Synchronous Programming in Control

Paul Caspi
Verimag (CNRS)

A historical perspective based on the observation of several
real-world systems during the Crisys Esprit project:

e The Airbus “fly-by-wire” system.

e Schneider’s safety control and monitoring systems for nuclear
plants.

e Siemens’ letter sorting machine control,

and many other distributed safety-critical control systems.

http://www-verimag.imag.fr

Overview

The Origins of Synchronous Programming

Synchronous Programming and Real-Time

Real-Time Validation

Understanding Synchronous Programming in Control

The Origins of Synchronous Programming

Basic needs of the domain
Real-time asynchronous languages
Synchronous practices

The formalisation of these practices

Basic Needs of the Domain

e Parallelism:
— between the controller and the controlled device
— between the several degrees of freedom to be controlled at
the same time
e Guaranteed bounds :
— on memory

— 0on execution times

e Distribution

The Computer Science Answer:
Real-Time Kernels and Languages

Based on the concurrency tradition of operating systems:
e Synchronisation: semaphores, monitors, sequential processes,
e Communication: shared memory, messages,
e Synchronisation + communication: queues, rendez-vous.
Examples:
e CSP, OCCAM,
e ADA tasking

e real-time OS

From analog boards to computers:

Clock

The Evolution of Practices

Analog
Board

A/D

Computer

D/A

periodic clocks

synchronous programs

Periodic Synchronous Programming

Initialize state;
loop each clock tick
read other Inputs;
compute outputs and state;

emit outputs

end loop

Practical Interest

e Perfectly matches:

— the need for real-time integration of differential equations:
forward, fixed step methods,

— the mathematical theory of sampled control systems,

— the theory of switching systems.

e Safety, simplicity and efficiency:

— almost no OS, a single interrupt (the real-time clock),
no context saving (the interrupt should occur at idle time)

— bounded memory, bounded execution time.

= Easier validation, certification

Generalisation: Synchronous Languages

initialize state;

loop each input event
read other inputs;
compute outputs and state;
emit outputs

end loop

Several styles (imperative, data-flow,...)
Compiled parallelism (instead of concurrent)

most applications of synchronous programming are actually
periodic ones.

Theory: SCCS (Milner)

Based on the synchronous product of automata:

product asynchronous synchronous

lab

CCS (asynchronous) is a sub-theory of SCCS
Provides a theoretical justification of practice: Synchronous
primitives are stronger, programming Iis easier

Further Justifications (Berry)

e No added non determinism:
— easler debugging and test

— less state explosion in formal verification

e Easier temporal reasoning:

— synchronous steps provide a “natural” notion of logical time:

In a concurrency framework delay 5 seconds means
“a least 5 seconds” and Is priority dependent.

— Easier roll-back and recovery

Conclusion 1:

These advantages seem conclusive and justify the practices.

But...

Synchronous Programming and Real-Time

e Real-Time is not Logical Time

e Distribution

Real-Time Is not Logical Time: Sampling Tuples

A possible sampling

... Real-Time is not Logical Time: Sampling Tuples

Another possible sampling

X X/ X//

Non determinism, possible race

This was considered a side effect, but practitioners must take it into
account.

Real-Time Is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a non robust solution :

... Real-Time Is not Logical Time: Outputs

example : mutual exclusion always not (y and z)

a robust solution :

z walits for y to go down before going up and conversely.

no race !

Races

A race takes place when two signals can change at the same time
or not, depending on variable delays.

A race is critical If different states can be reached, depending on
which signal wins the race.

A critical race A non critical race

vl
yl,z1

... Distribution

From networks of analog boards to local area networks

Clocki

Analog
Board

Analog
Board

Clocki

AID

Computer

Serial

Serial

Clock

A/D

Computer

Bus

Computer

D/A

Cloc

Computer

D/A

Independent periodic clocks

synchronous programs

Interest

Autonomy, robustness

e Each computer is a complete one, including its own clock and
even possibly its own power supply.

e Communication between computers is non-blocking, based on
periodic reads and writes, akin to periodic sampling.

Some Conseguences of Quasi Periodicity

I
.

Worst situation: reads occur just before writes = Bounded
communication delays

Y

»-
>

Absolute time Is lost: time-outs better than time ?7?7?

Sampling errors: data loss or duplication from time to time

Bounded Fairness

Provisional Conclusion 2

For robustness reasons, real-time and distribution require
accommodating some asynchrony within the synchronous
programming paradigm.

In the sequel we investigate some tracks taken by practioners in
this purpose.

