functions such that PrGi [Ai] ≤
hi+1(PrGi+1 [Ai+1]). By composition, h1 ◦ · · · ◦ hn(PrGn [An]) is an upper bound
for PrGn [An].

While the game-based technique does not advocate any formalism for games,
some authors find convenient to model games as probabilistic programs. In this
setting, game-based cryptographic proofs often proceed by replacing a set of
algebraic expressions s1 . . . sn by another set of expressions t1 . . . tn in the pro-
gram. The correctness of the transformation is guaranteed provided the tuples of
terms s1 . . . sn and t1 . . . tn yield equal distributions. Notable examples include:
? This work was partially supported by French ANR SESUR-012, SCALP, Spanish

project TIN2009-14599 DESAFIOS 10, and Madrid Regional project S2009TIC-1465
PROMETIDOS.

One-time padding: for every cyclic group G of prime order and generator g of
G, the distributions gx and c · gx, where the variable x is sampled randomly
over Zq, are equal;

Optimistic sampling: for every k, the distributions (x, x ⊕ y) and (x ⊕ y, x)
are equal, where x is sampled uniformly over the set of bitstrings of size k,
and y is an arbitrary but fixed bitstring of size k—here ⊕ denotes the bitwise
xor on bitstrings.

The purpose of this article is to provide a formalism that captures and justi-
fies the equational reasonings that pervade cryptographic proofs. To this end,
we consider an extension of universal algebra that distinguishes between prob-
abilistic variables and determistic variables. While deterministic variables are
interpreted in the usual way via valuations, the interpretation of probabilistic
variables is through sampling, so that the intepretation [[t]]y 7→b of a term t with
probabilistic variables x and deterministic variables y under the valuation y 7→ b
is defined as

λc ∈ σ. Pr
a∈τ

[t[x,y := a, b] = c]

where τ is the type of x and σ is the type of t, and where ·[· := ·] denotes
substitution of variables by values. In the case of optimistic sampling, where the
variable x is probabilistic and the variable y is deterministic, the interpretation
[[x ⊕ y]]y 7→b of the expression x ⊕ y w.r.t. a valuation y 7→ b is defined as a $←
{0, 1}k, [[x ⊕ y]]x 7→a,y 7→b, i.e. the distribution obtained by monadic composition
of the uniform distribution over {0, 1}k, and of the (deterministic) interpretation
of 〈〈x⊕ y〉〉x7→a,y 7→b. Equivalently, [[x⊕ y]]y 7→b = λc. Pra∈{0,1}k [a⊕ b = c]. Under
this interpretation, one can show that

[[〈x⊕ y, x〉]]y 7→b = λc, d. Pr
a∈{0,1}k

[a⊕ b = c, a = d]

is equal to
[[〈x, x⊕ y〉]]y 7→b = λc, d. Pr

a∈{0,1}k
[a = c, a⊕ b = d]

Note that the equational theory of probabilistic terms reveals some subtleties:
for example, the equation x

.= y is valid whenever x and y are probabilistic
variables of the same type; however, the equation 〈x, x〉 .= 〈y, y′〉 is not valid in
general—as a result, it is important to consider systems of equations rather than
single equations, as further explained below.

Our main contributions are:

– the definition of a proof system for reasoning about equations, and systems
of equations. We prove that the system is sound and provide useful heuristics
for establishing the validity of a system of equations;

– for specific theories, including the theory of xor and concatenation, the defini-
tion of decision procedures for deciding the validity of a system of equations;
and sufficient conditions for the decidability of the validity of a system of
equations.

2 A motivating example

We illustrate the need for proving equality between distributions with one clas-
sical example of encryption scheme, namely RSA-OAEP [5, 9]. Recall that an
asymmetric encryption scheme is specified by a triple (KG, E ,D) where KG is a
key generation algorithm which outputs a pair of public and private keys, E is an
encryption algorithm that takes an input a public key and a plaintext algorithm
and outputs a ciphertext, and a decryrption algorithm that takes the private
key and the ciphertext and produces the corresponding plaintext. An asymmet-
ric encryption scheme (KG, E ,D) is said to be indistinguishable between real or
random (IND-ROR) if the difference between the final distribution of the two
games is small:5

(sk, pk)←KG;m←A(pk); c←E(pk,m); return c

(sk, pk)←KG;m←A(pk); y $←{0, 1}k; c←E(pk, y); return c

where A is the procedure that represents the adversary.
OAEP is a famous padding scheme that is used for increasing robustness

of RSA encryption. The OAEP algorithm relies on two random oracles G and
H, which are sampled during initialization—we gloss over the size of the argu-
ments and images of H and G. Key generation, encryption and decryption are
respectively defined as:

KG = (f, f−1) $←Λ, return (f, f−1)

E(m, f) = r∗
$←{0, 1}k0 ; s∗←(m | 0k1)⊕G(r∗); t∗←H(s∗)⊕ r∗

return f(s∗ | t∗)
D(y) = s|t := f−1(y); r := H(s)⊕ t;

if [G(r)]k1 = [s]k1 then (return [s⊕G(r)]k−k1) else reject

where where Λ denotes the set of trapdoor permutations—for the purpose of this
paper, it is sufficient to know that f and f−1 are inverse to each other—-and [.]k
and [.]k respectively denote taking and removing the first k bits of a bitstring.

