System Representation and Charactization

Course Feedback Control and Real-time Systems

Master of Science in Informatics at Grenoble
Univ. Grenoble Alpes, Laboratory Verimag
thao.dangQuniv-grenoble-alpes.fr

Modelling

A model is a description of a (physical, biological, economical, etc...) phenomenon, in a given language (for example, mathematical language).

A model is defined by a collection of variables et describes their evolution over time:

- Predict the values of the variables
- Explain complex phenomena from simpler or more general phenomena/principles

Modelling steps

- Formalisation: define the input and output variables, and the equations describing their relations. The equations may contain parameters.
- Identification: determine the parameter values in a given context
- Validation: verify if the model is coherent with the observations

Simulation: solving the equations to find the relations between the input and output variables. The resolution can be analytical, numerical, etc.

Other usages of models: design of controllers, formal verification of properties, code generation

Signal and System

A signal is an application from time to a domain $X: T \rightarrow D_{X}$

- T can be either continuous in R, or logical/discrete N, Z
- D_{X} specifies the signal type, R, N, Bool

A system is a signal transformer: $S:\left(T \rightarrow D_{X}\right) \rightarrow\left(T \rightarrow D_{Y}\right)$ Example 1: A modem transforms a binary signal into a continuous electrical signal (system in open loop, i.e. the output is determined directly from the input)
Example 2: A thermostat is a system in closed loop (with a feedback loop from the output to the input)

System - Input/Output

A system: establishes a cause-effect link between the input signals (excitations) and the output signals (responses).

Among the inputs, we distinghuishes:

- the controls
- the disturbances

Defining a dynamical system (1)

A system is a transformer of signals
$S:\left(T \rightarrow D_{X}\right) \rightarrow\left(T \rightarrow D_{Y}\right)$
To define a system

- Identify the inputs and outputs: a plant (inputs: raw material, outputs: products), a computer (input/output: information coming from the input/output interfaces)
- Choose the types of the input/output signals: D_{X} et D_{Y}
- Choose the domain of time $T: Z, N$ (discrete time), or R, R_{+}(continuous time), or collection of moments at which some events occur

Defining a dynamical system (2)

Define directly the function S is difficult!!

We need to use associated analysis tools

- For continuous-time systems: differential and integral calculus
- For discrete-time systems: algebra

Composition using block diagrams (1)

- Block diagrams: graphical description of connections between the components. Each component is associated with a function of signal transformation
- Connection \Rightarrow composition of functions
- Hierarchical, easy to understand

Composition using block diagrams (2)

The global system $S_{3}: U \rightarrow Y$ t.q.
$\forall u \in U: S_{3}(u)=S_{2}\left(S_{3}(u), S_{1}(u)\right)$
The connection between y et w is called 'feedback'. We need to solve the equation $z=S_{2}\left(z, S_{1}(z)\right)$

Properties, characteristics of a system (1)

Linear systems vs non-linear systems

A system is linear iff it satisfies the following properties:

- Properties of additivity: If the input is $x_{1}(t)$, the output is $y_{1}(t)$. If the input is $x_{2}(t)$, the output is $y_{2}(t)$. Thus, if the input is $x(t)=x_{1}(t)+x_{2}(t)$, the output is $y(t)=y_{1}(t)+y_{2}(t)$.
- Properties of homogeneity :

If the input is $x_{1}(t)$, the output is $y_{1}(t)$. Thus, for $\forall \alpha \neq 0$, if the input is $x(t)=\alpha x_{1}(t)$, the output is $y(t)=\alpha y_{1}(t)$.

Properties, characteristics of a system (2)

Stationary systems (time-invariant)

More formally, we say that the system commutes with a delay:

$$
S(x(t-\delta))=(S x)(t-\delta)
$$

The linear stationary systems form a class important historically and practically

Properties, characteristics of a system (3)

Causal system

Principle of causality: the effects should not precede the causes.

