Symbolic Controller Synthesis for Discrete and
Timed Systems*

Eugene Asarin® Oded Maler? Amir Pnueli®

! Tnstitute for Information Transmission Problems, 19 Ermolovoy st., Moscow,
Russia, asarin@ippi.msk.su
2 SPECTRE — VERIMAG, Miniparc-ZIRST, 38330 Montbonnot, France,
Oded.Maler@imag.fr
® Dept. of Computer Science, Weizmann Inst. Rehovot 76100, Israel,
amir@wisdom.weizmann.ac.il

Abstract. This paper presents algorithms for the symbolic synthesis of
discrete and real-time controllers. At the semantic level the controller is
synthesized by finding a winning strategy for certain games defined by au-
tomata or by timed-automata. The algorithms for finding such strategies
need, this way or another, to search the state-space of the system which
grows exponentially with the number of components. Symbolic methods
allow such a search to be conducted without necessarily enumerating the
state-space. This is achieved by representing sets of states using formulae
(syntactic objects) over state variables. Although in the worst case such
methods are as bad as enumerative ones, many huge practical problems
can be treated by fine-tuned symbolic methods. In this paper the scope
of these methods is extended from analysis to synthesis and from purely
discrete systems to real-time systems.

We believe that these results will pave the way for the application of
program synthesis techniques to the construction of real-time embedded
systems from their specifications and to a solution of other related design
problems associated with real-time systems in general and asynchronous
circuits in particular.

1 Introduction

Apart from the different underlying state-spaces and time domains, perhaps
the largest difference between control theory and computer science? lies in the
relative weight of analysis and synthesis methods. Analysis can be roughly stated
as: Will this happen? while synthesis as: How can we make this happen?

* This research was supported in part by the European Community projects BRA-
REACT(6021), HYBRID EC-US-043 and INTAS-94-697 as well as by Research
Grant #93-012-884 of Russian Foundation of Fundamental Research. VERIMAG is
a joint laboratory of CNRS, INPG, UJF and VERILOG SA. SPECTRE is a project of
INRIA.

* We take computer science to denote here the community of those who want to reason
formally about the behavior of computers.

There 1s nothing inherent in the nature of the discrete or the continuous
that makes control people more centered around synthesis and informaticians
around analysis (also called “verification”). The study of “passive” analysis of
continuous systems is simply not called “control” but rather the theory of dy-
namical systems, differential equations, etc. On the other hand, the attempts
to build automatic program synthesis (or “derivation”) methods, although nu-
merous, have mostly been considered as sci-fi dreams, given the common belief
that analysis/verification is already hard enough. One line of research in pro-
gram synthesis concentrated on non-reactive programs, i.e. systems that operate
in a “static” environment, e.g. [MWa80]. In this framework a program is de-
rived as a constructive proof of an existential statement which constitutes the
specification. In spite of the absence of external disturbances, this problem is
much harder than the one we consider because no a-priori program structure is
assumed.

For reactive systems (systems that maintain an ongoing interaction with a
dynamic environment) the synthesis problem has been posed as early as 1957 by
Church [Chu63] in the context of digital circuits. Church’s problem was solved
by Biichi and Landweber [BL69] (a readable exposition of their result appeared
in [TB73]). More modern efforts toward automatic synthesis have been made
by various authors such as [EC82], [MWo84], [PR89-a], [PR89-b], [ALW89] or
[WD91], but apart from some impressive theoretical results (in particular, com-
plexity bounds) the work on synthesis remained marginal compared to the vast
literature on verification and, as far as we know, has not been transferred from
academia to industry. Interestingly, a large body of work dealing with discrete
synthesis came from outsiders to computer science, namely the DEDS model
of Ramadge and Wonham [RW89] in which the controller can inhibit certain
transitions of an automaton in order to achieve some behavioral specifications.

Meanwhile there have been some breakthroughs in the verification area. The
analysis problem, although intractable in terms of worst-case asymptotic com-
plexity, became feasible for industrial size problems, especially in hardware. This
success is due to the use of symbolic methods [BCM*93], [McM93] that do not
transform the description of the system into an enormous “flat” automaton but
rather represent the transition relation as a formula over the state variables.
Given such a formula 7 and a formula P describing some subset F' of the state-
space one can calculate a new formula P’ characterizing the set F’ of successors
(or predecessors) of F'. The goal of this paper is to discuss the transfer of this
technology from analysis to synthesis and from discrete to real-time systems. The
only work along similar lines we are aware of is that of Hoffmann and Wong-
Toi [HW92-a], [HW92-b], [BHG 193] who introduce symbolic methods into the
Ramadge-Wonham model. Another interesting approach to introducing syntac-
tics into controller synthesis is reported in [DV94]. Although our paper presents
no new theoretical result, we hope that it will contribute to a better understand-
ing of the nature of real-time discrete control and its associated computational
problems.

The rest of the paper is organized as follows. In section 2 we set the stage for

the discrete case and give semantic and symbolic characterizations of winning
strategies. The derivation of a discrete scheduler in section 3 illustrates the idea.
Timed automata and real-time games are introduced in section 4 along with
a solution of the symbolic synthesis problem. In section 5 we demonstrate a
solution of a real-time version of the scheduler problem. Finally we mention
application and implementation issues.