The first step in the proof of IND-ROR for OAEP is to show that the two
code snippets below yield the same distribution:

r∗
$←{0, 1}k0 ;m←A(f); g∗ $←{0, 1}k−k0 ;

return f((m | 0k1)⊕ g∗|H((m | 0k1)⊕ g∗)⊕ r∗)
m←A(f); y $←{0, 1}k;
return y

In order to prove the equality, one must show the validity of the equation:

f((m | 0k1)⊕ g∗|H((m | 0k1)⊕ g∗)⊕ r∗) .= y

where g∗, r∗, y are random variables. More formally, one must show that the
distribution induced by the left hand side by sampling uniformly g∗ and r∗ over
5 Technically, games are indexed by a security parameter η and IND-ROR states that

the distance between the families of distributions induced by the indexed games are
negligible in η.

their respective sets is the uniform distribution. The informal argument goes
as follows: since r∗ is uniformly distributed and only occurs once, therefore the
expression H((m | 0k1)⊕ g∗)⊕ r∗ is uniformly distributed and can be replaced
by a fresh random variable hr∗. Thus, we are left to prove

f((m | 0k1)⊕ g∗|hr∗) .= y

Now, g∗ is uniformly distributed and only occurs once, therefore the expression
(m | 0k1) ⊕ g∗ is uniformly distributed and can be replaced by a fresh random
variable mg∗. Thus, we are left to prove

f(mg∗|hr∗) .= y

The concatenation of random variables being random, one can subsitute mg∗|hr∗
by a fresh variable z∗, so that one is left to prove

f(z∗) .= y

To conclude, observe that f is a bijection so f(z∗) is uniformly distributed, and
hence we indeed have f(z∗) .= y. In the course of the paper, we will develop a
procedure that formalizes this reasoning.

3 Preliminaries

We refer to e.g. Chapter 8 of [14] for an introduction to finite distributions,
with examples from cryptography. Throughout the paper, we only consider
(sub)distributions over finite sets: let A be a finite set; the set D(A) of dis-
tributions over A is the set of functions d : A→ [0, 1] such that

∑
a∈A d(a) ≤ 1.

Given a distribution d ∈ D(A) and an element a ∈ A, we write Pr[d = a] for
d(a).

Let A be a finite set of cardinal q. The uniform distribution over A assigns
to each element of A probability q−1. We write x $← A to denote the uniform
distribution on A. The monadic composition of the uniform distribution and of
a function f : A→ D(B) is the distribution y $←A, f(y), which is defined by the

clause Pr[y $←A, f(y) = b] = q′

q where q′ is the cardinal of f−1(b). Intuitively,
this is the distribution of a random variable which is obtained by sampling A
uniformly at random to obtain a value y, and then evaluating f at y.

The product distribution d1×· · ·×dn of the distributions d1 . . . dn is defined
as x1

$←d1 . . . xn
$←dn, (x1, . . . , xn). Conversely, the i-th projection of a distri-

bution d over A1 × · · · × An is the distribution x
$← d, πi(x), where πi denotes

the usual projection.
The following observation, which only holds for finite domains and uniform

distributions, is the cornerstone of the general decision procedure for deciding
equality of distributions.

Proposition 1. For all finite sets A and B, and functions f, g : A → B, the
following are equivalent:

– x
$←A, f(x) = x

$←A, g(x)
– there exists a bijection h : A→ A such that f = g ◦ h.

Note that since A is finite, h is bijective iff it is injective iff it is surjective.

A remark on products Throughout the paper, we use the vector notation to
denote tuples of terms. Accordingly, we use tuple notations to denote the product
of their types, thus t denotes a tuple of terms and σ denotes the product of their
types.

4 Syntax and semantics

This section introduces the syntax and semantics of probabilistic terms, and
gives a precise formulation of the satisfaction problem for systems of equations
of probabilistic terms. For an introduction to equational logic and term rewriting
see e.g. [1].

4.1 Syntax

We start from the notion of many-sorted signature. We allow function symbols
to be overloaded, but impose restrictions to ensure that terms have at most one
sort.

Definition 1 (Signature). A signature is a triple Σ = (S,F , :), where S is a
set of sorts, F is a set of function symbols, and : is a typing relation between
function symbols and arities of the form σ1× . . .×σn → τ , with σ1 . . . σn τ ∈ S.

We require that the typing relation is functional, i.e. if f : σ1× . . .× σn → τ
and f : σ1 × . . .× σn → τ ′, then τ = τ ′. In particular, we assume that constants
have a single type.

Terms are built in the usual way, except that we distinguish between two sets
of variables: the set R denotes variables that are interpreted probabilistically,
and the set D denotes variables that are interpreted deterministically. It is con-
venient to assume that there are infinitely many deterministic and probabilistic
variables of each sort. Moreover, we assume that for every x ∈ R there exists a
distinguished variable x̄ ∈ D of the same sort.

Definition 2 (Terms and substitutions). Let Σ = (S,F , :) be a signature
and let X be a collection of variables. The set TX of terms over X is built from
the syntax: t ::= x | f(t) where f ranges over F and x ranges over X. In the
sequel, we consider the set of terms over V = D ∪ R, and write T instead of
TD∪R. Elements of TD are called D-terms.

Substitutions over X (to TY) are defined as functions from X to TY ; we let
ρ t denote the result of applying the substitution ρ to t.

Given Y ⊆ X, we let varY (t) denote var(t) ∩ Y , where var(t) is defined in
the usual way. Moreover, we say that t ≡α(Y) t

′ iff there exists a 1-1 renaming
ρ : varY (t)→ varY (t′) such that ρ t = t′.

Terms are subject to a simple typing discipline that ensures that functions are
applied to arguments of the correct types. In the sequel, we implicitly assume
that each variable x has a unique sort σx and that terms are well-typed; we
adopt the standard notations t : σ (resp. t ∈ TX(σ)) to denote that a term t has
type σ (resp. t has type σ and var(t) ⊆ X). Thanks to requiring that typing is
functional, every term has at most one type.

Definition 3 (System of equations). A system of equations over a set X,
or X-system of equations, is a statement s1

.= t1 ∧ . . . ∧ sn
.= tn where, for

i = 1 . . . n, si and ti have the same type, i.e. si, ti ∈ TX(σi) for some σi. We
often use s .= t as a shorthand for systems of equations.

