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Abstract

In this work we treat the problem of scheduling under two types of temporal uncertainty, set-
based and probabilistic. For the former we define appropriate optimality criteria and develop an
algorithm for finding optimal scheduling strategies using a backward reachability algorithm for
timed automata. For probabilistic uncertainty we define and solve a special case of continuous-
time Markov Decision Process. The results have been implemented and were applied to bench-
marks to provide a preliminary assessment of the merits of each approach.

1 Introduction

The problem of evaluating or optimizing the performance of an open reactive system, that is, a system
that interacts with an external environment, raises some serious conceptual problems. Given such a
system S, each instance d of the environment can potentially induce a different behavior S(d), and
the question is how to take all these behaviors into account while evaluating the system performance.
Several approaches to this problem are commonly used:

o Worst-case: the system is evaluated according to its worst behavior.

e Average-case: the set of all environment instances is considered as a probability space and this
induces a probability over all system behaviors. The system is then evaluated according to the
expected value (over all its behaviors) of the performance measure.

o Nominal-case: the system is evaluated according to its performance with respect to one behavior
which corresponds to one “typical” instance of the environment.

Each of these approaches has its advantages and shortcomings. The worst-case approach is often
used for safety-critical systems where the cost associated with bad behaviors is too high to tolerate,
even if they constitute a negligible fraction of the possible behaviors. This is implicitly the approach
taken in verification, where the performance measure is discrete and consists of a binary classifica-
tion into “correct” and “incorrect”, and this means that a system is correct only if all its behaviors
satisfy the property in question. On the negative side, this approach might lead to an over-pessimistic
allocation of resources which can be very inefficient during most of the system lifetime.?

The probabilistic approach is more appropriate when the performance measure is more “continu-
ous” in nature, e.g. the waiting time in a queue, and one can tolerate graceful degradation in moments
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of extreme pressure from the environment. The implicit assumption underlying the nominal approach
is somewhat similar to the probabilistic one, namely, the nominal behavior is “close” to most of the
behaviors we are likely to see in the system life-time and the performance of other behaviors varies
“continuously” with the distance from the nominal one. This approach is widely used in control
theory.

From a computational standpoint the nominal approach is the easiest because when d is fixed
the system is closed and S(d) can be computed by simple simulation. Moreover, the comparison
of two candidate systems .S and S’ is based on the same d. In the worst-case approach when it is
not known a-priori which d induces the worst behavior, one has to “simulate exhaustively” with all
instances in order to find that behavior. This is the inherent difficulty of verification compared to
testing/simulation. Moreover, when we want to compare S and S’ for optimality, it might be that
the worst-case is obtained on a different instance for each of them. The probabilistic approach is
generally? the most difficult because not only do we need to explore all behaviors but also keep track
of their probabilities in order to compute the overall evaluation of the system.

In this work we treat the problem of job-shop scheduling under temporal uncertainty. The system
to be designed is a scheduler, i.e. a mechanism that controls the allocation of resources to competing
tasks. The environment consists of tasks, all known in advance, that need to be executed on certain
machines while satisfying some ordering constraints. The only source of uncertainty is the duration of
the tasks which is known to be bounded within an interval of the form [I, u]. Alternatively, the duration
of each task can be given as a continuous random variable. Each instance® of the environment consists
of selecting a number d € [, u] for every task. The behavior induced by the scheduler on this instance
is evaluated according to the length of the schedule, i.e. the termination time of the last task executed.

As a running example consider two jobs

J1 = (m1, 10) < (mg, [2,4]) < (m4,5) Jo = (mz, [2,8]) < (m3,7)

with the intended meaning that J; has to use m4 for 10 time, then mg for a period between 2 and 4
time, then my for 5, etc. In this example the only resource under conflict is m3 and the order of its
usage is the only decision the scheduler needs to take. The uncertainties concern the durations of the
first task of .J and the second task in .J;. Hence an instance is a pair d = (d1,d2) € [2,4] x [2,8]. It
is very important to note that in our example (and in “reactive” systems in general) instances reveal
themselves progressively during execution — the value of dq, for example, is known only after the
termination of ms.

Each instance defines a deterministic scheduling problem admitting one or more optimal solutions.
Such a solution specifies the start time of every task. Figure 1-(a) depicts optimal schedules for the
instances (8,4), (8,2) and (4,4). Of course, such an optimal schedule can only be generated by a
clairvoyant scheduler who knows the whole instance in advance.

For this type of problem worst-case optimization can be reduced to nominal-case because there
is one specific instance, namely the one where each task terminates the latest possible, such that the
performance of any scheduler on this instance will be at least as bad as on any other instance. This
trivializes the problem of worst-case optimization because we can do the following: find an optimal
schedule for the worst instance, extract the start time for each task and stick to the schedule regardless
of the actual instance. The behavior of a static scheduler for our example, based on instance (8,4)
is depicted in Figure 1-(b), and one can see that is is rather wasteful for other instances. Intuitively

2At least when the approach is applied naively without using additional mathematical information that can lead to
analytic solutions in some special cases.
®In the Operation Research literature these are called realizations
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Figure 1: (a) Optimal schedules for three instances. For the first two the optimum is obtained with
J1 < Jo on mg while for the third — with Jo < J7; (b) A static schedule based on the worst instance
(8,4). It gives the same length for all instances; (c) The behavior of a hole filling strategy based on
instance (8, 4).

we will prefer a smarter adaptive scheduler that reacts to the evolution of the environment and uses
additional information revealed during the execution of the schedule. This is the essential difference
between a schedule (a plan, an open-loop controller) and a scheduling strategy (a reactive plan, a
closed-loop controller). The latter is a mechanism that observes the state of the system (which tasks
have terminated, which are executing) and decides accordingly what to do. In the former, since there is
no uncertainty the scheduler knows exactly what will be the state at every time instant, so the strategy
can be reduced to a simple assignment of start times to tasks.