2 Discrete Systems

2.1 The Core Idea behind Discrete Synthesis

The most fruitful approach to discrete program synthesis is to view the ongoing
interaction between the system one wants to design and the environment® in
which it 1s supposed to operate as some variant of the von Neumann-Morgenstern
discrete games. A strategy for a given game is a rule that tells the controller how
to choose between several possible actions in any game position. A strategy is
good if the controller, by following these rules, always wins (according to a given
definition of winning) no matter what the environment does [PR89-a], [NYY92].

The existence (and extraction) of a strategy for finite games is done using
the max-min principle of [NM44], disguised sometimes as searching AND-OR
trees or as the elimination of an alternating pair of the logical quantifiers 3 and
V. This principle is illustrated using the game at the left part of figure 1. In
this game the controller starts from position 0 and can choose between the two
actions a; and as. Then the environment can choose between by and b. The
winning condition is specified via some subset F' of {1,2,3 4}. A run of the
game is winning if it ends up in an element of F'. Suppose F' = {1,4} — in this
case the first player has no winning strategy at state 0 because if it chooses a1,
the adversary can take by and reach state 2. If it chooses a5 the adversary can
reach state 3 by taking b,. Hence, 0 is not a winning position. If, on the other
hand, we consider a game with the same transition structure but with F' = {1,2}
then there is a winning strategy as the controller can, by making ay, “force” the
environment into F.

The convention that each player plays in its own turn can be replaced by
having a simultaneous move. In this case there are no two types of states and
the transition between states is made by a joint action of the two players as
in the right of figure 1. This is the convention that we adopt in this paper and
hence, the notions of “first” and “second” player bear no ordinal meaning.® For
games on continuous time the notion of turns becomes anyway meaningless.

Some readers may wonder whether such trivialities deserve a relatively long
verbal exposition. We consider this to be the essence of any synthesis algorithm,

® As one control theoretician once said: “you CS people call environment everything
that lies outside the computer”.

5 It can be shown that every von Neumann-Morgenstern game can be converted into
an equivalent simultaneous action game.

b1

Fig.1. A simple game.

a fact which 1s sometimes obscured by fancy complicated constructs. The math-
ematical formulation of this notion for a game with a state-space @ is via an
operator 7 : 29 — 29 assigning for every F C @ the set 7(F') denoting its con-
trollable predecessors, that is, the set of states from which the controller can force
its adversary into F'. In the example above {0} ¢ x({1,4}) and {0} € #({1,2}).
Calculating this operator, together with some set-theoretical operations consti-
tutes the core of any synthesis algorithm.

2.2 Semantic Version

Definition1 (Game Automaton). A game automaton is A = (Q,6,q0, F)
where Q@ = Qr x Qy 15 a set of states, 6 :) — 29 s the transition relation,
qo € @ s the initial state of the game and F C Q) is a set of accepting states.
We assume that 6§ admits a decomposition into 6, : Q — 29 and by 1 Q — 29y
such that for every q € Q, §(q) = 6:(q) x 6,(q).

One can see that the game automaton is a product of two automata communi-
cating via their states, that is, the transition made by the X-automaton may
depend on the current state of the Y-automaton and vice versa.

A run of the game is any infinite sequence & = ¢[1], ¢[2], ... such that ¢[1] = ¢

and for every i, q[¢ + 1] € é(¢q[é]). The first player wins a run of the game if the
run always stays in F'. Otherwise 1t loses the run.
Remark 1: We have considered one of the several possible definitions of winning,
namely the O-condition (also known as “safety”, or “closed” game). One can
imagine the “dual” game as viewed from the second player’s perspective — this
player wins a run of the game if it succeeds to steer the run at least once into
() — F. These are called O-games (“eventuality”, “open”). Since the emphasis
in this paper is on real-time and on symbolic methods, we will not refer here to
more complicated winning conditions — see [Tho94] for a recent survey.

A strategy for the first player is a transition relation 6% : @ — 29+ such
that é6%(q) C 6;(g) for every ¢ € . This can be viewed as a rule telling the

controller which actions it should take while being at any ¢ € Q. A strategy
can be deterministic (|67(¢)] = 1) but it need not be so — in case we need later
to implement it, we can fix arbitrarily some ¢’ € 6*(¢). When we replace é, by
6% we obtain a more restricted automaton A* with 6* C 6. A strategy 6} is a
winning one if all the runs of A* are winning.

The search for a strategy is performed via the determination of the set F'™*
of winning states. This 1s done iteratively starting with Fy = F'. Every iteration
we create Fjy1 by removing from F; all the states from which the first player
cannot force the game to stay in Fj. It is not hard to see that a state ¢ belongs
to F; if, starting from ¢, the controller can stay in F' for at least ¢ steps. This
procedure converges to the set F'* of winning states. If ¢y € F* the controller
has a winning strategy. Formally:

Definition 2 (Controllable Predecessors). Let A = (Q,6,q0, F') be a game
automaton. We define a function m : 29 — 29 as

m(P)={q¢: 3¢, € &:(q)Yq, € 8,(¢)(¢;,9,) € P}

The algorithm for calculating the winning states works as follows:

Algorithm1 (Synthesis for Discrete O-Games).