Unlike equational logic, it is important to consider systems of equations rather
than single equations. Because of the possible dependencies between terms, the
conjunction of two valid equalities may not be valid.

Consider the probabilistic variables x, y, z of type σ: the system of equations
x
.= y ∧ x .= z is not valid, whereas the two equations x .= y and x

.= z are
valid; this is because the distribution y

$← σ, z
$← σ, 〈y, z〉 yields the uniform

distribution over σ × σ whereas x $←σ, 〈x, x〉 does not.

Definition 4 (Theory). A theory is a pair T = (Σ,E) where Σ is a signature
and E is a (possibly infinite) set of of systems of equations.

4.2 Semantics

The semantics of probabilistic terms is adapted immediately from equational
logic. In particular, algebras provide the natural semantics for signatures.

Definition 5 (Algebra). Let Σ = (S,F , :) be a signature. A Σ-algebra is a
pair A = ((Aσ)σ∈S , (fA)f∈F) where Aσ is a finite set that interprets the sort σ
and fA ∈ Aσ1×· · ·×Aσn → Aτ for every f ∈ F such that f : σ1× . . .×σn → τ .
In the sequel, we let A =

⋃
σ∈S Aσ and write [[σ]] instead of Aσ.

Terms are interpreted as distributions, by taking a probabilistic interpretation
of variables in R.

Definition 6 (Interpretation of terms). Let Σ = (S,F , :) be a signature
and A = ((Aσ)σ∈S , (fA)f∈F) be a Σ-algebra.

– An X-valuation is a function ρ : X → A such that ρ(x) ∈ Aσx for every
x ∈ X. We let ValX denote the set of X-valuations. In the sequel, we often
omit the subscript; moreover, we often use the notation x 7→ a to denote
any valuation ρ such that ρ(xi) = ai.

– Let ρ ∈ ValX . The pre-interpretation 〈〈t〉〉ρ of a term t ∈ TX is defined as:

〈〈t〉〉ρ =
{
ρ(t) if t ∈ X
fA(〈〈t1〉〉ρ, . . . , 〈〈tn〉〉ρ) if t = f(t1, . . . , tn)

– Let ρ ∈ ValD. The interpretation [[t]]ρ of a tuple of terms t of type σ is
defined by the clause:

[[t]]ρ = λa : σ. Pr
ρ′∈ValR

[〈〈t〉〉ρ+ρ′ = a]

where the valuation ρ+ ρ′ denotes the (disjoint) union of ρ and ρ′, and for
every tuple of terms t = 〈t1, . . . , tn〉 and for every valuation ρ, 〈〈t〉〉ρ denotes

〈〈〈t1〉〉ρ, . . . , 〈〈tn〉〉ρ〉

Note that the interpretation of a tuple of terms needs not coincide with the
product distribution of their interpretations. For example, [[x, x]]ρ 6= [[x]]ρ × [[x]]ρ
for every x ∈ R.

Definition 7 (Model). Let T = (Σ,E) be a theory; let A = ((Aσ)σ∈S , (fA)f∈F)
be a Σ-algebra.

– A system of equations s .= t is valid in A, written A |= s
.= t iff for every

ρD ∈ ValD, we have [[s]]ρD = [[t]]ρD .
– A is a T-algebra (or T-model) iff for every system of equations s .= t ∈ E,

we have A |= s
.= t.

The notion of model for an equational theory coincides with that of equational
logic for theories with D-systems of equations.

Note that one can prove that the following equations are valid: x .= y for
every probabilistic variables x and y of the same type, x ⊕ x′

.= y for every
probabilistic variables x, x′ and y of type {0, 1}k.

4.3 Satisfaction problem

The problem addressed in this paper can now be stated formally: given a theory
T = (Σ,E), a collection of Σ-algebras (Ai)i∈I and a system of equations s .= t,
can we decide whether ∀i ∈ I,Ai |= s

.= t. We write DecSat(T,(Ai)i∈I) if the
problem is decidable.

Stating the satisfaction problem relative to a collection of models rather
than a single one is somewhat unusual, and is motivated by the need to carry
cryptographic proofs parametrically in the size of the security parameter.

5 Exclusive or, concatenation, and projection

The purpose of this section is to present decision procedures for the theories of
exclusive or, and the theory of exclusive or, concatenation, and projection.

(s | t)⊕ (s′ | t′) = (↓(1,#s′) s | (↓(#s′+1,#s) s | t))⊕ (s′ | t′) if #s′ < #s
(s | t)⊕ (s′ | t′) = (s | t)⊕ (↓(1,#s) s′ | (↓(#s+1,#s′) s

′ | t′)) if #s < #s′

(s | t)⊕ (s′ | t′) = (s⊕ s′) | (t⊕ t′) if #s = #s′

↓(i1,i2) (s⊕ t) = (↓(i1,i2) s)⊕ (↓(i1,i2) t)
↓(i1,i2) (s | t) = ↓(i1,i2) s if i2 ≤ #s
↓(i1,i2) (s | t) = ↓(i1−#s,i2−#s) t if #s < i1
↓(i1,i2) (s | t) = ↓(i1,#s) s |↓(1,i2−#s) t if i1 ≤ #s < i2

↓(i1,i2) (↓(j1,j2) s) = ↓(i1+j1,i2+j1) s
↓(1,#s) (s) = s

Fig. 1. Theory of concatenation and projection

5.1 Exclusive or

The first theory T⊕ has a single sort bs, a constant 0 : bs and a binary symbol
⊕ : bs× bs→ bs. Its axioms are:

x⊕ (y ⊕ z) .= (x⊕ y)⊕ z x⊕ y .= y ⊕ x
x⊕ 0 .= x x⊕ x .= 0

We consider the family of algebras (BSk)k∈N, where BSk is the set of bistrings
of size k, with the obvious interpretation for terms. By abuse of notation, we
write |= s

.= t instead of ∀k ∈ N, BSk |= s
.= t.