Real-Time Validation

Simulation, test, formal verification

e General Framework

e Centralised case

e Distributed case

General Framework

Observer theory (Halbwach, Raymond 93) : safety properties can
be expressed as synchronous programs outputing the truth value
of the property.

-

H

| * Enw
Contral Frop

Centralised Case

Take Into account the sampling non determinism

clock
L]
samplin SR
| e ping ——{
| M 8] sample_prop
clock I—

S

W
CCantmatcs Frop

Distributed Case

Take into account distribution

zame_perniod(c! | 627 and same_period(c? |, 3 and same_period(cz |, o1

BT

Conclusion

Synchronous programming validation tools apply to real-time and
distributed control systems.

Efficiency issues ?

How to understand and construct robust systems ?

Asynchronous-Synchronous Programming:
How to understand it ?

e Continuous Systems
e Non Continuous Systems

e (Mixed Systems)

Uniformly Continuous Signals

n, > 0,Ve > 0, Vi, t', [t —t'| < nu(e) = |x(t) —z(t)| < e

Bounded delays yield bounded errors

Uniformly Continuous Systems

8 I\A
" M \A

- System =

ns > 0,Ve > 0,Vz, 2, ||z — 2l|oc < ngle) = [|f(2) = f(2)]|

Bounded errors yield bounded errors

But ...

Even very simple controllers are not uniformly continuous.

PID for instance

"
TN NI

Controller

y

|

Bounded errors do not yield bounded errors

Stabilized Systems

The closed-loop system computes uniformly continuous signals

" M \/\

u

Controller >

Plant

f

z

—_—

Bounded delays yield bounded errors

Doubts ...

This casts a doubt on two wishful thoughts:

e composability

— system properties are the mere addition of sub-system ones

e Separation of concerns:
— automatic control people specify
— computer science people implement

Critical control systems require a tight cooperation between both
people

Non Continuous Systems

e Combinational Systems
e Robust Sequential Systems

e Sequential Systems

Uniform Bounded-Variability

There exists a minimum stable time 7, associated with a signal x.

A>T,

A
Y
A
Y

But ...

Delays on tuples do not yield delayed tuples

Solution : Confirmation functions

Confirmation Functions

When a component of a tuple changes, wait for some ¢6,, — ¢,, time
before taking it into account.

Yy Yy S

If 2, o/ are (6,,,57) bounded images of = and y, then
confirm(x’,y') is a delayed image of (x, y)

allows to retrieve the continuous framework

Robust Sequential Systems

iIdea : avoid (critical) races

e between state variables : order insensitivity

e between inputs : confluence

Property checking

Asynchronous programming style

Asynchronous Programming Style

Y

Insert causality chains disallowing races:

z walts for y to go down before going up and conversely.

not
Y ((—y — not y)* (— z — not 2)*)*
not z

Y

Mixed Systems

Example : Threshold crossing

2€
C'(t))

Relates errors and delays : 7 =

possibly unbounded delays !

Conclusion

e Some insight on techniques used In practice.

e Maybe useful for designers and certification authorities

(Crisys Esprit Project)

e An attempt to draw the attention of the Computer Science
community on these important problems.

Questions

e Are there linguistic ways to robustness
(asynchronous-synchronous languages)?

e How to safely encompass some event-driven computations
within the approach?

e |s there a common framework encompassing both theories?

continuous discrete
uniformly continuous signals uniform bounded variability
uniformly continuous functions robust systems
unstable systems sequential non robust systems

	Synchronous Programming in Control
	Overview
	The Origins of Synchronous Programming
	Basic Needs of the Domain
	 The Computer Science Answer: Real-Time Kernels and Languages
	 The Evolution of Practices
	 Periodic Synchronous Programming
	 Practical Interest
	 Generalisation: Synchronous Languages
	 Theory: SCCS (Milner)
	 Further Justifications (Berry)
	 Conclusion 1:

	Synchronous Programming and Real-Time
	Real-Time is not Logical Time: Sampling Tuples
	Real-Time is not Logical Time: Outputs
	Races
	… Distribution
	 Interest
	Some Consequences of Quasi Periodicity
	 Provisional Conclusion 2

	Real-Time Validation
	General Framework
	Centralised Case
	Distributed Case
	Conclusion

	 Asynchronous-Synchronous Programming: How to understand it ?
	 Uniformly Continuous Signals
	Uniformly Continuous Systems
	But …
	Stabilized Systems
	Doubts …
	Non Continuous Systems
	Uniform Bounded-Variability
	But …
	Confirmation Functions
	Robust Sequential Systems
	Asynchronous Programming Style
	Mixed Systems

	Conclusion
	Questions