One of the simplest ways to be adaptive is the following. First we choose a nominal instance
d and find a schedule S which is optimal for that instance. Rather than taking S “literally”, we
extract from it only the qualitative information, namely the order in which conflicting tasks utilize
each resource. In our example the optimal schedule for the worst instance (8, 4) is associated with
the ordering J; < Jo on mg. Then, during execution, we start every task as soon as its predecessors
have terminated, provided that the ordering is not violated (a similar strategy was used in [NYO00]
and probably elsewhere). As Figure 1-(c) shows, such a strategy is better than the static schedule for
instances such as (8, 2) where it takes advantage of the earlier termination of the second task of .J;
and “shifts forward” the start times of the two tasks that follow. On the other hand, instance (4, 4)
cannot benefit from the early termination of m., because shifting ms of Jo forward will violate the
J1 < Jy ordering on ms.

Note that this “hole-filling” strategy is not restricted to the worst-case. One can use any nominal
instance and then shift tasks forward or backward as needed while maintaining the order. On the other
hand, a static schedule (at least when interpreted as a function from time to actions) can only be based
on the worst-case — a schedule based on another nominal instance may assume a resource available
at some time point, while in reality it will be occupied.

While the hole filling strategy can be shown to be optimal for all those instances whose optimal
schedule has the same ordering as that of the nominal instance, it is not good for instances such as
(4,4), where a more radical form of adaptiveness is required. If we look at the optimal schedules for
(8,4) and (4, 4) (Figure 1-(a)) we see that the decision whether or not to execute the second task of
Jo is done in both cases in the same qualitative state, namely m is executing and mo has terminated.



The only difference is in the elapsed execution time of m at the decision point. Hence an adaptive
scheduler should base its decisions also on such quantitative information which, in the case of timed
automata models, is represented by clock values.

Consider the following approach: initially we find an optimal schedule for some nominal instance.
During the execution, whenever a task terminates (before or after the time it was assumed to) we
reschedule the “residual” problem, assuming nominal values for the tasks that have not yet terminated.
In our eaxmple, we first build an optimal schedule for (8, 4). If task m4 in J, terminated after 4 time
we have the resdiual problem

J{ = (m1,6) =< (m3,4) =< (m4,5) Jé = (m3,7)

where the boldface letters indicate that 11 must be scheduled immediately (it is already executing and
we assume no preemption). For this problem the optimal solution will be to start m 3 of J5. Likewise
if mo terminates at 8 we have

J{ = (m1>2) = (m3>4) = (m475) Jé = (’I’)’Lg,?)

and the optimal schedule consists of waiting for the termination of 11 and then starting m3 of J;. The
property of the schedules obtained this way, is that at any moment in the execution they are optimal
with respect to the nominal assumption concerning the future.*

This approach involves a lot of online computation, namely solving a new scheduling problem
each time a task terminates. The alternative approach that we propose in this paper is based on ex-
pressing the scheduling problem using timed automata and synthesizing a controller off-line. In this
framework [AMPS98, AM99, AGP199] a strategy is a function from states and clock valuations to
controller actions (in this case starting tasks). After computing such a strategy and representing it
properly, the execution of the schedule may proceed while keeping track of the state of the corre-
sponding automaton. Whenever a task terminates, the optimal action is quickly computed from the
strategy look-up table and the results are identical to those obtained via online re-scheduling.®

The rest of the paper is organized as follows. In Section 2 we describe the model and characterize
the properties of the dynamic schedulers we want to compute. In section 3 we show how to model the
problem using timed automata. The algorithm for synthesizing optimal strategies is described in Sec-
tion 4 along with its implementation using the zone library of Kronos. In Section 5 we formulate and
solve the same scheduling problem where tasks durations are known to be distibuted probabilistically.
Section 6 presents experimental results demonstrating the improved performance of the computed
strategy over static schedules. Finally we discuss further improvements to increase the size of the
problems that can be treated.

2 TheModed

We will use a formulation which is slightly more general than the standard job-shop problem by
allowing a partial-order relation between tasks. We denote by Int(N) the set of intervals with integer
endpoints.

*A similar idea is used in model-predictive control where at each time actions at the current “real” state are re-optimized
while assuming some nominal prediction of the future.

SOf course, there is a trade-off between what we gain in online computation time and what we pay in terms of offline
computation time and space needed to store the strategy.



Definition 1 (Uncertain Job-Shop Specification)

An uncertain job-shop specificationis 7 = (P, M, <, u, D, U) where P is a finite number of tasks,
M isafinite set of machines, < is a partial-order precedence relation on tasks, i : P — M assigns
tasks to machines, D : P — Int(N) assigns an integer-bounded interval to each taskand U C P is
a subset of immediate tasks consisting of some <-minimal elements.

The set U is typically empty in the initial definition of the problem and we need it to define residual
problems. We use D' and D* to denote the projection of D on the lower- and upper-bounds of the
interval, respectively. The setII(p) = {p’ : p’ < p} denotes all the predecessors of p, namely the tasks
that need to terminate before p starts. In the standard job-shop scheduling problem, < decomposes
into a disjoint union of chains (linear orders) called jobs.

An instance of the environment is any function d : P — R, such that d(p) € D(p) for every
p € P. The set of instances admits a natural partial-order relation: d < d’ if d(p) < d'(p) for every
p € P. Any environment instance induces naturally a deterministic instance of .7, denoted by 7 (d),
which is a classical job-shop scheduling problem. The worst-case is defined by the maximal instance
d(p) = D"(p) for every p.