We begin by stating some simple facts. First, one can decide whether D-
equations hold.

Lemma 1. Let s, t ∈ TD. It is decidable whether |= s
.= t.

Second, one can decide whether a term is semantically equal to a variable in R.
We write U(t) iff for all ρ ∈ Val, [[t]]ρ is uniformly distributed.

Lemma 2. Let t ∈ T . It is decidable whether U(t).

Proof. Every term t can be reduced to a normal form t′, in which variables
appear at most once. Then [[t]]ρ is uniformly distributed iff t′ contains at least
one R-variable.

It follows that one can decide equality of two terms.

Lemma 3. Let s and t be terms. It is decidable whether |= s
.= t.

Proof. If U(s) and U(t), return true. If ¬U(s) and U(t) or U(s) and ¬U(t), return
false. If ¬U(s) and ¬U(t), then s and t can be reduced to normal forms s′ ∈ TD
and t′ ∈ TD. Return true if |= s′

.= t′ and false otherwise.

In order to extend the result to tuples of terms, we rely on the following lemma.
The result is used e.g. in [6].

Proposition 2. Let t1 . . . tn ∈ T such that U(ti) for 1 ≤ i ≤ n. Exactly one of
the following statements hold:

– indep (t): for every ρ ∈ Val, [[(t1 . . . tn)]]ρ = [[t1]]ρ × · · · × [[tn]]ρ;
– dep (t): there is a non-null vector λ ∈ {0, 1}n and s ∈ TD such that

depλ,s (t), where depλ,s (t) holds iff for every ρ ∈ Val,

[[
∑

1≤i≤n

λiti]]ρ = [[s]]ρ

where
∑

denotes summation mod 2.

Proof. For simplicity, assume that t1 . . . tn ∈ T{y1...yl} with y1 . . . yl ∈ R, and
consider bistrings of length k. Then indep (t) iff for all bitstrings of length k
a1 . . . an, the system of equations

(∗)


t1 = a1

...
tn = an

has exactly 2k(l−n) solutions. Indeed, Pr[
∧n
i=1 ti = ai] = α2−kl, where α is the

number of solutions of (∗). It is now easy to prove by induction on n that
α = 2k(l−n) is equivalent to the linear independence of t, which is equivalent to
¬dep (t).

For example, one can prove that the distribution induced by the triple of terms
(x⊕ y, y⊕ z, z ⊕ x), where x, y, and z are probabilistic variables of type {0, 1}k
is not uniformly distributed, i.e. the system of equations:

x⊕ y .= w1 ∧ y ⊕ z
.= w2 ∧ z ⊕ x

.= w3

is not valid, since we have (x⊕ y)⊕ (y ⊕ z)⊕ (z ⊕ x) = 0.
Note that one can effectively decide which of the two conditions hold, since

there are only finitely many λ to test—and s, if it exists, can be computed from∑
1≤i≤n λiti. Decidability follows.

Proposition 3. DecSat(T⊕,(BSk)k∈N).

Proof. The decision procedure works as follows:

1. If the system only contains a single equation s
.= t, invoke Lemma 3;

2. If indep (s) and indep (t), return true;
3. If depλ,s (s) and depλ,s (t) for the same λ and s, then pick λk 6= 0, and

recursively check the smaller system without the equation sk
.= tk;

4. otherwise, return false.

Since terms of sort bs are only built from variables of sort bs, decidability ex-
tends immediately to the multi-sorted theory T+

⊕, with set of sorts bsk for all
k, constants 0k : bsk, and a—single but overloaded—binary function symbol
⊕ : bsi × bsi → bsi. The axioms are those of T⊕. Finally, we consider the alge-
bras (BSk)k∈N with the obvious interpretation.

Proposition 4. DecSat(T+
⊕,(BSk)k∈N).

5.2 Exclusive or, concatenation, and projection

Next, we prove decidability for exclusive or and concatenation. Thus, the theory
T{⊕,|,↓} has infinitely many sorts bsk and infinitely many function symbols:

0k : bsk ⊕ : bsk × bsk → bsk |: bsk × bsk
′
→ bsk+k′ ↓(i,j): bsk → bsj−i+1

where k′, i, j ∈ N are such that i ≤ j ≤ k. Its axioms are those of the theory T⊕,
together with axioms for the associativity and neutral for concatenation, and
with axioms for relating concatenation, projection and ⊕, which are given in
Figure 1. Finally, we consider the indexed family of algebras (BSi)i∈N in which
the interpretation of bsk is the set of bitstrings of length ki, with the obvious
interpretation of function symbols.

Proposition 5. DecSat(T{⊕,|,↓},(BS≤k)k∈N).

Proof. The proof proceeds by a reduction to the previous case, and relies on
a set of rewrite rules that transform an arbitrary system of equations into an
equivalent system without concatenation and projection. There are two sets
of rewrite rules; both rely on typing information that provides the length of
bitstrings; we let #s denote the length of the bistring s. The first set of rewrite
rules, is obtained by orienting the rules of Figure 1 from left to right, and pushes
concatenations to the outside and projections to the inside. The second set of
rewrite rules, given in Figure 2, aims to eliminate concatenation and projection
by transforming equations of the form s | t .= s′ | t′ with #s = #s′ and #t = #t′

into a system of equations s .= s′ | t .= t′, and by replacing expressions of the
form ↓(i,j) x by fresh variables x(i,j)—in order to get an equivalent system, the
replacement is performed by a global substitution [x := x1,i−1 | xi,j | xj+1,#x].

