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A historical perspective based on the observation of several real-world systems during the

Crisys Esprit project:

® The Airbus “fly-by-wire” system.
® Schneider’s safety control and monitoring systems for nuclear plants.

® Siemens’ letter sorting machine control,

and many other distributed safety-critical control systems.



Overview

Real-time asynchronous languages.

Synchronous practices.

The formalisation of these practices.

Real-time and distribution: the need for robustness.

Asynchronous synchronous programming.



Basic Needs of the Domain

e Parallelism:

— between the controller and the controlled device

— between the several degrees of freedom to be controlled at the same time
e Guaranteed bounds :

— on memory

— on execution times

e Distribution



The Computer Science Answer:

Real-Time Kernels and Languages

Based on the concurrency tradition of operating systems:

® Synchronisation: semaphores, monitors, sequential processes,
e Communication: shared memory, messages,

® Synchronisation + communication: queues, rendez-vous.
Examples:

e CSP, OCCAM,
® ADA tasking

e real-time OS



The Evolution of Practices

From analog boards to computers:
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periodic clocks

synchronous programs



Periodic Synchronous Programming

initialize state;
loop each clock tick
read other 1nputs;
compute outputs and state;

emit outputs

end loop



Practical Interest

e Perfectly matches:

— the need for real-time integration of differential equations:

forward, fixed step methods,
— the mathematical theory of sampled control systems,

— the theory of switching systems.
e Safety, simplicity and efficiency:

— no OS, a single interrupt (the real-time clock),

no context saving (the interrupt should occur at idle time)

— bounded memory, bounded execution time.

—> Easy validation, certification



Generalisation: Synchronous Languages

initialize state;
loop each i1nput event
read other 1nputs;
compute outputs and state;

emit outputs

end loop

Several styles (imperative, data-flow,...)
Compiled parallelism (instead of concurrent

most applications of synchronous programming are actually periodic ones.



Theory: SCCS (Milner)

Based on the synchronous product of automata:

product asynchronous synchronous
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CCS (asynchronous) is a sub-theory of SCCS
Provides a theoretical justification of practice:

Synchronous primitives are stronger, programming is easier



Further Justifications (Berry)

e No added non determinism:

— easier debugging and test

— less state explosion in formal verification

e Easier temporal reasoning:

— synchronous steps provide a “natural” notion of logical time:

in a concurrency framework delay 5 seconds means “aleast5 seconds”

and is priority dependent.

— Easier roll-back and recovery



Provisional Conclusion 1:

These advantages seem conclusive and justify the practices.

But...



... Real-Time is not Logical Time: Sampling Tuples

A possible sampling




... Real-Time is not Logical Time: Sampling Tuples

Another possible sampling
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Non determinism, possible race

This was considered a side effect, but practitioners must take it into account.



... Real-Time is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a hon robust solution :




... Real-Time is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a robust solution :

Z

z waits for ¢ to go down before going up and conversely.

Nno race !



From networks of analog boards to local area networks

... Distribution

Analog Analog
Board Board
Clock| Clock
A/ID Computer Serial Serial Computer D/A
Clock; l l Cloc
Y
A/D Computer Computer D/IA

Bus

independent periodic clocks

synchronous programs



Interest

Autonomy, robustness

e Each computer is a complete one, including its own clock and even possibly its own

power supply.

e Communication between computers is non-blocking, based on periodic reads and

writes, akin to periodic sampling.



Some Consequences of Quasi Periodicity

-

Worst situation: reads occur just before writes = Bounded communication delays

Absolute time is lost: time-outs better than time 2?7?77

Sampling errors: data loss or duplication from time to time

Bounded Fairness



Provisional Conclusion 2

Real-time and distribution require accommodating some asynchrony within the

synchronous programming paradigm.

In the sequel we investigate some tracks taken by practioners in this purpose.



Asynchronous-Synchronous Programming:

How to understand it ?

e Continuous Systems

e Non Continuous Systems

¢ (Mixed Systems)



Uniformly Continuous Signals

Ve > 0,30 > 0,V t, |t — | < 1w = |a(t) — z(t)| < €

Bounded delays yield bounded errors



Uniformly Continuous Systems

e I\A

System
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Ve > 0,3n > 0,Vz,z', ||z — 2'||oo <= ||f(2) — f(2")]]|eo < €

Bounded errors yield bounded errors



But ...

Even very simple controllers are not uniformly continuous.

PID for instance
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Bounded errors do not yield bounded errors
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Stabilized Systems

The closed-loop system computes uniformly continuous signals
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Bounded delays yield bounded errors




Non Continuous Systems

e Combinational Systems

® Robust Sequential Systems

® Sequential Systems



Uniform Bounded-Variability

There exists a minimum stable time 1, associated with a signal x.

A>T,




But ...

Delays on tuples do not yield delayed tuples

Solution : Confirmation functions




Confirmation Functions

When a component of a tuple changes, wait for some A, — A\min time before taking it

Into account.

If ', y" are (Ammin, Amaz) bounded images of x and ,

then con firm(z',y’) is a delayed image of (z,y)

allows to retrieve the continuous framework



Robust Sequential Systems

idea : avoid (critical) races

® between state variables : order insensitivity

® between inputs : confluence

Property checking

Asynchronous programming style



Asynchronous Programming Style

Y

Insert causality chains disallowing races:

z waits for ¢ to go down before going up and conversely.

not
J ((—y—>not y)* (— 2 = not 2)*)"
not z
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Provisional Conclusion 3

® Some insight on techniques used in practice.

e Maybe useful for designers and certification authorities

( Crisys Esprit Project)

e An attempt to draw the attention of the Computer Science community on these

important problems.



Questions

® Are there linguistic ways to robustness (asynchronous-synchronous languages)?
e How to safely encompass some event-driven computations within the approach?

® |s there a common framework encompassing both theories?

continuous discrete
uniformly continuous signals uniform bounded variability
uniformly continuous functions robust systems
unstable systems sequential non robust systems




How to formalize it
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Synchronous simulation, test and verification tools apply

Efficiency issues ?



Mixed Systems

Example : Threshold crossing
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Relates errors and delays : 7 =

This analysis too should not be skipped



Actual Practices (Airbus)

Concurrency
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Concurrency

A Crisys Proposal: earliest deadline preemptive scheduling

P1 P2 P3 P1 P3* P1

Schedulability condition
WET,;

1
T; <

t=1,n

Generalizes the synchronous program execution condition
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Concurrency
Exact functional semantics is guaranteed as soon as

Slow processes communicate with fast processes through a slow clock unit delay
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Non Robust Sequential Systems

require either soft or hard synchronization.

Time Triggered Architecture forinstance.