Definition 2 (Schedule) Let 7 = (P, M, <, u, D, U) be an uncertain job-shop specification and let
J (d) be adeterministic instance. A feasible schedulefor 7 (d) isafunctions : P — R, where s(p)
defines the start time of task p, satisfying:

1. Precedence: For every p, s(p) > max,cr(p) (s(p') +d(p)).

2. Mutual exclusion: For every p, p’ such that i (p) = u(p’)
[s(p), s(p) + d(p)] N [s(p), s(p') + d(p")] = 0.
3. Immediacy: For everyp € U, s(p) = 0.

The length of the schedule is the termination time of the last task, i.e. max,cp(s(p) + d(p)). An
optimal schedule for 7 (d) is a feasible schedule having a minimal length.

In order to be adaptive we need a scheduling strategy, i.e. a rule that may induce a different
schedule for every d. However, this definition is not simple because we need to restrict ourselves to
causal strategies, strategies that can base their decisions only on information available at the time they
are made. In our case, the value of d(p) is revealed only when p terminates.

Definition 3 (State of Schedule) A state of a schedule s at timet is S = (P/, P?, ¢, P¢) such that
P/ isa downward-closed subset of (P, <) indicating the tasks that have terminated (those satisfying
s(p) +d(p) < t), P*isa set of active tasks currently being executed (those satisfying s(p) < ¢t <
s(p) + d(p)), ¢ : P* — Ry isafunction such that ¢(p) = ¢t — s(p) indicates the time elapsed since
the activation of p and P¢ is the set of enabled tasks consisting of those whose predecessors are in
P/, The set of all possible states is denoted by S.

Definition 4 (Scheduling Strategy) A (state-based) scheduling strategy is a functionos : S — P U
{L} such that for every S = (Pf, P% ¢, P¢), o(S) = p € P°U {1} and for every p’ € P¢,
u(p) # p(p').



In other words a strategy decides at each state whether to do nothing and let time pass (_L) or to choose
an enabled task, not being in conflict with any active task, and start executing it. An operational defini-
tion of the interaction between a strategy and an instance will be given later using timed automata, but
intuitively one can see that the evolution of the state of a schedule consists of two types of transitions:
uncontrolled transitions where an active task p terminates after d(p) time and moves from P¢ to P/,
leading possibly to adding new tasks to P¢, and a decision of the scheduler to start an enabled task.
The combination of a strategy and an instance yields a unique schedule s(d, o) and we say that a state
is (d, o)-reachable if it occurs in s(d, o).

Next we formalize the notion of a residual problem, namely a specification of what remains to be
done in an intermediate state of the execution.

Definition 5 (Residual Problem) Let 7 = (P, M, <,u,D,U) and let S = (Pf, P® ¢, P°) be a
state. The residual problem starting from S is Js = (P — P/, M, </, i/, D', P*) where <’ and /'
are, respectively, the restrictions of < and x, to P — P and D’ is constructed from D by letting

/i~ | D(p)=c(p) ifpe P
Dp) = { D(z) g otﬁerwise

Likewise aresidual instance dg istheinstance d restricted to P¢ U P¢ defined as

[ d(p) = cp) ifpe P
ds(p) = { d(g) g otﬁerwise

Let d be an instance. A strategy o is d-future-optimal if for every instance d’ and from every
(0, d')-reachable state S, it produces the optimal schedule for 7s(ds). If we take d to be the maximal
instance, this is exactly the property of the online re-scheduling approach described informally in the
previous section.

3 Timed Automata for Scheduling Problems

In this section we show how to model the problem using timed automata whose definition appears
in the appendix. We construct for every task p with D(p) = [I,u] a 3-state timed automaton A p
(Figure 2-(a)) with a waiting state p, an active state p where the task is executing and a final state p.
The automaton has one clock which is reset to zero upon entering p (“start”) and its value determines
when a transition to p (“end”) is taken. This automaton captures all instances: it can stay in p as long
as ¢ < u and can leave p assoon as ¢ > [. It represents the possible behaviors of the task in isolation,
i.e. ignoring precedence and resource constraints. The transition from p to p is triggered by a decision
of the scheduler, respecting those constraints, while the time of the transition from p to p depends on
the instance. For a given instance d we have the automaton A, of Figure 2-(b) where this transition
happens after exactly d time. The automaton Ap 4 of Figure 2-(c) will be used later for computing
d-future optimal strategies: it can terminate as soon as ¢ > d but can stay in p until ¢ = w.

The timed automaton for the whole job-shop specification is the composition of the automata for
the individual tasks.® The composition is rather standard, the only particular feature is the enforcement
of precedence and mutual exclusion constraints. This is achieved by forbidding global states in which
a task is active before all its predecessors have terminated or in which two or more tasks that use the
same resource are active.