The procedure terminates: intuitively, the rule for splitting variables can
only be applied a finite number of times, and the remaining rules are clearly
terminating. Upon termination, one obtains a system of equations of the form
s

.= t ∧ x .= u where the ss and ts only contain ⊕-terms and the us, are
concatenations of variables, and variables on the left hand side, i.e. the xs, do
not appear in the first system of equations, and moreover variables arise at most
once globally in the us. Thus, the validity of the system is equivalent to the
validity of s .= t which can be decided by Proposition 3.

6 An equational logic for systems of equations

The purpose of this section is to provide a sound proof system for proving the
validity of a system of equations, and to study the conditions under which the
proof system is complete and decidable.

s1 | s2
.
= t1 | t2 → 〈↓(1,#t1) s1, (↓(#t1+1,#s1) s1) | s2〉

.
= 〈t1, t2〉 if #t1 < #s1

s1 | s2
.
= t1 | t2 → 〈s1, s2〉

.
= 〈↓(1,#s1) t1, (↓(#s1+1,#t1) t1) | t2〉 if #s1 < #t1

s1 | s2
.
= t1 | t2 → 〈s1, s2〉

.
= 〈t1, t2〉 if #t1 = #s1

s1 | s2
.
= t⊕ t′ → 〈s1, s2〉

.
= 〈↓(1,#s1) (t⊕ t′), ↓(#s1+1,#s1+#s2) (t⊕ t′)〉

s1 | s2
.
=↓(i1,i2) t → 〈s1, s2〉

.
= 〈↓(i1,i1+#s1) t, ↓(i1+1+#s1,i1+1+#s2−#s1) t〉

s
.
= t→ ∆

Γ ∧ s .
= t→ Γ ∧∆

Γ∧ ↓(i,j) x
.
= t→ (Γ ∧ xi,j

.
= t)[x := x1,i−1 | xi,j | xj+1,#x] ∧ x .

= x1,i−1 | xi,j | xj+1,#x

Fig. 2. Normalization of equation systems with concatenation and projection

6.1 Proof system

The proof system contains structural rules, equational rules that generalize those
of equational logic, and specific rules for probabilistic terms.

Structural rules specifically deal with systems of equations; the rule [Struct]
allows us to duplicate, permute, or eliminate equations. Formally s .= t ⊆ s′ .= t′

iff for every j there exists i such that the i-th equation of s′ .= t′ is syntactically
equal to the j-th equation of s .= t. Moreover, the rule [Merge] allows us to merge
systems of equations, provided they do not share any variables in R. Note that
the side condition of the [Merge] rule is necessary for soundness; without the
side condition, one could derive for probabilistic variables x, y, z of the same
type that x .= y ∧ x .= z is valid (since from x

.= y and x
.= z are), which is

unsound as mentioned earlier.
The equational rules include reflexivity, symmetry and transitivity of equal-

ity, congruence rules for function symbols, a rule for axioms, and a substitution
rule. Note that the rule for functions is stated for ensuring soundness, and that
the following rule is unsound:

` s1
.= t1 . . . ` sn

.= tn

` f(s1 . . . sn) .= f(t1 . . . tn)

because it would allow to derive that ` x⊕x .= y⊕z for x, y, z probabilistic vari-
ables of type {0, 1}k. Note also that we allow in the application of the [Fun] rule
to have side equations u .= v, which is required to have successive applications
of the [Fun] rule.

Likewise, the rule for substitutions requires that the subsituted terms are
deterministic; without this restriction, the rule would be unsound as for every
deterministic variable y of type {0, 1}k and probabilistic variable x of the same
type, one could derive ` x .= x⊕ y[y := x] from ` x .= x⊕ y. Note that one can
combine the rule for substitution with the rule [Rand] below to allow substitu-
tions of terms that contain fresh probabilistic variables, in the style of [11].

Finally, the rules for probabilistic variables include rules for α-conversion, and
the rule [Bij], that is the syntactical counterpart of Proposition 1. It assumes that

varR(s)∪varR(t) ⊆ x, and requires that there areD-terms u and v that represent
bijections, and such that the composition of u with s is equal to t[x := x̄]—where
x̄ ∈ D is a type-preserving renaming of x. In the side condition, we let VR denote
varR(s) ∪ varR(t) and VD denote varD(s) ∪ varD(t).

` s
.
= t

` s′ .= t′ [Struct] where s′ .= t′ ⊆ s
.
= t

s
.
= t ⊆ E
` s

.
= t

[Axm]

` s
.
= t ` s′ .= t′

` s
.
= t ∧ s′ .= t′ [Merge] where (varR(s) ∪ varR(t)) ∩ (varR(s′) ∪ varR(t′)) = ∅

` s
.
= s

[Refl]
` s

.
= t

` t
.
= s

[Sym]
` s

.
= t ` t

.
= u

` s
.
= u

[Trans]

` u
.
= v ∧ s1

.
= t1 ∧ . . . ∧ sn

.
= tn

` u
.
= v ∧ f(s1 . . . sn)

.
= f(t1 . . . tn)

[Fun]

` s
.
= t

` ρs .
= ρt

[Subst]where ρ : D → TD

s ≡α(R) s′ t ≡α(R) t′ ` s
.
= t

` s′ .= t′ [Alpha]

` s[x := u]
.
= t[x := x̄] ` u[x̄ := v]

.
= x̄

` s
.
= t

[Bij]where

8<:
VR ⊆ x
VD ∩ x̄ = ∅
(var(u) ∪ var(v)) ⊆ (x̄ ∪ VD)

Fig. 3. Proof system

Here is an example of the use of this system to prove optimistic sampling,
i.e. for every deterministic variable y of type {0, 1}k and probabilistic variable x
of the same type, ` x⊕ y .= x. The last step of the proof is an application of the
[Bij] rule, with u = x̄ ⊕ y and v = x̄ ⊕ y. It is easy to check that the premises
hold, i.e. ` x⊕ y[x := x̄⊕ y] .= y, and ` x̄⊕ y[x̄ := x̄⊕ y] .= x̄.