FO =F
for:=0,1,..., repeat

Fip=F 0 T(Fl)
until Fi+1 = Fi

The algorithm is illustrated in figure 2. The strategy for every ¢ € @ 1s
extracted as follows:

st = 4 9 if g F*
(@)= {4, 1V, € 6(q) (45, 4,) € F*} otherwise

Note that in the first case (¢ € F*) we do not care because anyway we cannot
win after arriving to such a state. This might be different had we been interested
in more quantitative notions of winning, e.g. expected probability.

Remark 2: We extract the strategy after having completed the calculation of
the winning states. We could have done it incrementally by removing losing
transitions after each iteration. In games with winning condition other than O,
it might be better (and sometimes even necessary) to calculate 6™ iteratively
along with the calculation of F*.

This is all that needs to be said about safety games. More complex games
require more complicated iterative procedures and sometimes they cannot be
won by simple strategies (those that depend only on ¢) but rather need some
more information on the history of the game (as a continuous controller needs
sometime to know the sign of the derivative of the state-variable). We refer the
reader again to the survey [Tho94] as well as to [TW94].

Fig. 2. An illustration of algorithm 1.

2.3 Symbolic Version

So far we have considered the state-space of A to be an amorphous set () void of
any structure. Large complex systems, however, are usually composed of smaller
sub-systems, and the global state-space is the Cartesian product of the local
ones (and so is the transition relation). Instead of creating this huge automaton
and applying analysis or synthesis algorithms to it, symbolic methods keep the
transition relation in a syntactic form and operate on it.

Suppose a system is defined using a set X = {a1,..., 25} of Boolean vari-
ables. Hence @) = {0,1}* and every subset F of @ can be described by one (or
more) Boolean formula P over X. A transition relation R C {0,1}* x {0, 1}* can
be written as a formula over a set X U X of variables where each #} represents
the value of z; 1n the “next” state.

A symbolic analysis method consists of a class F of syntactic objects (for-
mulae) covering all the subsets of @, such that for every set-theoretic operation
on 29 there is a corresponding semantics-preserving operation on F. In partic-
ular one needs a class of objects in which there are syntactic operations that
correspond to: 1) standard set-theoretic operations, 2) the predecessor operator
7, and 3) equality testing. This is all one needs in order to perform algorithm 1.
Certain classes of syntactic objects, such as ordered BDDs [Bry86], have a canon-
icity property, namely one-to-one mapping between syntactic objects and the sets
they denote — this makes equality testing trivial. In our exposition we will not
insist on a particular representation (which is an implementation question) but
rather use arbitrary Boolean formulae. Note that elimination of quantifiers is a
simple syntactic operation for Boolean formulae:

oy Py, .. 24, xp) = P(er ..., 0, . 2p) V Py, .., o)
and

Va; P(xy, .. 2, ep) = Pler o ,0,0 o) AP(og, .., 1,0 og)

In order to adapt the symbolic method for synthesis we must first intro-
duce some notion of interaction between automata and “ownership” of state-
variables. Intuitively every process has its own set of local variables which cannot
be changed by other processes. On the other hand, it may “read” the state of
other processes and base its decision concerning which transition to make on the
values of these variables. Syntactically, if the corresponding sets of variables are
X and Y, the respective transition formulae of the two automata can be written
as Tx(X,Y, X") and Ty (Y, X,Y"). When we compose them together we obtain
a closed system where both X and Y are internal variables and the transition
formulais 7(X,Y, X"\ Y') = Tx (X, Y, XY ATy (V, X, V).

In a control setting we let a variable set X denote the controllable variables,
namely the variables owned by the controller and which he can change (or re-
frain from changing). The other set Y consists of environmental variables which
the controller cannot influence directly (however, since 7y depends on X, the
controller can influence them indirectly, which is essentially what control 1s all
about).

We use quantifiers of the form 3X or VX as an abbreviation for 3z; s .. .,
etc., and assume without loss of generality that the transition relation is com-
plete. Given Tx, Ty and a set I expressed by a formula P(X,Y"), the syntactic
predecessor operator is defined as follows:

A(P)(X,Y) = 3X' [Tx (X, Y, X') AVY' (Ty (Y, X, V") = P(X',Y"))]

To rephrase it verbally, the immediate controllable predecessor of P are all the
states from which there is an X “action” such that for every Y action the
resulting state satisfies P.

Having all the other ingredients of a symbolic method we can plug it into
algorithm 1 and converge to a formula P* characterizing all the winning states.
The controller is derived from 7, 7, and P* as follows:

T(X,Y, X') = Tx (X, Y, X') A P*(X,Y)AVY' (Ty (Y, X,Y') = P*(X",Y"))

The transition relation expressed by 73 is a subset of the one expressed
by 7x and is obtained by restricting the possible values for X’. The transition
relation of the whole system after the controller is synthesized is expressed by
TH(X,) YV, X, Y)=THX,Y, X)ANTy (Y, X,Y’). All its runs are winning for the
first player.

This is all the story. The question whether there exists an efficient imple-
mentation scheme allowing large-scale synthesis is an empirical open question.
Some positive evidence is reported in [BHGT93].

