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Modelling

A model is a description of a (physical, biological,
economical, etc...) phenomenon, in a given language (for
example, mathematical language).

A model is defined by a collection of variables et describes
their evolution over time:

• Predict the values of the variables
• Explain complex phenomena from simpler or more

general phenomena/principles
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Modelling steps

• Formalisation: define the input and output variables,
and the equations describing their relations. The
equations may contain parameters.

• Identification: determine the parameter values in a
given context

• Validation: verify if the model is coherent with the
observations

Simulation: solving the equations to find the relations
between the input and output variables. The resolution can
be analytical, numerical, etc.

Other usages of models: design of controllers, formal
verification of properties, code generation
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Signal and System

A signal is an application from time to a domain X : T → DX

• T can be either continuous in R, or logical/discrete N , Z

• DX specifies the signal type, R, N , Bool

A system is a signal transformer: S : (T → DX) → (T → DY )

Example 1: A modem transforms a binary signal into a continuous
electrical signal (system in open loop, i.e. the output is determined
directly from the input)
Example 2: A thermostat is a system in closed loop (with a
feedback loop from the output to the input)
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System - Input/Output

A system: establishes a cause-effect link between the input
signals (excitations) and the output signals (responses).

Among the inputs, we distinghuishes:

• the controls
• the disturbances
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Defining a dynamical system (1)

A system is a transformer of signals
S : (T → DX) → (T → DY )

To define a system

• Identify the inputs and outputs: a plant (inputs: raw
material, outputs: products), a computer (input/output:
information coming from the input/output interfaces)

• Choose the types of the input/output signals: DX

et DY

• Choose the domain of time T : Z, N (discrete time),
or R, R+ (continuous time), or collection of moments at
which some events occur
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Defining a dynamical system (2)

Define directly the function S is difficult!!

We need to use associated analysis tools

• For continuous-time systems: differential and integral
calculus

• For discrete-time systems: algebra
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Composition using block diagrams (1)

• Block diagrams: graphical description of connections
between the components. Each component is
associated with a function of signal transformation

• Connection ⇒ composition of functions
• Hierarchical, easy to understand
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Composition using block diagrams (2)

S2 : W × V → Y
S1 : U → V

V = [DV → RV ]

v ∈ Vu ∈ U

U = [DU → RU ] Y = [DY → RY ]

y ∈ Y

w = y ∈ W
W ⊆ Y

The global systeml S3 : U → Y t.q.
∀u ∈ U : S3(u) = S2(S3(u), S1(u))

The connection between y et w is called ‘feedback’. We
need to solve the equation z = S2(z, S1(z))
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Properties, characteristics of a system (1)

Linear systems vs non-linear systems
A system is linear iff it satisfies the following properties:

• Properties of additivity: If the input is x1(t), the output is
y1(t). If the input is x2(t), the output is y2(t). Thus, if the
input is x(t) = x1(t) + x2(t), the output is
y(t) = y1(t) + y2(t).

• Proprerties of homogeneity :
If the input is x1(t), the output is y1(t). Thus, for ∀α ̸= 0,
if the input is x(t) = αx1(t), the output is y(t) = αy1(t). 9



Properties, characteristics of a system (2)

Stationary systems (time-invariant)

More formally, we say that the system commutes with a delay:

S(x(t− δ)) = (Sx)(t− δ)

The linear stationary systems form a class important
historically and practically
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Properties, characteristics of a system (3)

Causal system

Principle of causality: the effects should not precede the
causes.

If the input x(t) is nul for t < 0, then the output y(t) is also nul
for t < 0.
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Properties, characteristics of a system (4)

Instantenous system vs dynamical system

Instantenous system (without memory or static): at a given
instant, the output depends only on the input at that instant

For example, y(t) = a(t)x(t) defines a static system.
Dynamical system: non-static, with memory
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Properties, characteristics of a system (5)

Dynamical system In continuous system, memory is
formalised by an integrator. The input/output relation is
described by differential equations involving y(t) and their
derivatives

y′(t) = limh→0
(y(t)− y(t− h)

h

• y′(t) : information about the growth
• y(t) : present instant
• y(t− h) : past instant
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Dynamical system - example

Consider a continuous dynamical system described by the
following first-order linear differential equation:

a1y
′(t) + a0y(t) = x(t)

y′(t) = −a0
a1

y(t) +
1

a1
x(t)

This schema is not optimised in the sense that one single
integrator would suffice 14



Representation mode

For a continuous system:

• Differential equations
• Functional representation
• State space representation
• Representation in a transformed space, for example via

the Laplace transform
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Functional representation

The functional schema is deduced from differential
equations and allows a more direct way to numerical
simulation

• It is a program in a graphical language connecting
the functional blocks

• A compiler translates this schema into a computer
program for the numerical resolution of differential
equations

• To describe a linear continuous system, we need the
following functional blocks: Gain, Sum/Substraction,
integrators (memory blocks).