One application of the [Bij] rule is to lift equality of deterministic terms to
equality of distributions. Concretely, we have:

` s[x := x̄] .= t[x := x̄]

` s .= t
[Rand]where

{
VR ⊆ x
VD ∩ x̄ = ∅

Using this rule, one can also conclude that for every distinct probabilistic variable
x and y of type {0, 1}k, one has ` x⊕ y .= x.

In order to apply optimistic sampling in context, we must rely on a derived
rule for linear variables. Given a tuple of terms s in which x of type σ appears
exactly once, and assuming that ` x .= t with var(t) ∪ var(s) ⊆ y, then:

x
.= t ∧ y .= y

` s .= s[x := t]
[Linear] x 6∈ var(t)

The rule [Linear] can be proved by induction on the structure of the terms, or
using the [Bij+] rule in the next section. In particular, one can prove that for
every theory that contains the ⊕ operator and its associated equations that:

` s .= s[x := x⊕ t]
x 6∈ var(t) ∧ x linear in s

Note that the conjunct y .= y is required in the rule [Linear] because one could
otherwise take s to be x ⊕ y and t to be y, to prove (x ⊕ y)[x := y] .= x, which
is of course not valid.

6.2 Soundness

The proof system is sound.

Proposition 6. Let T = (Σ,E) be a theory and assume that ` s .= t. For every
T-algebra A, we have A |= s

.= t.

Proof (Sketch). By induction on the length of derivations. We only consider the
case [Bij]. Assume that we have A |= s[x := u] .= t[x := x̄] and A |= u[x̄ := v] .=
x̄. To show that A |= s

.= t, i.e. [[s]]ρ = [[t]]ρ for every valuation ρ ∈ ValD. We
have (the second equality holds by induction hypothesis):

[[s]]x7→[[u]]ρ = [[s[x := u]]]ρ = [[t[x := x̄]]]ρ

To conclude, it is sufficient to show that for every a ∈ [[σx]], and partial
valuation ρ′ with domain (var(u) ∪ var(v)) \ x the function [[u]]ρ′+x̄7→a is a
bijection from [[σx]] to itself. By induction hypothesis, we have that

[[u[x̄ := v]]]ρ′+x̄ 7→a = (ρ′ + x̄ 7→ a)x̄, or equivalently [[u]]ρ′+x̄ 7→[[v]]x̄ 7→a
= a.

Hence [[u]]ρ′+x̄→a is a bijection.

6.3 Products

Our proof system does not make any specific provision with product, thus it is
not possible to prove that for every probabilistic variables x, y and z of respective
types {0, 1}k, {0, 1}k′ and {0, 1}k+k′ one has ` x|y = z. Thus, the proof system
is incomplete.

One can remedy to this issue by considering theories with products, and
enriching the proof system for such theories.

Definition 8 (Theory with products). A theory T = (Σ,E) has products iff
for every sorts σ and σ′, there exists a sort τ and function symbols π : τ → σ,
π′ : τ → σ′ and pair : σ × σ′ → τ such that the following D-equations hold:

pair(π(y), π′(y)) .= y π(pair(x, x′)) .= x π′(pair(x, x′)) .= x′

Concatenation and truncation of bitstrings are the primary examples of function
symbols that yield a product structure. Given a theory with products, one can
show that the rules for products are sound:

` s[x, x′ := π(y), π′(y)] .= t

` s .= t
[ProdE]

The [ProdE] rule implicitly assumes that products exist, and that y is a
fresh variable. The rule allows to collate two probabilistic variables x and x′

of respective sorts σ and σ′ by a probabilistic variable y of sort σ × σ′, and is
useful to prove the previous example. There is a dual rule [ProdI], which allows
to introduce projections, and is ommitted.

6.4 Example revisited

The example of Section 2 can be established through successive applications of
the [Linear] rule, the [Prod] rule, and finally the [Bij] rule. The signature is that
of bitstrings with exclusive or, concatenation, and truncation, extended with two
function symbols f and f−1, with additional axioms that state that f and f−1

are mutually inverse bijections.
The first step in the derivation is to show that the equation f(z∗) .= y is

derivable, for y and z∗ probabilistic variables. The equation is established using
the [Bij] rule, and relies on the axioms on f and f−1. Formally, we prove:

f(z∗) .= y

Then, the second step in the proof is to derive from the above equality the
equation:

f(mg∗ | hr∗) .= y

The proof proceeds as follows: we use the [Prod] rule to establish that mg∗ |
hr∗

.= z∗, and then the [Fun] rule to prove that f(mg∗ | hr∗) .= f(z∗), so by
transitivity, we have f(mg∗ | hr∗) .= y. Then, we can apply the [Linear] rule to
conclude that

f((m | 0k1)⊕ g∗|hr∗) .= y

By a further application of the [Linear] rule, one concludes as expected that:

f((m | 0k1)⊕ g∗|H((m | 0k1)⊕ g∗)⊕ r∗) .= y

6.5 Towards completeness

The purpose of this section is to define completeness, and to provide some partial
results towards completeness. Unfortunately, we have not been able to prove
completeness for any theory of interest.

Recall that a proof system is complete w.r.t. a set of models if all systems of
equations that are valid in the models are also provable.

Definition 9 (Completeness). Let T = (Σ,E) be a theory. The proof system
is complete (resp. D-complete) wrt an indexed family (Ai)i∈I of T-algebras iff for
every system of equations (resp. D-equations) s .= t, if for all i ∈ I, Ai |= s

.= t
then ` s .= t.