®1n the following we will not distinguish between A p, A, and Ap 4 — the definitions are the same for all of them.
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Figure 2: The generic automaton .4, for a task p such that D(p) = [l,u]. The automaton A, for
a deterministic instance d. The automaton Ap 4 for computing d-future optimal strategies and the
automaton 4, for an exponentially distributed duration. Staying conditions for p and p are true and
are omitted from the figure. B

Let Q° = {p;,pi, Bi} be the state-space of the automaton for task p;. We say that a global state
g=(¢"...,¢") € Q' x...Qmisvalidif:

1. Precedence: For every i, if ¢* # pthen ¢/ = p for every p; € II(p;).

2. Mutual exclusion: For every i, if ¢* = p then for every p; such that uu(p;) = p(p;), ¢ # p.

Definition 6 (Composition) Let 7 = (P, M, <, u, D,U) be a job-shop specification and let A? =
(Q,C*, A T, s, ) be the automaton corresponding to each task p;. The composition of these
automata is A = (Q,C, A, I, s, f) such that Q is the restriction of Q! x ... Q" to valid states,
C=Ctu..uC"s=(s"....s"), f=(fY....f"), I, = \; 1, and the transition relation A
contains all the tuples of the form

((q177qz77qn)’¢z7plﬁ(q177pz77qn))

such that (¢%, ¢, p’, p*) € A for some i and both (¢!, ...,¢%,...,q¢") and (¢*,...,p",...,¢") are
valid.

The result of applying this composition to the automata corresponding to the example’ appears
in Figure 3. Since in this example < decomposes into two disjoint chains, we can annotate global
discrete states with tuples of the form (a!, a?) where o is either 7 or m where m = u(p) and
p is the maximal enabled or active task in the j** chain (or f when the last task in the chain has
terminated). For example (}_71,]_92,;_93,]94,795) is written as (3, m2) and (1_91,;:—92,]_93,@4,]_95) as (ms, f).
For the same reason we can re-use the same clock for all tasks that share the same chain.® Note that
the automaton is acyclic.

The relation between the automaton and the scheduling problem is rather straightforward (see
also [AMO1, A02]). A configuration (g, Vv) of the automaton corresponds to a state of the schedule

"To make things simpler we change J; to be completely deterministic, i.e. J1 = (m1,10) < (ma,4) < (ma, 5).
8More on the relation between the job-shop and partially-ordered tasks can be found in [AKMO3].
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Figure 3: The global automaton for the job-shop specification. The automata on the left and upper
parts of the figure are the partial compositions of the automata for the tasks of .J; and Js, respectively.



where each clock measures the time since the initiation of an active task. When time passes without
transitions, the evolution of clock values is the only change in the state of the schedule. We say that
a run of A is complete if it starts at (s,0) and the last step is a transition to f. The following is
an evident non-deterministic generalization of the observation from [AMO1] concerning the relation
between runs and schedules:

Claim 1 (Runsand Schedules) Let 7 be an uncertain job-shop specification and let A p beits as-
sociated timed automaton.

1. Every complete run of Ap corresponds to an environment instance d and to a schedule s,
feasiblefor 7 (d).

2. For every instance d and every feasible schedule s for 7 (d) thereis a corresponding complete
runof Ap.

The length of the run and the length of its corresponding schedule coincide.

The correspondence is simple: for every task p, s(p) is the time (since the beginning of the run) in
which the automaton entered a global state in which p is active. The residual problem associated with
a state of the schedule is represented by the sub-automaton rooted in the corresponding configuration.

The automaton can be viewed as specifying a game between the scheduler and the environment.
The environment can decide whether or not to take an “end” transition and terminate an active task
and the scheduler can decide whether or not to take some enabled “start” transition. A strategy is a
function that maps any configuration of the automaton either into one of its transition successors or
to the waiting “action”. For example, at (m1,m3) there is a choice between moving to (m1, ms) by
giving mg to J, or waiting until J; terminates m4 and letting the environment take the automaton to
(ms, ms), from where the conflict concerning 13 can be resolved in either of the two possible ways.

A strategy is d-future optimal if from every configuration reachable in A p 4 it gives the shortest
path to the final state (assuming that future uncontrolled transitions are taken according to d). In the
next section we use a simplified form of the definitions and the algorithm of [AM99] to find such
strategies.

4 Optimal Strategiesfor Timed Automata

Let 7 be a job-shop specification and let Ap 4 = (Q,C, s, f, I, A) be the automaton corresponding
to an instance d, that is, “end” transitions are guarded by conditions of the form ¢; > d(p;). Let
h: @ x V — R, be a function with the intended meaning that A(q, v) is the length of the minimal
run from (g, v) to f, assuming that all uncontrolled future transitions will be taken according to d.
This function admits the following recursive backward definition:

W(fv) =0 h(g,v) =min{t + h(d,V) : (q,v) == (g,v +t1) — (¢, V)}.

In other words, h(g, V) is the minimum over all immediate successors ¢’ of ¢ of the time it takes from
(q,V) to satisfy the transition guard to ¢ plus the time to reach f from the resulting configuration
(¢',V'). In [AM99] it has been shown that / ranges over a class of “nice” functions closely related
to the zones used in the verification of timed automata and that this class is well-founded and hence
the computation of & terminates even for automata with cycles, a fact that we do not need here as A is
computed in one sweep through all (acyclic) paths from the final to the initial state.



Let us illustrate the computation of i on our example. We write A in the form h(a!, o2, ¢1, c2) and
use _L to denote cases where the value of the corresponding clock is irrelevant (its task is not active).
We start with

h(f, f,L,1)=0
h(m4,f,Cl,J_) =5-0
h(f, ms, _L,CQ) =7- C9

because the time to reach (f, f) from (my, f) is the time it takes to satisfy the guard ¢; = 5, etc. The
value of h at (m4, m3) depends on the values of both clocks which determine what will terminate
before, m4 or mg and whether the shorter path goes via (ma4, f) or (f, ms).

h(m ms,C C) = min 7_'62+h(m47facl+7—'02,J_)7
4, M3, C1, C2 5-=c1+h(f,ms, L,co+5~= 1)

= min{b ~ ¢1,7 = c2}

. 5—'61 ifCQ—'C122
o 7—'62 ifCQ—'61§2

Note that the corresponding transitions are both uncontrolled “end” transitiona and no decision of the
scheduler is required in this state.

