
Introduction to Synchronous Programming in

Control
Paul Caspi

Verimag (CNRS)

A historical perspective based on the observation of several
real-world systems during the Crisys Esprit project:

• The Airbus “fly-by-wire” system.

• Schneider’s safety control and monitoring systems for nuclear
plants.

• Siemens’ letter sorting machine control,

and many other distributed safety-critical control systems.

http://www-verimag.imag.fr

Overview

• Basic needs of the domain

• Real-time asynchronous languages

• Synchronous practices

• The formalisation of these practices

Basic Needs of the Domain

• Parallelism:

– between the controller and the controlled device

– between the several degrees of freedom to be controlled at
the same time

• Guaranteed bounds :

– on memory

– on execution times

• Distribution

The Computer Science Answer:

Real-Time Kernels and Languages

Based on the concurrency tradition of operating systems:

• Synchronisation: semaphores, monitors, sequential processes,

• Communication: shared memory, messages,

• Synchronisation + communication: queues, rendez-vous.

Examples:

• CSP, OCCAM,

• ADA tasking

• real-time OS

The Evolution of Practices

From analog boards to computers:

--

?? ?

- - - -A/D

Clock

Computer D/A

Analog Board

periodic clocks

synchronous programs

Periodic Synchronous Programming

initialize state;

loop each clock tick

read other inputs;

compute outputs and state;

emit outputs

end loop

Practical Interest

• Perfectly matches:

– the need for real-time integration of differential equations:

forward, fixed step methods,

– the mathematical theory of sampled control systems,

– the theory of switching systems.

• Safety, simplicity and efficiency:

– almost no OS, a single interrupt (the real-time clock),

no context saving (the interrupt should occur at idle time)

– bounded memory, bounded execution time.

⇒ Easier validation, certification

Generalisation: Synchronous Languages

initialize state;

loop each input event

read other inputs;

compute outputs and state;

emit outputs

end loop

Several styles (imperative, data-flow,...)

Compiled parallelism (instead of concurrent

most applications of synchronous programming are actually
periodic ones.

Theory: SCCS (Milner)

Based on the synchronous product of automata:

product asynchronous synchronous

����A
?
a

����B
|| ��
��
C

?
b

����D
����AC
�

�
�	

a
@
@
@R

b

����BC ����AD
@
@
@R

b �
�
�	

a

����BD

����AC

?
ab

����BD

CCS (asynchronous) is a sub-theory of SCCS
Provides a theoretical justification of practice: Synchronous
primitives are stronger, programming is easier

Further Justifications (Berry)

• No added non determinism:

– easier debugging and test

– less state explosion in formal verification

• Easier temporal reasoning:

– synchronous steps provide a “natural” notion of logical time:

in a concurrency framework delay 5 seconds means
“a least 5 seconds” and is priority dependent.

– Easier roll-back and recovery

Conclusion 1:

These advantages seem conclusive and justify the practices.

But . . .

