
Embedded Control:

From Asynchrony to Synchrony and Back

Paul Caspi Verimag Laboratory

caspi@imag.fr http://www-verimag.imag.fr

Crisys Esprit Project

http://borneo.gmd.de/˜ap/crisys/

A historical perspective based on the observation of several real-world systems during the

Crisys Esprit project:

� The Airbus “fly-by-wire” system.� Schneider’s safety control and monitoring systems for nuclear plants.� Siemens’ letter sorting machine control,

and many other distributed safety-critical control systems.

Overview

� Real-time asynchronous languages.� Synchronous practices.� The formalisation of these practices.� Real-time and distribution: the need for robustness.� Asynchronous synchronous programming.

Basic Needs of the Domain

� Parallelism:

– between the controller and the controlled device

– between the several degrees of freedom to be controlled at the same time� Guaranteed bounds :

– on memory

– on execution times� Distribution

The Computer Science Answer:

Real-Time Kernels and Languages

Based on the concurrency tradition of operating systems:

� Synchronisation: semaphores, monitors, sequential processes,� Communication: shared memory, messages,� Synchronisation + communication: queues, rendez-vous.

Examples:

� CSP, OCCAM,� ADA tasking� real-time OS

The Evolution of Practices

From analog boards to computers:

Board
Analog

Clock

A/D D/AComputer

periodic clocks

synchronous programs

Periodic Synchronous Programming

initialize state;

loop each clock tick

read other inputs;

compute outputs and state;

emit outputs

end loop

Practical Interest

� Perfectly matches:

– the need for real-time integration of differential equations:

forward, fixed step methods,

– the mathematical theory of sampled control systems,

– the theory of switching systems.� Safety, simplicity and efficiency:

– no OS, a single interrupt (the real-time clock),

no context saving (the interrupt should occur at idle time)

– bounded memory, bounded execution time.

�
Easy validation, certification

Generalisation: Synchronous Languages

initialize state;

loop each input event

read other inputs;

compute outputs and state;

emit outputs

end loop

Several styles (imperative, data-flow,...)

Compiled parallelism (instead of concurrent

most applications of synchronous programming are actually periodic ones.

Theory: SCCS (Milner)

Based on the synchronous product of automata:

product asynchronous synchronous

� �
� 	�

� �
� �
�
� �

� ������ � 	
� � ���
�
 � �� �� � ���

��� � 	�
��

� ���
� 	
�
��

CCS (asynchronous) is a sub-theory of SCCS

Provides a theoretical justification of practice:

Synchronous primitives are stronger, programming is easier

Further Justifications (Berry)

� No added non determinism:

– easier debugging and test

– less state explosion in formal verification� Easier temporal reasoning:

– synchronous steps provide a “natural” notion of logical time:

in a concurrency framework delay 5 seconds means “a least 5 seconds”

and is priority dependent.

– Easier roll-back and recovery

Provisional Conclusion 1:

These advantages seem conclusive and justify the practices.

But . . .

. . . Real-Time is not Logical Time: Sampling Tuples

A possible sampling

�
� � ��� � �

. . . Real-Time is not Logical Time: Sampling Tuples

Another possible sampling

�
� � �! �!

Non determinism, possible race

This was considered a side effect, but practitioners must take it into account.

. . . Real-Time is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a non robust solution :" #
$ #

. . . Real-Time is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a robust solution :% &
' &

% waits for ' to go down before going up and conversely.

no race !

. . . Distribution

From networks of analog boards to local area networks

Board
Analog

Board
Analog

Clock

A/D Computer Serial

Clock

D/AComputerSerial

Clock

A/D Computer

Clock

D/AComputer

Bus

independent periodic clocks

synchronous programs

Interest

Autonomy, robustness

(Each computer is a complete one, including its own clock and even possibly its own

power supply.

(Communication between computers is non-blocking, based on periodic reads and

writes, akin to periodic sampling.

Some Consequences of Quasi Periodicity

)

)
* * * * *+ + + + +

Worst situation: reads occur just before writes , Bounded communication delays

Absolute time is lost: time-outs better than time ???

Sampling errors: data loss or duplication from time to time

Bounded Fairness

Provisional Conclusion 2

Real-time and distribution require accommodating some asynchrony within the

synchronous programming paradigm.

In the sequel we investigate some tracks taken by practioners in this purpose.

Asynchronous-Synchronous Programming:

How to understand it ?