If the input $x(t)$ is nul for $t<0$, then the output $y(t)$ is also nul for $t<0$.

Properties, characteristics of a system (4)

Instantenous system vs dynamical system

Instantenous system (without memory or static): at a given instant, the output depends only on the input at that instant

For example, $y(t)=a(t) x(t)$ defines a static system.
Dynamical system: non-static, with memory

Properties, characteristics of a system (5)

Dynamical system In continuous system, memory is formalised by an integrator. The input/output relation is described by differential equations involving $y(t)$ and their derivatives

$$
y^{\prime}(t)=\lim _{h \rightarrow 0} \frac{(y(t)-y(t-h)}{h}
$$

- $y^{\prime}(t)$: information about the growth
- $y(t)$: present instant
- $y(t-h)$: past instant

Dynamical system - example

Consider a continuous dynamical system described by the following first-order linear differential equation:

$$
\begin{gathered}
a_{1} y^{\prime}(t)+a_{0} y(t)=x(t) \\
y^{\prime}(t)=-\frac{a_{0}}{a_{1}} y(t)+\frac{1}{a_{1}} x(t)
\end{gathered}
$$

This schema is not optimised in the sense that one single integrator would suffice

Representation mode

For a continuous system:

- Differential equations
- Functional representation
- State space representation
- Representation in a transformed space, for example via the Laplace transform

Functional representation

The functional schema is deduced from differential equations and allows a more direct way to numerical simulation

- It is a program in a graphical language connecting the functional blocks
- A compiler translates this schema into a computer program for the numerical resolution of differential equations
- To describe a linear continuous system, we need the following functional blocks: Gain, Sum/Substraction, integrators (memory blocks).
- This representation is not unique

Functional representation - example

Consider a continuous dynamical system described by:

$$
\begin{gathered}
a_{1} y^{\prime}(t)+a_{0} y(t)=x(t) \\
y^{\prime}(t)=-\frac{a_{0}}{a_{1}} y(t)+\frac{1}{a_{1}} x(t)
\end{gathered}
$$

(b)

Integration uses initial conditions:

$$
y(t)=\int_{0}^{t} y^{\prime}(t) d t+y_{0}
$$

How to obtain a functional representation (1)

Obtain systematically a functional representation associated with a differential equation $(x(t)$ is input and $y(t)$ is output)

$$
\begin{aligned}
\frac{d^{n} y(t)}{d t^{n}}= & -a_{n-1} \frac{d^{n-1} y\left(t^{n-1}\right)}{d t}-\ldots-a_{1} \frac{d y(t)}{d t}-a_{0} y(t) \\
& +b_{m} \frac{d^{m} x(t)}{d t^{m}}+\ldots+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)
\end{aligned}
$$

Example 1:

$$
\frac{d^{2} y(t)}{d t^{2}}=-a_{1} \frac{d y(t)}{d t}-a_{0} y(t)+b_{0} x(t)
$$

How to obtain a functional representation (2)

Example 2:
$f_{a}(t)$ as input and $x(t)$ as output.

The system is represented by the differential equation:

$$
\begin{array}{r}
m b \frac{d^{3} x(t)}{d t^{3}}+m k_{1} \frac{d^{2} x(t)}{d t^{2}}+b\left(k_{1}+k_{2}\right) \frac{d x(t)}{d t}+k_{1} k_{2} x(t)= \\
b \frac{d f_{a}(t)}{d t}+k_{1} f_{a}(t)
\end{array}
$$

