Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

Tools and Algorithms for the Construction and Analysis of
Systems: An STTT special section

Preface by the section editor: Susanne Graf*

The date of receipt and acceptance will be inserted by the editor

Abstract. The papers in this special section appeared
originally in the proceedings of the 2000 edition of the
conference “Tools and Algorithms for the Construction
and Analysis of Systems” (TAcAS) hold in Berlin as
a constituent event of the European joint conferences
on Theory and Practice of Software. All papers present
tools relevant in the context of validation of systems.
The first three focus on extensions or particular applica-
tions of model-checking techniques, whereas the fourth
one is about integration of design tools with validation
tools, in particular theorem provers and model-checkers.

Key words:

Goals: conformance testing, model-checking, performance
evaluation, formal verification

Techniques: static analysis, slicing, Markov chains, par-
tial order reductions, theorem proving, tool integration

Application domains: asynchronous systems, probabilis-

tic systems, security protocols, component based approaches

This special section on Tools and Algorithms for the
Construction and Analysis of Systems presents papers
which have originally been presented at the sixth edi-
tion of this international conference. TACAS is a forum
for researchers, developers and users interested in rig-
orously based tools for the construction and analysis of
systems. The conference intends to bridge the gaps be-
tween different communities - including but not limited
to those devoted to formal methods, real-time, software
engineering, asynchronous systems, hardware, theorem
proving and programming languages - that traditionally
had little interaction but share common interests in mod-

* VERIMAG, 2 avenue de Vignate, F-38610 Grenoble-Giéres,
susanne.graf@imag.fr, http://www-verimag.imag.fr/ graf

els and techniques at the basis of tool developments.

All four papers of this special section present a tool
for the validation of systems. Each one has its particu-
lar application domain, such as conformance testing of
asynchronous systems, model-checking of security pro-
tocols and probabilistic systems, but they share com-
mon formalisms, such as communicating finite state ma-
chines, temporal logic, labelled transition systems, and
common techniques for mastering problems such as state
space explosion. The first three papers present exten-
sions or particular applications of model-checking tech-
niques, whereas the last one presents a framework for
integrating various verification tools, in particular the-
orem provers in a platform providing or facilitating the
implementation of adequate interfaces.

The first paper on “Using static Analysis to improve
automatic test generation” proposes a combination of
static analysis and model-checking techniques in the con-
text of automatic test case generation. Static analysis
allows to extract a large spectrum of properties of pro-
grams with a relatively low computational complexity.
Classic application domains are validation and code op-
timization. Here, static analysis methods are applied to
particular programs representing communicating systems
interacting with each other and an external (arbitrary)
environment. The generated properties are used, not to
optimize the executed code but to minimize the under-
lying semantic model (state graph) of the system, nev-
ertheless fully preserving all its relevant properties. As
a consequence, the proposed static analysis methods are
useful for any tool based on model exploration, in par-
ticular model-checking tools such as SPIN[8], CADP|7]
or IF[3,4]. Automatic test case generation is a particu-
lar application domain of model-checking where instead
of an open system reacting to an arbitrary environment,
only particular sequences of interactions between the en-
vironment and the system, as specified in test objectives,



2 Susanne Graf: Special Section on Tools and Algorithms for the Construction and Analysis of Systems

are relevant. In this context the proposed slicing meth-
ods are particularly effectful, as sometimes large portions
of the overall system can be eliminated before the ac-
tual model exploration. The reductions are obtained by
means of syntactic transformations of the original sys-
tem description given in the IF intermediate representa-
tion from which the tool TGV [6] generates tests.

Any tool that can handle systems described in IF can
directly profit from the implemented simplifications. On
the other hand, for systems described in high level design
languages such as SDL[9] or UML, tests can be generated
thanks to translators from these formalisms into the IF
intermediate representation.

The second paper concerns “A tool for model-checking
Markov chains’. Here, model-checking techniques are
extended for probabilistic models represented by discrete
or continuous Markov chains, that is Kripke structures
in which transitions are decorated with probabilities in
the form of the rate of an exponential distribution. Prop-
erties are expressed in a very general temporal logic, an
extension of CSL[2], in which the CTL[5] path quanti-
fiers are replaced by probablity measures over paths, and
which has a time bound version of the until operator as
in ToTL[1]. The logic is enhanced with a steady state
operator allowing to quantify the likelyhood of staying
in a given set of states on the long run, which can be
considered as a probabilistic generalisation of the always
operator.

Model-checking of CSL formulae is an extension of
the iterative model-checking algorithm of CTL requiring
in addition the computation of the probability of (sets
of) paths. The tool implements several direct and itera-
tive methods for the computation of these probabilities,
as their efficiency is quite example dependant.

The implemented model-checker has a modular struc-
ture, where a verification manager controls the order of
the verification steps and the method to be applied at
each step. The tool provides also interfaces to various
high-level design languages, such as Queuing Networks
or stochastic versions of Petri Nets, and in principle also
SDL or UML. Nevertheless, for specifications described in
high level formalisms, one has to pay the price of state
explosion due to evaluation of all variables or agressive
abstraction because of the low-level nature of the Markov
chain model.