There are two main issues with completeness. The first issue is the existence
of products, which is discussed above. The second and main difficulty is the
representation of bijections in the syntax. Indeed, one must show that the rule
[Bij] does indeed provide a syntactic counterpart to Proposition 1. In other
words, completeness requires that one can represent some bijections by a tuple
of terms, so that the rule [Bij] applies. A stronger hypothesis, namely that all
functions are representable by terms, is captured by the definition of primal
algebra, which is used e.g. in [13]: an algebra A is primal iff for every function
f : σ1× . . .×σn → τ (with n > 0, and σ1 . . . σn, τ interpretations of sorts) there
exists a D-term u with free variables x1 : σ1 . . . xn : σn such that for every
(a1, . . . , an) ∈ σ1 × · · · × σn, we have:

[[u]](x1:=a1,...,xn:=an) = f(a1, . . . , an)

Unfortunately, the notion of primal algebra is too strong for our setting, because
proving completeness would require that all the algebras of the indexed family
(Ai)i∈I are primal. Since the size of the algebras is unbounded, it is not clear,
even for the case of bitstrings considered in Section 5, how to define the signature
so to meet this requirement. One can instead consider a weaker notion, called
weak primality.

Definition 10 (Weakly primal). An algebra A is weakly primal iff for every
f1, f2 : σ1 × . . . × σn → τ (with n > 0, and σ1 . . . σn, τ interpretations of sorts)
that are interpretations of D-terms, and for every bijection h : σ1 × . . .× σn →
σ1× . . .×σn such that f2 = f1◦h, there exist terms u1, . . . , un with free variables
x1, . . . , xn such that f2 = f1◦[[(u1, . . . , un)]], and [[(u1, . . . , un)]] is a bijection over
σ1 × . . .× σn.

Note that weak primality does not require that h is representable, but instead
that there exist terms that satisfy the same equation as h. This weakening of
the original definition is necessary to prove that weak primality holds for the
signature of ⊕. The proof uses similar arguments to the proof of decidability
of validity of equations, and yields a process to build the terms u1 . . . un. We
illustrate the process on two examples: assume that s = x1 ⊕ x2 ⊕ x3 and t =
x2⊕x3. Then one takes the terms u1 = x1, u2 = x1⊕x2, u3 = x3, which provide
a bijection. Now, assume that s = x1 ⊕ x2 ⊕ x3 and t = x3. Then one takes the
terms u1 = x1, u2 = x2, u3 = x3 ⊕ x1 ⊕ x2, which provide a bijection.

Weak primality is sufficient to prove that every valid equation (not system of
equations) is derivable, provided that completeness holds for every D-equation.
The idea of the proof is as follows. Consider an equation s .= t with deterministic
variables x1 . . . xn of type σ1 . . . σn, and probabilistic variables y1 . . . ym of type
τ1 . . . τm. Assume that for all i ∈ I, Ai |= s

.= t. By Proposition 1, there exists

a bijection fa1...an : [[τ1]]× . . .× [[τm]]→ [[τ1]]× . . .× [[τm]] for every (a1 . . . an) ∈
[[σ1]]× · · · × [[σn]] such that:

〈〈s〉〉x 7→a,y 7→b = 〈〈t〉〉x 7→a,y 7→fa1...an (b)

for every (b1, . . . , bm) ∈ [[τ]]. By weak primality, there exist D-terms u and v
with free variables x1 . . . xn and ȳ1 . . . ȳm such that for every a1 . . . an b1 . . . bm,
we have:

– fa1...an(b1, . . . , bm) = 〈〈u〉〉x 7→a,ȳ 7→b,
– f−1

a1...an(b1, . . . , bm) = 〈〈v〉〉x7→a,ȳ 7→b.

By D-completeness, we have that ` s .= t[y := u] and ` u[ȳ := v] .= ȳ, and
hence by applying the [Bij] rule it follows that ` s .= t is provable.

6.6 Proof automation

One strategy for proving a system of equations is to apply the [Bij] rule so as to
fall back in the realm of universal algebra—i.e. of D-systems of equations. Thus,
applicability of the [Bij] rule is the key to automation. This section considers
conditions for automating the [Bij] rule. Our starting point is a mild generaliza-
tion of the [Bij] rule, which does not require that all probabilistic variables are
eliminated simulateneously (recall that VD is a shorthand for varD(s)∪varD(t)):

` s[x := u] .= t[x := x̄] ` u[x̄ := v] .= x̄

` s .= t
[Bij+]

where VD ∩ x̄ = ∅ and var(u) ∪ var(v) ⊆ (x̄ ∪ VD). The difference with the rule
[Bij] is that the side condition varR(s)∪ varR(t) ⊆ x is dropped. Informally, this
rule allows constructing the underlying bijection of Proposition 1 incrementally.
It does not increase the power of the logic, but makes it easier to use, and is
important for injectivity, as suggested below. There is a close connection between
the rule [Bij+] and matching, see e.g. [1].

Definition 11 (1-1 matching problem). Let s, t be two terms and x ⊆
varR(s) ∪ varR(t). A solution to a 1-1 matching problem is a pair (u,v) of D-
terms such that:

– varD(u) ∪ varD(v) ⊆ x̄,
– ` s[x := u] .= t[x := x̄],
– ` u[x̄ := v] .= x̄.

We let Sol(s ≺≺1−1
x t) denote the set of solutions.

The rule [Bij+] can be rephrased equivalently as:

Sol(s ≺≺1−1
x t) 6= ∅

` s .= t

Hence, for every system of equations s .= t, we have that Sol(s ≺≺1−1
x t) 6= ∅

implies that for every i ∈ I, we have Ai |= s
.= t. Thus, one can prove a system

of equations s .= t by exhibiting an element of Sol(s ≺≺1−1
x t).

