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A historical perspective based on the observation of several
real-world systems during the Crisys Esprit project:

e The Airbus “fly-by-wire” system.

e Schneider’s safety control and monitoring systems for nuclear
plants.

e Siemens’ letter sorting machine control,

and many other distributed safety-critical control systems.


http://www-verimag.imag.fr
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The Origins of Synchronous Programming

Synchronous Programming and Real-Time

Real-Time Validation

Understanding Synchronous Programming in Control



The Origins of Synchronous Programming

Basic needs of the domain
Real-time asynchronous languages
Synchronous practices

The formalisation of these practices



Basic Needs of the Domain

e Parallelism:
— between the controller and the controlled device
— between the several degrees of freedom to be controlled at
the same time
e Guaranteed bounds :
— on memory

— 0on execution times

e Distribution



The Computer Science Answer:
Real-Time Kernels and Languages

Based on the concurrency tradition of operating systems:
e Synchronisation: semaphores, monitors, sequential processes,
e Communication: shared memory, messages,
e Synchronisation + communication: queues, rendez-vous.
Examples:
e CSP, OCCAM,
e ADA tasking

e real-time OS



From analog boards to computers:

Clock

The Evolution of Practices

Analog
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periodic clocks

synchronous programs



Periodic Synchronous Programming

Initialize state;
loop each clock tick
read other Inputs;
compute outputs and state;

emit outputs

end loop



Practical Interest

e Perfectly matches:

— the need for real-time integration of differential equations:
forward, fixed step methods,

— the mathematical theory of sampled control systems,

— the theory of switching systems.

e Safety, simplicity and efficiency:

— almost no OS, a single interrupt (the real-time clock),
no context saving (the interrupt should occur at idle time)

— bounded memory, bounded execution time.

= Easier validation, certification



Generalisation: Synchronous Languages

initialize state;

loop each input event
read other inputs;
compute outputs and state;
emit outputs

end loop

Several styles (imperative, data-flow,...)
Compiled parallelism (instead of concurrent)

most applications of synchronous programming are actually
periodic ones.



Theory: SCCS (Milner)

Based on the synchronous product of automata:

product asynchronous synchronous

lab

CCS (asynchronous) is a sub-theory of SCCS
Provides a theoretical justification of practice: Synchronous
primitives are stronger, programming Iis easier



Further Justifications (Berry)

e No added non determinism:
— easler debugging and test

— less state explosion in formal verification

e Easier temporal reasoning:

— synchronous steps provide a “natural” notion of logical time:

In a concurrency framework delay 5 seconds means
“a least 5 seconds” and Is priority dependent.

— Easier roll-back and recovery



Conclusion 1:

These advantages seem conclusive and justify the practices.

But...



Synchronous Programming and Real-Time

e Real-Time is not Logical Time

e Distribution



Real-Time Is not Logical Time: Sampling Tuples

A possible sampling




... Real-Time is not Logical Time: Sampling Tuples

Another possible sampling

X X/ X//

Non determinism, possible race

This was considered a side effect, but practitioners must take it into
account.



Real-Time Is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a non robust solution :




... Real-Time Is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a robust solution :

z walits for y to go down before going up and conversely.

no race !



Races

A race takes place when two signals can change at the same time
or not, depending on variable delays.

A race is critical If different states can be reached, depending on
which signal wins the race.

A critical race A non critical race
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... Distribution

From networks of analog boards to local area networks
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Independent periodic clocks

synchronous programs



Interest

Autonomy, robustness

e Each computer is a complete one, including its own clock and
even possibly its own power supply.

e Communication between computers is non-blocking, based on
periodic reads and writes, akin to periodic sampling.



Some Conseguences of Quasi Periodicity

I
.

Worst situation: reads occur just before writes = Bounded
communication delays
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Absolute time Is lost: time-outs better than time ?7?7?

Sampling errors: data loss or duplication from time to time

Bounded Fairness



Provisional Conclusion 2

For robustness reasons, real-time and distribution require
accommodating some asynchrony within the synchronous
programming paradigm.

In the sequel we investigate some tracks taken by practioners in
this purpose.



Real-Time Validation

Simulation, test, formal verification

e General Framework

e Centralised case

e Distributed case



General Framework

Observer theory (Halbwach, Raymond 93) : safety properties can
be expressed as synchronous programs outputing the truth value
of the property.
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Centralised Case

Take Into account the sampling non determinism
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Distributed Case

Take into account distribution
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Conclusion

Synchronous programming validation tools apply to real-time and
distributed control systems.

Efficiency issues ?

How to understand and construct robust systems ?



Asynchronous-Synchronous Programming:
How to understand it ?

e Continuous Systems
e Non Continuous Systems

e (Mixed Systems)



Uniformly Continuous Signals

n, > 0,Ve > 0, Vi, t', [t —t'| < nu(e) = |x(t) —z(t)| < e

Bounded delays yield bounded errors



Uniformly Continuous Systems
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Bounded errors yield bounded errors



But ...

Even very simple controllers are not uniformly continuous.

PID for instance
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Bounded errors do not yield bounded errors



Stabilized Systems

The closed-loop system computes uniformly continuous signals
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Bounded delays yield bounded errors



Doubts ...

This casts a doubt on two wishful thoughts:

e composability

— system properties are the mere addition of sub-system ones

e Separation of concerns:
— automatic control people specify
— computer science people implement

Critical control systems require a tight cooperation between both
people



Non Continuous Systems

e Combinational Systems
e Robust Sequential Systems

e Sequential Systems



Uniform Bounded-Variability

There exists a minimum stable time 7, associated with a signal x.

A>T,

A
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But ...

Delays on tuples do not yield delayed tuples

Solution : Confirmation functions




Confirmation Functions

When a component of a tuple changes, wait for some ¢6,, — ¢,, time
before taking it into account.

Yy Yy S

If 2, o/ are (6,,,57) bounded images of = and y, then
confirm(x’,y') is a delayed image of (x, y)

allows to retrieve the continuous framework



Robust Sequential Systems

iIdea : avoid (critical) races

e between state variables : order insensitivity

e between inputs : confluence

Property checking

Asynchronous programming style



Asynchronous Programming Style

Y

Insert causality chains disallowing races:

z walts for y to go down before going up and conversely.

not
Y ((—y — not y)* (— z — not 2)*)*
not z

Y



Mixed Systems

Example : Threshold crossing

2€
C'(t))

Relates errors and delays : 7 =

possibly unbounded delays !



Conclusion

e Some insight on techniques used In practice.

e Maybe useful for designers and certification authorities

( Crisys Esprit Project)

e An attempt to draw the attention of the Computer Science
community on these important problems.



Questions

e Are there linguistic ways to robustness
(asynchronous-synchronous languages)?

e How to safely encompass some event-driven computations
within the approach?

e |s there a common framework encompassing both theories?

continuous discrete
uniformly continuous signals uniform bounded variability
uniformly continuous functions robust systems
unstable systems sequential non robust systems
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