This procedure goes higher and higher in the graph, computing & for the whole state-space Q) x V.
In particular, for state (m1,73) where we need to decide whether to start ms of J or to wait, we
obtain:

h(my, g, c1, L) = min{16,21 = ¢}
[ 16 ife; <5
T O\ 2l=¢ ife>5

The extraction of a strategy from A is straightforward: if the optimum of A at (g, v) is obtained via a
controlled transition to ¢’ we let o(¢q,v) = ¢’ otherwise if it is obtained via an uncontrolled transition
we let o(q,v) = L. At (mq,m3) the optimal result is obtained by giving m3 immediately to .J» and
moving to (mq,m3) when ¢; < 5 or by waiting to the termination of m, reaching (73, m3) and
then moving to (mg,m3) if ¢; > 5. Note that if we assume that .J; and J; started their first tasks
simultaneously, the value of ¢; upon entering (m,m3) is exactly the duration of ms in the instance.

The results of [AMO1] concerning “non-lazy” schedules imply that there exist an optimal strategy
having the additional property that if (¢, v) = L then o(¢,v’) = L for every v/ > v. In other words,
if an enabled controlled transition gives the optimum it can be taken as soon as possible. This fact will
be used later in the implementation of the strategy.

Existing algorithms for timed automata work on sets, not on functions, and in order to apply them
to the computation of 2 we use the following construction.® Let .4’ be an auxiliary automaton obtained
from A by adding a clock 7" which is never reset to zero. Clearly, if (¢, (v, T)) is reachable in A’ from
the initial state (s, (0, 0)) then (g, v) is reachable in A intime T'. Let © be a positive integer larger then
the longest path in the automaton. Starting from (f, (L,..., L, ®)) and doing backward reachability
we can construct a relational representation of 4. More precisely, if (¢, (v, T')) is backward reachable
in A’ from (f, (L,..., L, ©)then f is forward reachable in A from (g, v) within © — T time.

°A similar construction was proposed in [NTY00] to implement shortest path algorithm for cyclic timed automata using
forward reachability.
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We recall some commonly-used definitions in the verification of timed automata [HNSY94]. A
zoneis a subset of V' consisting of points satisfying a conjunction of inequalities of the form c;—c; > k
or ¢; > k. A symbolic state is a pair (g, Z) where ¢ is a discrete state and Z is a zone. It denotes the
set of configurations {(¢,V) : v € Z}. Zones and symbolic states are closed under various operations
including the following:

e The time predecessors of (¢, Z) is the set of configurations from which (¢, Z) can be reached
by letting time progress:

Pret(q,Z2) = {(q,v) :v+rlec Z,r >0}

e The §-transition predecessor of (¢, Z) is the set of configurations from which (¢, Z) is reachable
by taking the transition § = (¢’, ¢, p, q) € A:

Pre(q,Z) = {(¢,V') : V' € Reset, ' (Z) N ¢}.

e The predecessorsof (¢, Z) is the set of all configuration from which (g, Z) is reachable by any
transition ¢ followed by passage of time:

Pre(q,Z) = U Pret(Pre’(q, Z)).
seA
The result can be represented as a set of symbolic states.

Algorithm 1 is based on the standard backward reachability algorithm for timed automata. It starts
with the final state of A’ in a waiting list and outputs the set R of all backward-reachable symbolic
states. In order to be able to extract strategies we store tuples of the form (¢, Z, ¢) such that Z is a
zone of A’ and ¢’ is the successor of ¢ from which (¢, Z) was reached backwards.

Algorithm 1 (Backward Reachability for Timed Automata)

Waiting:={(f, (L,..., L,0)},0};
Explored:=0;
while Waiting # () do

Pick (¢, Z, ¢") € Waiting;

For every (¢, Z') € Pre(q, Z);

Insert (¢, Z', q) into Waiting;

Move (¢, Z, ¢"") from Waiting to Explored
end
R:=Explored;

The set R gives sufficient information for implementing the strategy. Whenever a transition to (g, v)
is done during the execution we look at all the symbolic states with discrete state ¢ and find

h(q,v) =min{® — T : (v,T) € ZN(q,Z,q) € R}.

If ¢ is a successor via a controlled transition, we move to ¢’, otherwise we wait until a task terminates
and an uncontrolled transition is taken. Non-laziness guarantees that we need not revise a decision to
wait until the next transition. This concludes the major contribution of this paper, an algorithm for
computing d-future optimal strategies for the problem of job-shop scheduling under uncertainty.

Theorem 2 (Computing d-future Optimal Strategies) The problem of finding d-future optimal strate-
giesfor job-shop scheduling problem under uncertainty is solvable using timed automata reachability
algorithms.
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5 Probabilistic Uncertainty

In this section we sketch the formulation and the solution of the same problem where uncertainty in
task durations is considered to be probabilistically distributed. We use exponential distribution and
associate with each task a parameter \ such that the time ¢ that the task spends in its active state p
satisfies:

Pt>T)=e"T.

The automaton for a task, depicted in Figure 2-(d), is a mixture of a non-deterministic automaton
and a continuous time Markov chain. The decision when to make the transition from p to p is to be
made by the scheduler and is not probabilistically distributed. Hence, before the construction of the
scheduler we cannot assign probabilities to the runs of the automaton, which are of the form

—_r — 0 t 0 e )
D—pP—p—p—p—.

where r is the time chosen by the scheduler to wait before starting p.
A probabilistic version of the example used in the previous section looks like this: 1°

Ji = (m1, A1) < (M3, A2) < (mu, A3)  J2 = (m2, A) < (M3, As)

and it induces a probability distribution on the space of instances, R7.. A scheduling strategy is, as
before, a mechanism for deciding at every instance whether to start an enabled task or to wait. A
strategy together with an instance determines the length of the obtained schedule and our goal is to
find a strategy that optimizes the expected value (over all instances) of this length.