3 Example: A Discrete Scheduler

Suppose we have two identical processes with the corresponding state variables
S1 and Ss. Each of them can be either in I (idle) or W (waiting). A process can
be at S; = I as long as it wishes and can generate a request (move to S; = W)

only if at least 3 time units have elapsed since the previous request. It can move
from S; = W to S; = I whenever the scheduler gives it a permission by letting
the variable G; = 1 (we assume here that the service is immediate). For modeling
this behavior we use for each 7 a variable C; ranging over {0, 1,2, 3} measuring
the number of steps since the previous request. The system 1s depicted in figure 3
and the product of S; and C; is the automaton of figure 4. The whole system
consists of a product S; o €y 0 Sy 0 U3 o G where @G is the automaton for the
scheduler that we want to synthesize. It is a 2-variable (4-state) automaton that
decides the values of GG; and (5. We have not drawn the whole system (the
formulae are sufficiently large).

C; =3
QU @Da-
Y~

Fig. 3. The automata for process i € {1,2}, responsible for the variables 5; and C;.
Unlabeled transitions can be made unconditionally.

The transition formula 7, appears below. Since we start with the most liberal
controller that allows everything, we have 7, = true and 7 = 7, does not
mention the variables G and GY.

7,(S1,C1, S2,Co, G, G, 51,01, 95, C5) =

(S1=IA(SL =1V (CL=3AS,=W)V
S1=WA(GL =1AS =TVG =0AS, = W)A
(CL=0AC, =1V = 1AC, =2V (= 2AC] =3V
CL=3A(S = IAC,=3VSi=WAC,=0)A
(Sa=IA(S,=1V(Co=3AS,=W)V

Sy =W A(Gy=1AS, =TV Gy=0AS,=W)A
(Co=0ACL=1VCy = 1AC,=2VCy=2ACh =3V
Co=3A(Sa=IACL=3VSy=WAC,=0))

The performance specifications (winning conditions) are that no process will
wait in W more than 2 time units, and that mutual exclusion is satisfied, i.e.

Fig.4. The automaton S; o C; for ¢ € {1,2}. Note that the only “external” variable
this automaton refers to is G;.

that at least one of G, G5 is zero. This can be expressed by the formula

P(S1,C1, 82,0y, Gr, Ga) =
A(SI=WACI=2VS=WAC,=WVG =1AG,=1)

By performing the algorithm we obtain the following sequence of formulae:

P0 (S =WACI =2VS, =W AC,=WVG =1AGy=1)
Po/\ (Gl—l/\Gz—l)
= PA(S =WACI=1AG =0V S =WAC,=1AGy=0)
P3_P2/\ (S =WAC,=0AG =0ASy =W AC,=0AGy=0)

The first iteration excludes violation of mutual exclusion. The second itera-
tion excludes the case where for some ¢, C; = 1 and G; = 0 — in this case the
next step will take us to a bad state C; = 2AS; = W. Finally the third iteration
excludes the states where the two processes have moved to W and the scheduler
has not allocated the resource to at least one of them. The resulting controller,
appearing in figure 5, is specificed by the formula 7.}

T (G1,Ga, 51,01, 82,09, GY L, GY) =

(S1=WAC,=0)= G| =1)A

((So = W ACs = 0) = Gy = 1A
(Gl—O/\Sl W AC) = 3A

Gs=0AN5; = W/\Cz—3) (Gllzl\/Glzzl)

G1Z

(S =W AC, =0)A
(S =W AC, =0)A

—(S1 =S =WAC, =C, =3)

GQI _‘(SQZW/\CQZO)

—(So =W AC, =0)

Fig. 5. The resulting scheduler obtained by restricting the complete 4-state automaton.

4 Timed Systems

4.1 Real-Time Games

In real-time games the outcome of the players’ actions depend also on their tim-
ing because performing the same action “now” or “later” might have completely
different consequences. For such games we take the model of timed automata
[AD94], in which automata are equipped with auxiliary continuous variables
called clocks which grow uniformly when the automaton is in some state. The
clocks interact with the transitions by participating in pre-conditions (guards)
for certain transitions and they are possibly reset when some transitions are
taken.

In this continuous-time setting, a player might choose at a given moment to
wait some time ¢ and then take a transition. Unlike purely-discrete games, it
should consider not only what the adversary can do after this action but also
the possibility that the latter will not wait for ¢ time, and perform an action at
some t' < t. Thus the two-person game becomes a three-player game in which
Time can interfere in favor of both other players.

While synthesizing a controller for timed automata one should be careful not
letting any of the players win by “Zenonism”, that is, by preventing the time
from progressing as does the Tortoise in its race against Achilles.

4.2 Semantic Version

For the sake of readers not familiar with timed automata we start with an infor-
mal illustration of the behavior of these creatures. Consider the timed automaton
of figure 6. It has two states and two clocks z; and z5. Suppose it starts operating
in the configuration (¢1,0,0) (the two last coordinates denote the values of the
clocks). Then it can stay at ¢; as long as the staying condition for ¢; is true,

namely z; < 2. Meanwhile the values of the clocks grow and the set of all con-
figurations reachable from (g1, 0, 0) without leaving ¢qq is {(q1,¢,¢) : 0 <¢ < 2},
However, after one second, the condition z; > 1 (the guard of the transition
from ¢1 to ¢2) is satisfied and the automaton can move to ¢z while setting zs
to 0. Hence the additional reachable configurations are {(¢2,¢,0) : 1 <t < 2}.
Having entered g5 in one of these configurations, the automaton can either stay
there as long as z1 < 5 A z2 < 3 or can unconditionally move to (g1, 0, 0), etec.

z > 1/22 =0

/z1 =z, :=10

Fig.6. A timed automaton.