Call a tuple of D-terms s injective (w.r.t. variables x and theory E) iff for
every e, ` s .= s[x := e] implies ` e .= x. Note that every vector of terms is
injective whenever E has unitary matching. Moreover, for every single variable
x and expression s in the theory of bitstrings, s is injective w.r.t. x, provided x
is provably equal to x⊕ s0, and x does not occur in s0. On the other hand, one
cannot prove injectivity for terms that contain two variables x and y: indeed,
let s be x ⊕ y. Then for every constant bitstring c one can derive x ⊕ y

.=
x⊕ y[x, y := x⊕ c, y ⊕ c] whereas we do not have x .= x⊕ c and y .= y ⊕ c. This
explains why it is important to consider the rule [Bij+] instead of [Bij].

The rule [Match] below, that uses the notion of injective term as a side
condition, is derivable:

` s[x := u] .= t[x := x̄] ` s[x := x̄] .= t[x := v]

` s .= t
[Match]if s injective w.r.t. x

Assume that ` s[x := u] .= t[x := x̄] and ` s[x := x̄] .= t[x := v]. Then,
` s[x := u][x̄ := v] .= t[x̄ := v] by substitution. That is, ` s[x := u[x̄ := v]] .=
t[x̄ := v]. By transitivity, ` s[x := u[x̄ := v]] .= s and by injectivity ` u[x̄ := v] .=
x̄. One concludes by applying the rule [Bij+].

Thus, one can automate proofs in our logic by performing matching on in-
jective terms.

7 Conclusion

We have considered a mild extension of universal algebra in which variables are
given a probabilistic interpretation. We have given a sound proof system and
useful heuristics to carry equational reasoning between such probabilistic terms;
moreover, we have provided decision procedures for specific theories that arise
commonly in cryptographic proofs.

Related work Equational logic [10] is a well-established research field, and there
has been substantial work to develop proof systems and decision procedures for
differents flavours of the logic: many-sorted, multi-sorted, etc. Yet there seems
to have been few works that consider probabilistic extensions of equational logic;
for example, P-Maude [12] is an extension of Maude that supports probabilistic
rewrite theories, an extension of term rewriting where a term rewrites to another
term with a given probability. However, none of these works seems to have been
motivated by cryptography.

Equational theories have been thoroughly studied in the setting of crypto-
graphic protocols; see e.g. [7]. In particular, computational and probabilisitc
semantics for an equational theory of exclusive or is given, in the context of a
more general approach to such semantics for general equational theories, is given
in [3]. However, this work does not consider equational logics with probabilistic
terms.

Future work The formalism of probabilistic terms seems new and deserves further
investigation in its own right. It would be interesting to develop further the proof
theory of probabilistic terms, and in particular to establish sufficient conditions
for completeness and decidability. In addition, it seems relevant to study its
relationship with other probabilistic extensions of equational logic, such as P-
Maude [12]. The connection between matching and 1-1 matching also deserves
further attention.

Our work is part of a larger effort to carry a proof-theoretical study of log-
ical methods for cryptographic proofs, and our main focus will be to exploit
our results in cryptography. Further work is required to extend the scope of
our results to other theories of interest for cryptography, see e.g. [7], including
permutations, exponentiation, etc. We also intend to extend our results to (loop-
free) probabilistic programs, and to develop automated proof methods to decide
observational equivalence between such programs. A further step would be to
consider, instead of observational equivalence, a notion of statistical distance
between programs and to develop automated approximation methods.

In the long term, our goal is to implement our methods and integrate them in
tools to reason about cryptographic schemes and protocols, e.g. CertiCrypt [2],
or our automated tool to reason about encryption [8].

Acknowledgements The authors are grateful to the anonymous reviewers for their
comments, and to Santiago Escobar, Pascal Lafourcade, and José Meseguer for
interesting discussions.

References

1. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

2. Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certi-
fication of code-based cryptographic proofs. In Proceedings of POPL’09, pages
90–101. ACM Press, 2009.

3. Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound
implementations of equational theories against passive adversaries. Inf. Comput.,
207(4):496–520, 2009.

4. M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Advances in Cryptology – EUROCRYPT’06,
volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer-
Verlag, 2006.

5. Mihir Bellare and Philipp Rogaway. Optimal asymmetric encryption – How to
encrypt with RSA. In Advances in Cryptology – EUROCRYPT’94, volume 950 of
Lecture Notes in Computer Science, pages 92–111. Springer-Verlag, 1995.

6. Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan Warinschi.
A generalization of ddh with applications to protocol analysis and computational
soundness. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in
Computer Science, pages 482–499. Springer, 2007.

7. Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of alge-
braic properties used in cryptographic protocols. Journal of Computer Security,
14(1):1–43, 2006.

8. Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yas-
sine Lakhnech. Towards automated proofs for asymmetric encryption schemes in
the random oracle model. In Proceedings of CCS’08, pages 371–380. ACM Press,
2008.

9. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the RSA assumption. Journal of Cryptology, 17(2):81–104, 2004.

10. J. A. Goguen and J. Meseguer. Completeness of many-sorted equational logic.
SIGPLAN Not., 16(7):24–32, 1981.

11. Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about crypto-
graphic constructions. Journal of Computer and Systems Sciences, 72(2):286–320,
2006.

12. Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. A rewriting based
model for probabilistic distributed object systems. In Elie Najm, Uwe Nestmann,
and Perdita Stevens, editors, FMOODS, volume 2884 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2003.

13. Tobias Nipkow. Unification in primal algebras, their powers and their varieties. J.
ACM, 37(4):742–776, 1990.

14. V. Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2008.

15. Jacques Stern. Why provable security matters? In Advances in Cryptology –
EUROCRYPT’03, volume 2656 of Lecture Notes in Computer Science, pages 449–
461. Springer-Verlag, 2003.