The automata for the example are similar to those in Figure 3 with X replacing [l, u|. The states
of the product automaton admit combinations of controlled and probabilistic transitions. A state
like (3, m3) has two controlled transitions that can be taken immediately. A scheduling strategy
will determine which of them should be taken. A state like (m1,m2) has two outgoing probabilistic
transitions and the instance determines which of them will be taken. However it is possible to compute
the expected staying time in the state and the probability of each transition to be the one taken.? In
a state having both types of transitions, such as (723, m2), what will happen depends on the strategy.
If the strategy at the state is to wait, the controlled transitions are erased and the evolution depends
on the probabilistic race. Otherwise if the strategy chooses a start transition, the rest of the transitions
disappear. The important thing is that after determining the strategy the system becomes an ordinary
continuous time Markov process with a well-defined expected length for a path from beginning to
termination, and our goal is to find a strategy that optimizes this expected length.

The exponential distribution is memoryless, which means that the probability of a transition to
be taken does not change with the passage of time.1? Hence an optimal strategy, like the hole filling
strategy of the previous section, depends only on the discrete state and does not need to record clock
values.

The optimal schedule, like the future-d-optimal strategies of the previous section, is found by a
variant of dynamic programming value iteration. Let 4 : @ — R be a function such that /(q) is the

191 fact, due to the properties of the exponential distribution there is no natural connection between the two models. For
example, if one of the steps has a fixed duartion there is no way to approximate it with an exponential distribution. On the
other hand, if we want to maximize the probability that the duration is in an interval [I, u] with I < « we can use maximum
likelihood estimates and let A = (Inw — Inl)/(u — ). This cannot guarantee, of course, that all nor most of the instances
will be in [I, u].

"These are called “races” in the Markovian jargon.

2This property is a source for both the analytic simplicty of this distribution as well as its modest relevance to certain
real-world situations.
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best achievable expected value of the time from ¢ to the final state f. By definiton, A(f) = 0 and its
value for the other states is computed backwards as follows.

Let ¢ be a state having & outgoing “end” transitions leading to states ¢, . . ., g With parameters
A1, ..., Ak, respectively, and [ outgoing “start” transitions leading to states ¢1, . . . , g, respectively. A
strategy that takes immediately one of the start transitions to a state q;- spends no time at g and hence
the expected time to f will be like that of q;. On the other hand a strategy that decides to wait might
make the environment take any of the “end” transition. Hence

h(q) = min{h"(q), h(¢}).- .. h(q)}

where h(q) is the expected value of i over all possible outcomes of waiting, computed as:

k
=d+Y v hgy)
j=1

where d is the expected duration (over all instances) of staying in ¢ and ~; is the probability that the
transition to ¢; will be the first to be taken. These are computed as:

Aj
Sa1ta

d= 72’“-11 o and 9=

The strategy chooses to wait or to take one of the start transitions according to where the minimum
is obtained. To the best of our knowledge, this as an unexplored class of continuous-time Markov
decision processes for which we can show:

Theorem 3 (Optimal Strategiesfor Probablisitic Uncertainty) The problem of finding an optimal
strategy for a job-shop specification with exponetially distributed durationsis solvable.

6 Experimental Results

6.1 Schedule Quality

We have implemented Algorithm 1 using the zone library of Kronos [BDM 98], as well as the hole-
filling strategy and the algorithm for the exponential distribution. As a benchmark we took the fol-
lowing problem with 4 jobs and 6 machines:

Ji: (ma,[4,10]) < (my, [1, 7]) < (ms, [28,40]) < (mq,[7,15]) < (ms,[6,25]) < (mg, [45,63])
Jo: (ms, [14,25]) < (my, [34,46]) < (ma, [2,27]) < (m4, [9,14]) < (me, [14,29]) < (ms, [32, 48])
J3 = (ma, [A7,55]) < (mg, [32,46]) < (ma, [4,12]) < (ms, [1,14]) < (ma, [5,16]) < (ms,[4, 9])
Ju o (me, [54,72]) < (ma, [21,36]) < (ms, [ 1, 8]) < (ma, [22,37]) < (my, [ 7,18]) < (ms, [ 4, 18])

The static worst-case schedule for this problem is 210. We have applied Algorithm 1 to find d-future
optimal strategies based on three instances that correspond, respectively, to “optimistic”, “realistic”
and “pessimistic” predictions. For every p such that D(p) = [I, u| they are defined as

dmin(p) =1 davg(p) =(+u)/2 dna(p)=u.