Since the state-space of timed automata contains real-variables, we have an
infinite-state automaton and a purely-semantic approach, where all states and
transitions are enumerated, is impossible. We will use notation such as T3, to
denote the set of values in the clock space such that a transition from ¢ to ¢’ # ¢
is possible (“guards”). Similarly, T, denotes the set of clock values for which the
automaton can stay in ¢ (“staying conditions”). In timed automata such sets are
restricted to be k-polyhedral subsets of (IR)?, that is, the class of sets obtainable
by set-theoretic operations from half-spaces of the form {(vy,...,v4) : v; < e},
{1, va) v < e}y, {(vr, . va) t vy — vy < ctor {(vr,...,vq) v —vj < c}
for some integer ¢ € {0,... &k}, where k is some positive integer. In fact, we
can use ¢ € {0,7,2r... kr} for some positive rational 7. These sets constitute
the finite region graph [AD94] whose properties underly all analysis methods for
timed automata. Since we model interaction between two automata, the guards
and staying conditions of one automaton may depend, in addition, on the state
of the other automaton and thus can be a union of sets of the form {¢;} x L;
with L; C (IR*)?. We will call such sets k-polyhedral as well.

A function f : IRY — IR? is a reset function if it sets some of its arguments
to 0 and leaves the others intact. We will use Ry, to denote the reset function
associated with every pair of states. Without loss of generality we assume that
there is only one transition associated with every ordered pair of states. Finally,
for z € (IRY)? we use z +t to denote z +¢ -1 where 1 = (1,1,...,1) is a
d-dimensional unit vector.

Definition3 (Timed Game Automaton). A timed game automaton is A =

(Q,Z,6z,6y,q0, F) such that

— Q =Q: x Qy 15 a discrete set,

— 7 = Zy x Zy = (IRT)? is the clock space () x Z is the configuration space),
— by QX Z x Rt — 29=%%= qnd

-6, :QxZx Rt — 2QvXZy qre the transition relations for the two players,
— q €Q, and

— FCQ xZ s a set of accepting configurations.

It is required that 6, and &, admit the following decomposition: For every q., ¢, €
Qs and qy, qg’/ € Qy, letTy g CQyx7 and Ty,q, C Qz X Z be k-polyhedral sets
and let Ry 4 @ Zy — Zy and Ry,q 2y — 2y be reset functions. Then for every
(Qxazx) € Qx X Zx; (anzy) € Qy x Zy

(45, 2p)

6x((qx’zx’qy’zy)’t) = Vt/ € [O’t) (qy,z +t/) € qu]z/\
(ay,2+1) € Tyoqr N2y = R, (2 + 1)}
(2y, 2y) :

6?4(((]3;; RED Zx)at) =qVte [O’t) ((Jx, z +t/) € Tquy/\
(40,2 +1) € Tq,q N2y = Ry, (2 +1)}

The meaning of 8. ((¢e, %o, ¢y, 2y), 1) is the set of @, X Z, configuration the first
player can reach by waiting ¢ time, and then making at most one transition,
given that the other player has done nothing meanwhile. The meaning of ¢, is
symmetric. This allows us to define the predecessors operator rather simply:

Definition4 (Timed Controllable Predecessors). For a given timed game
automaton A = (Q, 7,6;,8,,q0, F) we define a function 7 : 29%7 — 29%7 ¢

(Qxazxaanzy :
> 03(q,,2L) € 62 ((9e, 20, @y, 7))
T(F) =9 VU <tV(q, z) €6y ((ay, 2y, 4o, 22), 1) (€2, 20+, 4y, 7)) € FA
t= t/ = (qlxazéaQ;J’Zg//) € FA
t<o00=q, % ¢

Verbally this means that from the configuration (¢s, 2, ¢y, 2y) the controller
can force the game to stay in F' by taking a transition after waiting ¢ such that
whatever transition the environment can take during the interval [0,¢) will not
steer the game out of F'. This is the essence of the definition (lines 2 and 3).
Line 4 takes care of the special case where ¢ = ¢t and the two players make their
transition simultaneously. The last line makes sure that the first player will not
play Zenonist tricks, i.e. will try to prevent the progress of time without taking
any transition. He is allowed to refrain from action only if it chooses ¢ = co. We
assume, initially, that 6, is strongly non-Zeno, i.e. there is minimal period of
time d such that every two discrete transitions must be separated by an interval
of at least d. This condition can be relaxed into a condition on cycles, but, as

observed in the context of asynchronous circuits [MP95], you really do not need
to interleave two discrete transitions in zero time.

An important fact about this operator (first stated explicitly in [MPS95],
but really follows immediately from region-graph properties): The class of k-
polyhedral sets is closed under w. This means that algorithm 1, when initiated
with a k-polyhedral set F', is guaranteed to converge to a fixed point F'* as the
number of k-polyhedral sets is finite. The strategy 67, which is a restriction of
b¢, can be obtained by restricting the sets T} 4 as follows:

Tq*zq; = quq; N {(qy,zx,zy) : 6x((qx’zx’qy’zy)’0) g F*}

This approach to real-time synthesis has been first presented in [MPS95]. Al-
ternative approaches, e.g. [OW90], [BW93] are based on a discrete time model.
Wong-Toi and Hoffmann [WH92] use timed automata, but then they discretize
the system into an untimed automaton (essentially the region graph) and syn-
thesize the controller using discrete symbolic methods.