- Continuous Systems

- Non Continuous Systems

- (Mixed Systems)

Uniformly Continuous Signals

η(ε)

ε

x x’

.0/�132 4 5 67132 4 . 8 4 8 9 4 : 8<;!8 9 : =36 >@?A: BDC 8 E�;FBDC 8 9 E : =G/

Bounded delays yield bounded errors

Uniformly Continuous Systems

System

e

h(e)

H0I�JLK M N OPJLK M HRQ�M QRS M T T Q7UFQRS T T VXWLO7YAT T Z�[Q0\�U]ZD[QRS \ T T VXWGI

Bounded errors yield bounded errors

But . . .

Even very simple controllers are not uniformly continuous.

PID for instance

Controller

h

Bounded errors do not yield bounded errors

Stabilized Systems

The closed-loop system computes uniformly continuous signals

e

h(e)

Controller
Plant

U X

Z

Y

Bounded delays yield bounded errors

Non Continuous Systems

^ Combinational Systems

^ Robust Sequential Systems

^ Sequential Systems

Uniform Bounded-Variability

There exists a minimum stable time _0` associated with a signal a .

a bc dXe _ ` bc
dgf�e _ `

But . . .

Delays on tuples do not yield delayed tuples

y

x
x’

y’
D

d

Solution : Confirmation functions

Confirmation Functions

When a component of a tuple changes, wait for some hPi�j kmlFh7i�n o time before taking it

into account.

If pRq , r q are s h i�n oRt h i�j k u bounded images of p and r ,
then v w x�y z { |]s p q t r q u is a delayed image of s p t r u
allows to retrieve the continuous framework

Robust Sequential Systems

idea : avoid (critical) races

} between state variables : order insensitivity

} between inputs : confluence

Property checking

Asynchronous programming style

Asynchronous Programming Style

~ �
� �

Insert causality chains disallowing races:~ waits for � to go down before going up and conversely.

�R� �<��R� �<~�� � � � � �0� �D� � � � � ~ � �0� �<~ � � � �

Provisional Conclusion 3

� Some insight on techniques used in practice.

� Maybe useful for designers and certification authorities

(Crisys Esprit Project)

� An attempt to draw the attention of the Computer Science community on these

important problems.

Questions

� Are there linguistic ways to robustness (asynchronous-synchronous languages)?� How to safely encompass some event-driven computations within the approach?� Is there a common framework encompassing both theories?

continuous discrete

uniformly continuous signals uniform bounded variability

uniformly continuous functions robust systems

unstable systems sequential non robust systems

How to formalize it

Net View on chain - eq_chain

c1

c2

c3

x
f1

f2 f3
z

FBY

FBY

FBY

FBY

same_period(c1 , c2) and same_period(c2 , c3) and same_period(c3 , c1)

Synchronous simulation, test and verification tools apply

Efficiency issues ?

Mixed Systems

Example : Threshold crossing

S

e

C

t

t

Relates errors and delays : �P��� �� �m� � � � �
This analysis too should not be skipped

Concurrency

Actual Practices (Airbus)

P1 P1 P2.1P3.1P2.1P1 P2.2 P3.2 P3.3

P3.1 P3.2 P3.3

P2.1 P2.2

6hz
P1 P2 P3

2hz3hz

Concurrency

A Crisys Proposal: earliest deadline preemptive scheduling

P1 P1P1 P2 P3 P3* P2

Schedulability condition �
� �D� � �

�7�g� �� �¡ G¢
Generalizes the synchronous program execution condition�P�@� �

Concurrency

Exact functional semantics is guaranteed as soon as

Slow processes communicate with fast processes through a slow clock unit delay

£ ¤ ¥ ¤ ¥ ¤¦ ¦R§ ¦�¨ ¦ © ¦Rª ¦R«¦g¬@£ ¦R§ ¦ © ¦R«¥D­ ¦g¬@£ ® ¥�­ ¦R§ ® ¥D­ ¦R© ® ¥�­ ¦ « ®¯@°G¯ § ±7¥D­ ¦g¬@£ ® ¯ § ¥D­ ¦R§ ® ¥�­ ¦ © ®­ ¯ § ² ¯ ®0³@£ ¯ § ¯ § ¥D­ ¦ § ® ¥D­ ¦ § ® ¥�­ ¦ © ®

Non Robust Sequential Systems

require either soft or hard synchronization.

Time Triggered Architecture for instance.