In addition we have synthesized a hole-filling strategy based on the worst-case and an optimal strategy
for the corresponding probabilistic problem:
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Ji ¢ (ma,0.15) < (my4,0.32) < (ms,0.030) < (mq,0.095) < (ms,0.075) < (mg,0.019)
Jy + (ms,0.029) < (my,0.025) < (mg,0.10) < (1my4,0.088) < (mg,0.049) < (ms, 0.025)
Js © (my,0.020) < (mg,0.026) < (my,0.14) < (ms,0.20) < (ma,0.11) < (ms,0.16)
Js: (me,0.016) < (my,0.036) < (ms,0.30) < (my,0.035) < (mq,0.086) < (ms,0.11)

We have generated random instances and compared the results of the abovementioned strategies
with an optimal clairvoyant scheduler!?® that knows d in advance, and a static worst-case scheduler.
The first table in Appendix 2 compares the performance on 30 instances where durations are drawn
uniformly from the [I, u] intervals. As it turns out, the pessimistic adaptive strategy, based on d 4.,
is very good and robust. It gives schedules that, on the average, are only 2.39% longer than those
produced by a clairvoyant scheduler. For comparison, the static worst-case strategy deviates from the
optimum by an average of 16.18%. On the other hand the realistic and optimistic strategies are usually
inferior to the pesimistic one and in some instances they are even worse than the static schedule. This
can be explained by the fact that schedules that rely on the minimal prediction are almost always not
executed as planned. The hole-filling strategy based on worst-case prediction achieves good perfor-
mance (3.73% longer than the optimum) with a much more modest computational effort (the results
of hole-filling based on optimisitc and realistic predictions are bad and are not shown in the table).

In the second table in Appendix 2 we compare the performances on 30 exponentially drawn in-
stances.** On this sample we observe good results with the hole-filling, pessimistic and probabilistic
strategies. Without ascribing deep statistical significance to these preliminary experiments, they seem
to clearly demonstrate the advantages of being adaptive. Further experiments are still to be conducted.

6.2 Performance

Having demonstrated that adaptive strategies can lead to more efficient schedules, the question of
scaling-up the results to larger problems remains. Currently the computation of a strategy for the
4 x 6 example takes around 30 minutes and there is not much hope to go beyond this size using
exhaustive backward reachability. The computation of the strategy for exponential distribution is
much faster because it involves no clocks and zones, but it is subject to the same type of exponential
growth. For the deterministic case, we have shown in [AMO0L1] that rather large problems can be solved
using forward reachability algorithms that need not use zones (only points in the clock space) and that
can use intelligent search strategies combined with heuristics to prune the search space (heuristic
search was first introduced for timed automata in [BFH*01]). Apparently this is not the case for
uncertain problems where backward computations on zones seem unavoidable. The reason is that,
unlike deterministic problems where the scheduler can determine the set of reachable states, under
uncertainty the environment can lead the automaton to a large portion of the discrete state-space and
to uncountably-many clock valuations. The strategy needs to be defined for all of them. As one can
see from the tables, the more conservative hole-filling strategy produces good results with much more
modest computation — it just computes the optimal strategy for a deterministic problem and can do
it for significantly larger systems.

We are investigating some ideas to reduce the set of states for which a strategy has to be computed.
The first idea is to start with a preliminary forward search to eliminate discrete states which are

31n the domain called online algorithms it is common to compare the performance of algorithms that receive their inputs
progressively to a clairvoyant algorithm and the relation between their performances is called the competitive ratio.

The current implementation of Algorithm 1 cannot handle durations outside [, ] and hence we had to restrict the in-
stances to [, u]. In the future we will remove these restriction and will create samples that are more “fair” to the probabilistic
strategy.
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not reachable under any reasonable strategy, regardless of the instance. Intuitively, we eliminate
“lazy” paths where enabled tasks are not activated even though they cannot block other tasks under
any instance. This procedure leads to a sub-automaton to which algorithm 1 can be applied. The
potential performance improvement of this idea seems, however, limited. Novel ideas that combine
(parameterized) forward search with some approximations need to be developed.

7 Conclusions

We have developed a conceptual framework that allows to formulate and solve optimal scheduling
problems under uncertainty. This framework can go beyond worst-case reasoning without resorting
to probabilistic computations. For the probabilistic case we have solved the corresponding Markov
decision process and the challenge is to extend it to more realistic distributions with memory. This
work also sheds some light on the applicability of forward and backward algorithms to scheduling and
controller synthesis problems in general.

Acknowledgment: We thank Marius Bozga for his help in the implementation. Comments made by
Stavros Tripakis, Ed Brinksma and Albert Benveniste improved the quality of the presentation.
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Appendix 1. Timed Automata Basics

Timed automata are automata augmented with continuous clock variables whose values grow uni-
formly at every state. Clocks can be reset to zero at certain transitions and tests on their values can
be used in conditions for enabling transitions. Hence they are ideal for describing concurrent time-
dependent behaviors.

Definition 7 (Timed Automaton) A timed automaton isatuple A = (Q,C, s, f, I, A) where@Q isa
finite set of states, C is a finite set of clocks, I isthe staying condition (invariant), assigning to every
g € Q aconjunction I, of inequalities of the form ¢ < u, for some clock ¢ and integer «, and A isa
transition relation consisting of elements of theform (¢, ¢, p, ¢') where ¢ and ¢’ are states, p C C' and
¢ (the transition guard) is a conjunction of formulae of the form (¢ > 1) for some clock ¢ and integer
. States s and f aretheinitial and final states, respectively.

A clock valuation is a function v : C — Ry U {0}, or equivalently a |C|-dimensional vector
over R,.. We denote the set of all clock valuations by V. A configuration of the automaton is hence a
pair (¢,V) € @ x V consisting of a discrete state (sometimes called “location”) and a clock valuation.
Every subset p C C' induces a reset function Reset, : V' — V defined for every clock valuation v and
every clock variable ¢ € C as

0 if cep
Reset, v(c) :{ v(e) if cdp

That is, Reset,, resets to zero all the clocks in p and leaves the other clocks unchanged. We use 1 to
denote the unit vector (1, ..., 1) and O for the zero vector.
A step of the automaton is one of the following:

e Adiscrete step: (q,V) N (¢',V'), where there exists 6 = (g, ¢, p,q) € A, such that v satisfies
¢ and v/ = Reset, (V).

e Atime step: (¢, V) N (g,v+1tl),t € Ry such that v + t1 satisfies 1.