4.3 Symbolic Version

For timed automata we need syntactic objects to represent subsets of the binary
hypercube (discrete sets of states) as well as k-polyhedral subsets of the Eu-
clidean space (which cannot be enumerated anyway). Systems of linear inequal-
ttres and sets of vertices are among the syntactic objects used to represent such
sets. A very useful representation by Dill’s difference bounds matrices [Dil89].
This representation is employed in the timed automata analysis tool KRONOS,
developed at VERIMAG [DOY94], and it does not have a canonicity property
(unless the set is convex). Following our presentation of the discrete case, we
will not commit ourselves to this or that representation formalism but rather
use arbitrary linear inequalities. The 1deas in this section are adapted from the
symbolic analysis methods for timed automata [HNSY94], [ACD93].

As before, we will use discrete sets of variables X and Y, whose sets of
valuation constitute the sets () and @y, and augment them with two sets of clock
variables C, and C), ranging over the non-negative reals and whose valuations
are the elements of 7, and 7, respectively. All variable will have primed versions,
X', O, Y and Cy to represent next-states in transition formulae.

The game automaton is described by the formulae 7, (X, C,,Y, Cy, X/, C2)
and T (Y, Cy, X, Cy, Y', C})) . Such formulae specify the instantaneous transition
relation, namely the transitions that can be made in zero time. These formulae
should also capture the “idle” transition and thus they contain a conjunction
with X = X' = C, =) and Y = Y' = C, = (), respectively. They are the
syntactic equivalents of the T, of the semantic version.

The formulae 7, (X, Cy, Y, Cy, X', Cy, €7 t) and T, (Y, Cy, X, O, Y, O, O)
which indicate what the two automata can make by waiting ¢ and doing at most
one transition, are constructed from 7, and 7. They are the analogues of 6,
and 6,. Note that ¢ is a free variable in these formulae:

T.(X,Cp, Y, Cy, X, O, Oy t) =

Vi <t To(X,Co +¢,Y,Cy +t/, X, Co + ')A
To(X,Cp +1,Y,Cy +1,X',C1)

T,(Y,Cy, X, Cy, Y, Cp, O t) =

Vil <t T,(Y,Cy + ', X, Co + 1Y, Cy + ') A
Ty(Y,Cy +4, X, C +1,Y',C)

For a formula P(X,C;,Y,C,y) denoting a set of configurations we define a
predecessor formula as:

T(P)X,Cp,Y,Cy) =

3t > 03X’ £ X 3C!, To(X,C,Y,Cy, X!, CL 1) A
Vi < EYYIVC (T, (Y, Cy, X, Co, Y, Ol 1) = v
(t=1'AP(X,CLY IV (t <t AP(X,Cp+1,Y',CL)))

V>0 To(X,Cy, Y, Cy, X, Co +1,1) A
Vi < EVYINC) (T,(Y,Cy, X, G, Y, Clt') = P(X,Co +1,Y",C)

As before, we can apply algorithm 1 and converge to a formula P* from
which we derive the controller as a restricted transition formula 7). Note that
this formula returns revised guards and staying conditions, something which is
very useful for many design problems beside synthesis.

Tx*(Xa Ce,Y, Can/aC;) =

3t >0 T,(X,Cp,Y,Cy, X', CLt) A
Vi < EVYIYC! (T,(X,Co, Y, Cy, Y, Clt') = PH(X!,CL Y, CL) A
t>0AX=X)V(E=0AX #X')

This concludes the symbolic synthesis for timed systems.
Remark 3: Logically speaking, the language we use here i1s some decidable
fragment of the first-order logic over the reals with constants, addition and order.

5 Example: A Real-Time Scheduler

We take again two processes and a scheduler. Each process (see figure 7) has one
discrete variable S; which can be in one of three states: Idle, Waiting and Busy.
It has two clocks: ¢; which is used to enforce minimal inter-arrival time of 3, and
d; which measures service time — we assume that every process must spend one
time unit at B before coming back to 1.

The scheduler is as in the discrete example. We do not start the synthesis,
however, with the most general scheduler but rather enforce a strong non-Zeno
condition using the variable z. The scheduler has to spend at least 0.5 time at

Fig.7. A timed automaton for S;, ¢; and d;, 1 € {1,2}.

every state (see figure 8). For simplicity we exclude the bad state G; = IAGy =1
from the initial scheduler. The corresponding transition formulae are:

i / i i ! i —_
Ty(S1,e1,d1, 5o, ¢, da, Gr, Ga, 2, S, ¢, dY, 55, ¢4, dy) =

(5121/\5121/\6’1261/\d’1:d1\/
5121/\6123/\51IW/\CQIO/\dllzdl\/
SlIW/\G1:0/\51IW/\Cllzcl/\dllzdl\/
SlIW/\Glzl/\SiIB/\Cllzcl/\dllz()\/
Si=BAGI =1Adi <1AS]=BAcd=ciANd}) =d1V
SlIB/\G1:0/\51IW/\Cllzcl/\dllzdl\/
Si=BAdi=1AS| =IAc =ci Ady =di)A
(So=IAS,=IAcy=cond,=dsV
SQII/\CQZE;/\SéIW/\C/QIO/\d/ZIdz\/
SQIW/\GQIO/\SéIW/\CQICQ/\ngdz\/
SQIW/\Gzzl/\SéIB/\CéICQ/\ngO\/
Sa=BAGy=1Ada<1AS),=BAcd,=candy=dsV
52:B/\GQIO/\Sé:W/\C/ZICQ/\d/ZIdZ\/