• This representation is not unique
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Functional representation - example

Consider a continuous dynamical system described by:

a1y
′(t) + a0y(t) = x(t)

y′(t) = −a0
a1

y(t) +
1

a1
x(t)

Integration uses initial conditions:

y(t) =

∫ t

0

y′(t)dt+ y0
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How to obtain a functional representation (1)

Obtain systematically a functional representation associated
with a differential equation (x(t) is input and y(t) is output)

dny(t)

dtn
= −an−1

dn−1y(tn−1)

dt
− . . .− a1

dy(t)

dt
− a0y(t)

+bm
dmx(t)

dtm
+ . . .+ b1

dx(t)

dt
+ b0x(t)

Example 1:

d2y(t)

dt2
= −a1

dy(t)

dt
− a0y(t) + b0x(t)
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How to obtain a functional representation (2)

Example 2:
fa(t) as input and x(t) as output.

The system is represented by the differential equation:

mb
d3x(t)

dt3
+mk1

d2x(t)

dt2
+ b(k1 + k2)

dx(t)

dt
+ k1k2x(t) =

b
dfa(t)

dt
+ k1fa(t)
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How to obtain a functional representation (3)

d2y(t)

dt2
= −a1

dy(t)

dt
− a0y(t) + b0x(t)

We write u2(t) = y(t) and u′
1(t) = −a0y(t) + b0x(t). Hence,

u′′
2 = −a1u

′
2 + u′

1.
After the first integration u′

2 = −a1u2 + u1.
Now in integrating u′

2(t) we obtain y(t)

u′
1(t) = −a0y(t) + b0x(t)

u′
2(t) = −a1u2(t) + u1(t)

y(t) = u2(t)

20



How to obtain a functional representation (4)

d2y(t)

dt2
= −a1

dy(t)

dt
− a0y(t) + b1

dx(t)

dt
+ b0x(t)

We write u′
1(t) = −a0y(t) + b0x(t) et u2(t) = y(t). Hence,

u′′
2 = −a1u

′
2 + b1x

′ + u′
1.
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State space representation (1)

Notion of state

• To specify the function S, we often need a collection X
of internal states.

• More formally, the state is a vector containing a minimal
number of variables such that:
The initial output value y(t0) is known ⇒ for all t > t0,
y(t) can be determined uniquely if the input x(t) is
known for the interval [t0, t]

22



State space representation (2)

Example of capacitor i(t) = C dv(t)
dt

v(t) =
1

C

∫ t

−∞
i(τ)dτ =

1

C

∫ t0

−∞
i(τ)dτ +

1

C

∫ t

t0

i(τ)dτ

= v(t0) +
1

C

∫ t

t0

i(τ)dτ

• Specifying v(t0) is more “economical” than specifying all
the evolution i(t) from t = −∞ to t = t0

• The state at the instant t0 of the system must form the
memory of the system

• The state can be a representation more compact than
the complete history of the system.
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State space representation (3)

• The state at the instant t0 of the system must form the
minimal memory of the past, necessary to determine the
future

• The state represented by the internal variables provides a
complete description of the evolution of the system

• This formalism allows transforming all the linear
differential equations of order n into a system of
differential equations of order 1.

• The choice of state representation is not unique
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How to obtain a state space representation

Consider the precedent example
d2y(t)

dt2
= −a1

dy(t)

dt
− a0y(t) + b1

dx(t)

dt
+ b0x(t)

We have set

u′1(t) = −a0y(t) + b0x(t) = −a0u2(t) + b0x(t)

u′2(t) = −a1u2(t) + b1x(t) + u1(t)

y(t) = u2(t)

In a matrix form(
u′1
u′2

)
=

(
0 −a0

1 −a1

)(
u1

u2

)
+

(
b0

b1

)
x

and

y = (0 1)

(
u′1
u′2

)
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State space representation

u′ = Au+Bx

y = Cu+Dx

• The matrix A: state matrix, of dimension n× n

• The matrix B: input matrix, of dimension n× p

• The matrix C: output matrix, of dimension q × n

• The matrix D: coupling matrix, of dimension q × p
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From a structural viewpoint

System of first order (second ordre, …):

differential recurrent, automaton, object program
X(0)

X ′ = F (X,U)

Y = G(X,U)

X(0)

Xn+1 = F (Xn, Un+1)

Yn = G(Xn, Un)

Order of the system: dimension of X

Remark: not intrinsic
Finite-state system: Automaton, finit-state machine
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