A run of the automaton starting from a configuration (g, Vo) is a finite sequence of steps

¢ t tn
€1 (qo0,Vo) — (q1,v1) == -+ = (qn, Vn)-

The logical length of such a run is n and its metric length is ¢ + ¢ + - - - + t,,. Note that discrete
transitions take no time.
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Appendix 2: Performance Results

The first table depicts the results on uniformly drawn samples for a clairvoyant scheduler (Opt) static
worst-case scheduler (Static) pessimistic, realistic and optimisitic strategies (Max, Avg and Min) and
the hole-filling strategy (Hole).

Inst Opt Static % Max % Avg % Min % Hole %
1 172 204 18.60 172 0.00 186 8.13 205 19.18 174 116
2 193 210 8.80 193 0.00 193 0.00 193 0.00 210 8.81
3 157 203 29.29 172 9.55 178 13.37 189 20.38 157 0.00
4 175 208 16.00 181 343 181 342 194 10.85 175 0.00
5 177 199 12.42 177 0.00 198 11.86 196 10.73 192 8.47
6 186 209 12.36 189 1.16 192 3.22 189 161 186 0.00
7 176 203 15.34 177 0.57 180 227 197 11.93 184 4.55
8 176 203 15.34 186 5.68 209 18.75 204 15.90 186 5.68
9 180 206 14.44 180 0.00 186 3.33 195 8.33 181 0.56
10 167 204 22.15 171 2.40 170 1.79 183 9.58 167 0.00
11 202 206 1.98 202 0.00 202 0.00 203 0.49 202 0.00
12 166 202 6.87 166 0.00 172 3.61 197 18.67 175 5.42
13 189 202 6.87 189 0.00 189 0.00 221 16.93 199 5.29
14 176 199 13.06 176 0.00 184 4.54 192 9.09 185 511
15 180 204 13.33 180 0.00 185 277 192 6.66 189 5.00
16 167 204 22.15 171 2.40 175 4.79 178 6.58 177 5.99
17 178 204 14.60 180 112 187 5.05 201 12.92 188 5.62
18 175 202 15.42 182 4.00 184 5.14 204 17.24 182 4.00
19 174 202 16.09 174 0.00 181 4.02 191 9.77 175 0.57
20 176 201 14.20 180 2.27 183 9.97 192 9.09 190 5.68
21 170 199 17.05 170 0.00 187 10.00 182 70.5 171 0.59
22 167 202 20.95 168 0.60 174 4.19 183 9.58 180 1.80
23 185 210 13.51 185 0.00 185 0.00 200 8.10 189 2.16
24 170 204 20.00 191 12.35 177 411 176 3.52 187 10.00
25 158 203 28.48 163 3.16 168 6.32 185 17.08 165 443
26 171 204 19.29 193 12.87 193 12.86 200 11.73 171 0.00
27 179 199 11.17 179 0.00 193 7.82 210 17.31 179 0.00
28 174 203 16.66 180 3.45 182 4.59 202 16.09 174 0.00
29 162 201 24.07 170 4.94 171 5.55 183 12.96 172 6.16
30 172 200 16.27 179 4.07 193 12.02 183 6.39 184 6.98

Avg 175 203.33 16.18 179.19 2.39 184.60 5.48 191.93 9.67 181.53 373

The second table shows performance on exponentially-drawn samples, with Prob denoting the
probability-based strategy.

Inst Opt Static % Prob % Max % Hole %
1 185 206 11.53 195 5.04 186 0.54 185 0.00
2 186 209 12.36 204 9.67 199 6.98 186 0.00
3 187 203 8.55 189 1.06 187 0.00 189 1.06
4 158 204 29.11 162 2.53 158 0.00 162 2.53
5 162 199 22.83 176 8.64 162 0.00 175 8.02
6 171 201 17.54 189 3.50 177 3.50 177 3.50
7 172 199 15.69 179 4.06 173 0.58 179 4.06
8 174 199 14.36 174 0.00 183 5.17 174 0.00
9 178 204 14.06 178 0.00 188 5.61 178 0.00

10 160 199 24.37 169 5.62 173 8.12 160 0.00

11 175 205 17.14 175 0.00 184 5.14 175 0.00

12 175 203 16.00 175 0.00 179 2.28 175 0.00

13 162 202 24.69 162 0.00 166 2.46 162 0.00

14 184 200 8.69 184 0.00 189 271 184 0.00

15 189 207 9.52 202 6.87 189 0.00 189 0.00

16 181 210 16.02 194 7.18 181 0.00 181 0.00

17 176 206 17.04 176 0.00 178 1.13 176 0.00

18 169 203 20.11 211 24.85 177 4.73 169 0.00

19 175 199 13.71 175 0.00 175 0.00 175 0.00

20 171 204 19.29 175 2.33 171 0.00 178 171

21 175 204 16.57 194 10.85 192 9.71 175 0.00

22 170 210 23.52 170 0.00 177 411 170 0.00

23 183 204 11.47 183 0.00 192 491 192 491

24 161 202 25.46 161 0.00 179 11.18 161 0.00

25 170 199 17.05 170 0.00 170 0.00 170 0.00

26 185 202 9.81 185 0.00 185 0.00 185 0.00

27 177 210 18.64 223 25.98 177 0.00 179 1.12

28 158 200 26.58 158 0.00 175 10.75 158 0.00

29 160 203 26.87 170 6.25 161 0.62 161 0.62

30 175 200 14.28 181 3.42 180 2.85 175 0.00

Avg 173.46 203.19 17.13 181.30 451 178.76 3.05 175.16 | 0.98
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