Sy =BAdy=1AS,=INch=coAdy=dy)

T (G1,Ga, 2,51, ¢1,d1, S0, ¢9,da, G, GY, 2') =

(G1:0\/G2:0)/\(G’1:0\/G’2:0)/\
GllzGl/\G/ZIGz/\Z/IZ\/
(G3¢G1VG/2¢G2)AZZO.5/\Z/IO

The winning condition is

P(Sl,Cl,dl,SQ,Cz,dz,Gl,Gz,Z)I_|(Sl #I/\Cl >3V .S, #I/\Cz > 3)

The iteration for the winning states goes as follows:

Py = —|(517£I/\61>3\/527£I/\62>3)
P1:P0/_'(51:B/\Z<0.5/\61—d1>2/\61—Z>2.5\/
So=BAz<0b5Aeco—dys >2ANe0 — 2> 25V
S1=WiAz<0bAe; —z>2.5V
SZIWZ/\Z<O.5/\62_Z>2.5)
Py = PA —|(Sl =W Aec1 > 2.5V
Sy =W Acy > 2.5V
Si=BAei—di >2ANep > 2.5V
SQIB/\Cz—d2>2/\Cz>2.5)
P3:P2/_'(SlIW/\Z<0.5/\61—Z>2\/
So=WAz<0bAcy —2z>2V
S1=BAz<0bAcy—dy >2ANe; —2z2>2V
SQIB/\Z<0.5/\CQ—d2>2/\CQ—Z>2)
P4IP3/\—|(51:W/\61>2\/
Sy =W Acyg > 2V
Si=BAe —dy > 2V
SQIB/\Cz—d2>2)
P5IP4/_'(51:W/\Z<0.5/\61—Z>1.5\/
So=WAz<0bAca—2z>1.5)
P6IP5/\—'(51:SQIW/\61>1.5/\62>1.5\/
S1=WASy;=BAcy >15A¢c; —dy > 1V
SlzB/\SQIW/\Cl>1.5/\62—d1>1)
Pr=PsA=(S1=S2=WAz<0bAc;—z2>1Aea—2z> 1V
Si=WASy=BAz2<0b5Aecs—2z>1Ae; —dy > 1V
SlzB/\SQIW/\Z<O.5/\Cl—Z>1/\62—d1>1)
PSIP7/\—|(51:SQIW/\61>1/\Cz>1)
P9:P8/_'(SlISQIW/\Z<0.5/\61—Z>0.5/\62—Z>0.5)

The first b iterations deal with failures not related to interaction of the two
processes. At each step a part of “size” 0.5 is subtracted from the set of winning
configurations (this is due to the anti-Zeno constant 0.5 of the initial controller).
The condition = P4 means that it 1s too late to serve a process. The condition
Ps and the first line of Ps exclude a situation when we are unable to start a
service in due time because of switching delays. The last 3 iterations correspond
to failures related to interaction of the processes. This is done in steps of “size”
0.5. The synthesized controller is expressed by the formula:”

T We leave the drawing of the controller to the reader.

T;(GlaG?azaSlacladlaSZaCZadZaGllaG/ZaZ/) =

P*(S1,¢1,dy,S2,¢9,da, Gy, Ga, 2)A
To(G1,Ga, 2,51, ¢1,d1, S2, ¢0,d2, G, GY, 2/)A

751/\5275[/\61>05/\62>05/\(G1—1\/G221)):>

S1
S —B/\SQIW/\61>1/\CQ>1):>G/121/\
S =WASy = B/\Cl>1/\62>1):>G/221/\
S1 =585 = W/\Cl—CQ—l) (Gllzl\/Glzzl)/\
S1 =585 = W/\Cl>1/\62—1):>G/—1/\
S1=W=5,= W/\Cl—l/\62>1):>G/—1/\
S1=BAC;>15)= G =1A
SQ—B/\CQ>15):>G/—1/\
Si=WAGy=1Aey > 15)= (G4 =1V G, = 1A
SQ_W/\Gl_l/\Cz>15) (G/121VG/221)/\
S1=WAG, = GQ—O/\61>1.5):>G/2:0/\
SQIW/\Gl GQIO/\CQ>1.5):>G/1:0/\
#I/\Cl>2):>G/_1/\
SQ¢IAcz>2):>G’_1

Go:

ﬂmz >0.5/z:=0

(G =1V G, = 1A

Fig. 8. The initial scheduler.

6 Discussion

We have demonstrated how the synthesis problem for real-time systems can be
formulated and solved symbolically. As one potential application let us mention
the delay analysis of asynchronous circuits. It has been shown [MP95] that every
such circuit can be modeled as a timed automaton such that every wire requires
one Boolean variable and one clock variable. The guards and staying conditions
for the automaton are derived from the delay characteristics of the gates and from
constraints on the variability of the input signals. Using the method described in
this paper, we can formulate a game by considering the inputs as environmental
variables (Y') and the outputs of the gates as controllable variables. By solving
the synthesis problem for some winning condition (specification), we obtain the
minimal timing requirements the gates need to satisfy in order to meet the
specification. If we switch the roles and treat the gate variables as fixed and the
inputs as controllable, we solve the opposite problem: what 1s the largest class
of input signals against which the circuit will behave properly.