How to obtain a functional representation (3)

$$
\frac{d^{2} y(t)}{d t^{2}}=-a_{1} \frac{d y(t)}{d t}-a_{0} y(t)+b_{0} x(t)
$$

We write $u_{2}(t)=y(t)$ and $u_{1}^{\prime}(t)=-a_{0} y(t)+b_{0} x(t)$. Hence,
$u_{2}^{\prime \prime}=-a_{1} u_{2}^{\prime}+u_{1}^{\prime}$.
After the first integration $u_{2}^{\prime}=-a_{1} u_{2}+u_{1}$.
Now in integrating $u_{2}^{\prime}(t)$ we obtain $y(t)$

$$
\begin{aligned}
u_{1}^{\prime}(t) & =-a_{0} y(t)+b_{0} x(t) \\
u_{2}^{\prime}(t) & =-a_{1} u_{2}(t)+u_{1}(t) \\
y(t) & =u_{2}(t)
\end{aligned}
$$

How to obtain a functional representation (4)

$$
\frac{d^{2} y(t)}{d t^{2}}=-a_{1} \frac{d y(t)}{d t}-a_{0} y(t)+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)
$$

We write $u_{1}^{\prime}(t)=-a_{0} y(t)+b_{0} x(t)$ et $u_{2}(t)=y(t)$. Hence, $u_{2}^{\prime \prime}=-a_{1} u_{2}^{\prime}+b_{1} x^{\prime}+u_{1}^{\prime}$.

State space representation (1)

Notion of state

- To specify the function S, we often need a collection \mathcal{X} of internal states.
- More formally, the state is a vector containing a minimal number of variables such that:
The initial output value $y\left(t_{0}\right)$ is known \Rightarrow for all $t>t_{0}$, $y(t)$ can be determined uniquely if the input $x(t)$ is known for the interval $\left[t_{0}, t\right]$

State space representation (2)

Example of capacitor $i(t)=C \frac{d v(t)}{d t}$

$$
\begin{aligned}
v(t) & =\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau=\frac{1}{C} \int_{-\infty}^{t_{0}} i(\tau) d \tau+\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau \\
& =v\left(t_{0}\right)+\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau
\end{aligned}
$$

- Specifying $v\left(t_{0}\right)$ is more "economical" than specifying all the evolution $i(t)$ from $t=-\infty$ to $t=t_{0}$
- The state at the instant t_{0} of the system must form the memory of the system
- The state can be a representation more compact than the complete history of the system.

State space representation (3)

- The state at the instant t_{0} of the system must form the minimal memory of the past, necessary to determine the future
- The state represented by the internal variables provides a complete description of the evolution of the system
- This formalism allows transforming all the linear differential equations of order n into a system of differential equations of order 1.
- The choice of state representation is not unique

How to obtain a state space representation

Consider the precedent example

$$
\frac{d^{2} y(t)}{d t^{2}}=-a_{1} \frac{d y(t)}{d t}-a_{0} y(t)+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)
$$

We have set

$$
\begin{aligned}
u_{1}^{\prime}(t) & =-a_{0} y(t)+b_{0} x(t)=-a_{0} u_{2}(t)+b_{0} x(t) \\
u_{2}^{\prime}(t) & =-a_{1} u_{2}(t)+b_{1} x(t)+u_{1}(t) \\
y(t) & =u_{2}(t)
\end{aligned}
$$

In a matrix form

$$
\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\left(\begin{array}{ll}
0 & -a_{0} \\
1 & -a_{1}
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{b_{0}}{b_{1}} x
$$

and

$$
y=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}
$$

State space representation

$$
\begin{aligned}
u^{\prime} & =A u+B x \\
y & =C u+D x
\end{aligned}
$$

- The matrix A : state matrix, of dimension $n \times n$
- The matrix B : input matrix, of dimension $n \times p$
- The matrix C : output matrix, of dimension $q \times n$
- The matrix D : coupling matrix, of dimension $q \times p$

From a structural viewpoint

System of first order (second ordre, ...):

differential	recurrent, automaton, object program
$X(0)$	
$X^{\prime}=F(X, U)$	$X_{n+1}=F\left(X_{n}, U_{n+1}\right)$
$Y=G(X, U)$	$Y_{n}=G\left(X_{n}, U_{n}\right)$

Order of the system: dimension of X
Remark: not intrinsic
Finite-state system: Automaton, finit-state machine