The third paper on “Efficient Verification of Secu-
rity Protocols using Partial Order Reductions’ is about
specializing known model-checking methods to the par-
ticular domain of security protocols, where messages can
be encrypted by means of keys. Verification is concerned
with security related properties such as privacy of coded
information, authentification, anonymity, but also with
functional safety properties of the protocol itself. The ap-
proach is based on a tool taylored towards a particular
framework of security protocols and their properties. In
a security system, the communication medium is consid-
ered to be in the hand of an intruder who knows all sent

messages and can use them to build new ones using the
keys known to him. The protocol entities are modeled by
a set of agents such that any bounded number of paral-
lel interacting sessions can be modelled. Properties are
expressed by means of a past time temporal logic with a
set of atomic propositions adapted to security systems,
including predicates expressing the fact that agents have
knowledge of messages. This allows to express approxi-
mations of the ususal properties of this type of systems.
Instead of using a general purpose model-checker, the
authors made the choice to implement a particular one,
exploiting the structure and laws of security systems in
order to improve its complexity. In particular partial or-
der reduction plays an important role, as at any time any
process can accept a message. Thus, the particular struc-
ture of the considered systems, and the restriction to
safety properties, allows to go beyond the standard par-
tial order reductions by systematically taking send ac-
tions as early as possible, similar as in [11,10]. Neverthe-
less, their is also large amount of true non-determinism,
as the messag that any protocol instance can receive at
any time, is anyone which can be constructed from mes-
sages already sent by any instance, satisfying also the
template of the expected message.

The fourth paper, describes the “Prosper Toolkit’, a
platform which allow to integrate a wide range of ver-
ification tools, including theorem provers, decision pro-
cedures and model-checkers by means of several appli-
cation program interfaces (APpI). It also facilitates the
incorporation of prove engines into existing application.
Such an approach is highly interesting in order to make
possible the integration of a large range of formal meth-
ods in any development process.

It is more ambitious compared to other tool-sets in-
tegrating functionalities of different tool-sets in the area
of validation. The existing open validation platforms -
such as CADP[7] and IF[4] - have API’s for different rep-
resentations of models; moreover, all inputs, outputs and
any information useful for later use is stored in files in
documented formats (shared between tools), and the in-
teraction is possible in a blackbox commandline fashion
with a large choice of commands or options. A collabora-
tion platform like ET1[12] is based on the same blackbox
view of tools and allows the user to define new function-
alities by means of sequences of existing functions using
the signatures of all functions and a topology for more
abstract reasoning about the to be combined functions.

Theorem provers can in general not reasonably be
combined using such a blackbox view, as the useful in-
formation is not necessarilly stored in an exploitable for-
mat. Existing validation environments combining theo-
rem provers and model-checkers, are indeed embedded
within a theorem prover by calling all external tools from
within the theorem prover in a blackbox fashion.

The approach followed here allows to combine several
tools without necessarily using blackbox interaction. The
interaction between tools is defined via an interface lan-



Susanne Graf: Special Section on Tools and Algorithms for the Construction and Analysis of Systems 3

guage taylored for exchanges between an application and
a theorem prover allowing to communicate and manipu-
late items like terms, assertions, proofs and tactics. For
each tool to be integrated, it is necessary to define an
appropriate AP1 defining the set of functionalities made
visible to the outside.

The presented toolkit is much more focussed than
standard component architectures such as CORBA, but
it could profit from such an architecture for the actual
communication between different tools. The presented
approach is well suited for the collaboration between
tools handling expressions and proofs. For the combi-
nation of tools working on different representations of
models (which are of important size), there seems no
way around translations between formats (or their stan-
dardisations).

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking
for probabilistic real-time systems. In 18th International
Colloquium on Automata, Languages and Programming
(ICALP), LNCS 510, July 1991.

2. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model
checking continuous markov chains. ACM Transactions
on Computational Logic, 1(1), 2000.

3. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P.
Krimm, and L. Mounier. IF: An intermediate representa-
tion and validation environment for timed asynchronous
systems. In Proceedings of Symposium on Formal Meth-
ods 99, Toulouse, number 1708 in LNCS. Springer Verlag,
September 1999.

4. M. Bozga, L. Ghirvu, S. Graf, and L. Mounier. IF: A val-
idation environment for timed asynchronous systems. In
Proceedings of Conference on Computer Aided Verifica-
tion, CAV’00, Chicago, number 1855 in LNCS. Springer
Verlag, June 2000.

5. E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic
verification of finite state concurrent systems using tem-
poral logic specification: a practical approach. In 10th
ACM Symposium on Principles of Programming Lan-
guages (POPL83), 1983. Complete version published in
ACM TOPLAS, 8(2):244-263, April 1986.

6. J.ClL. Fernandez, C. Jard, T. Jéron, and C. Viho. An
Experiment in Automatic Generation of Test Suites for
Protocols with Verification Technology. Science of Com-
puter Programming, 29, 1997.

7. Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat,
Radu Mateescu, Laurent Mounier, and Mihaela Sighire-
anu. Cadp (caesar/aldebaran development package): A
protocol validation and verification toolbox. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Proceed-
ings of the 8th Conference on Computer-Aided Verifica-
tion (New Brunswick, New Jersey, USA), volume 1102
of LNCS, pages 437—440. Springer Verlag, August 1996.

8. G. J. Holzmann. The model-checker SPIN. IEEE Trans.
on Software Engineering, 23(5), 1999.

9. ITU. Sdl specification and description language. Inter-
national standard, ITU, 1996.

10. J.P. Krimm and L. Mounier. Compositional State Space
Generation with Partial Order Reductions for Asyn-
chronous Communicating Systems. In S. Graf and
M. Schwartzbach, editors, Proceedings of TACAS’2000
(Berlin, Germany), volume 1785 of LNCS, pages 266—
282. Springer, March 2000.

11. V. Shmatikov and U. Stern. Efficient finite-state analysis
for large security systems.

12. B. Steffen, T. Margaria, and V. Braun. The electronic
integration platform: concepts and design. STTT (Soft-
ware Tools and Technology Transfer), 1(1-2), December
1997.