Without a convincing implementation, all this remains, of course, wishful
thinking. For the discrete part of the system, there is no a-priori reason to believe
that the practical hardness of synthesis is much bigger than that of verification.
The main challenge is to find more efficient data-structures and algorithms for
treating k-polyhedral sets, and combining them with the discrete ones.
Acknowledgment: This work grew out of discussions with J. Sifakis. We thank
A. Bouajjani and Y. Lakhneche for commenting on previous drafts of the paper
and A. Nerode for his help in stopping Time.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Com-
puter Science 126, 183-235, 1994.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill, Model Checking in Dense Real
Time, Information and Computation 104, 2-34, 1993.

[ALW89] M. Abadi, L. Lamport, and P. Wolper, Realizable and Unrealizable Con-
current Program Specifications. In Proc. 16th ICALP, volume 372 of Lect.
Notes in Comp. Sci., pages 1-17. Springer-Verlag, 1989.

[BHG' 93] S. Balemi, G.J. Hoffmann, P. Gyugyi, H. Wong-Toi and G.F. Franklin,
Supervisory Control of a Rapid Thermal Multiprocessor, IEFE Trans. on
Automatic Control 38, 1040-1059, 1993.

[Bry36] R.E. Bryant, Graph-based Algorithms for Boolean Function Manipulation,
IEEE Trans. on Computers C-35, 677-691, 1986.

[BCM*93] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang, Sym-
bolic Model-Checking: 10%° States and Beyond, Proc. LICS’90, Philadel-
phia, 1990.

[BW93] B.A. Brandin and W.M. Wonham, Supervisory Control of Timed Discrete-
event Systems, IEFE Transactions on Automatic Control, 39, 329-342,
1994.

[BL69] J.R. Buchi and L.H. Landweber, Solving Sequential Conditions by Finite-
state Operators, Trans. of the AMS 138, 295-311, 1969.

[Chu63]
[DOY94]
[DV94]

[Dils9]

[ECs2]

[HNSY94]

[HW92-a]

[HW92-b]

[MPS95]

[MP95]
[MWa80]

[MWo84]

[McM93]

INYY92]

[NM44]
[OW90]
[PR89-a]

[PR89-b]

[RWS9]

[TW94]

A. Church, Logic, Arithmetic and Automata, in Proc. of the Int. Cong. of
Mathematicians 1962, 23-35, 1963.

C. Daws, A. Olivero and S. Yovine, Verifying ET-LOTOS Programs with
KronNos, Proc. FORTE’94, Bern, 1994.

A. Deshpande and P. Varaiya, Control of Discrete Event Systems in Tem-
poral Logic, Unpublished manuscript, 1994.

D.L. Dill;, Timing Assumptions and Verification of Finite-State Concur-
rent Systems, in J. Sifakis (Ed.), Automatic Verification Methods for Finite
State Systems, volume 407 of Lect. Notes in Comp. Sci., Springer, 1989.
E.A. Emerson and E.M. Clarke, Using Branching Time Temporal Logic to
Synthesize Synchronization Skeletons, Science of Computer Programming
2, 241-266, 1982.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-
checking for Real-time Systems, Information and Computation 111, 193—
244, 1994.

G. Hoffmann and H. Wong-Toi, Symbolic synthesis of supervisory con-
trollers, Proc. of the 1992 American Control Conference, 2789-2793, 1992.
G. Hoffmann and H. Wong-Toi, Symbolic Supervisory Synthesis for the
Animal Maze, Proc. of Workshop on Discrete Fvent Systems, 189-197,
Birkhauser Verlag, 1992.

O. Maler, A. Pnueli and J. Sifakis, On the Synthesis of Discrete Controllers
for Timed Systems, In E.W. Mayr and C. Puech (Eds.), Proc. STACS ’95,
volume 900 of Lect. Notes in Comp. Sci., 229-242, Springer-Verlag, 1995.
O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits using
Timed Automata, Proc. Charme’95, to appear, 1995.

7. Manna and R.J. Waldinger, A Deductive Approach to Program Synthe-
sis, ACM Trans. of Prog. Lang. and Sys. 2, 90-121, 1980.

7. Manna and P. Wolper, Synthesis of Communication Processes from Tem-
poral Logic Specifications, ACM Trans. of Prog. Lang. and Sys. 6, 68-93,
1984.

K.L. McMillan, Symbolic Model-Checking: an Approach to the State-
Explosion problem, Kluwer, 1993.

A. Nerode, A. Yakhnis and V. Yakhnis, Concurrent Programs as Strate-
gles in Games, in Y. Moschovakis (Ed.), Logic From Computer Science,
Springer, 1992.

J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, 1944.

J.S. Ostroff and W.M. Wonham, A Framework for Real-time Discrete Event
Control, IEFE Trans. on Automatic Control 35, 386-397, 1990.

A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module, In Proc.
16th ACM Symp. Princ. of Prog. Lang., pages 179-190, 1989.

A. Pnueli and R. Rosner. On the Synthesis of an Asynchronous Reactive
Module, In Proc. 16th ICALP, volume 372 of Lect. Notes in Comp. Sci.,
653—671, 1989.

P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems,
Proc. of the IEFE 77, 81-98, 1989.

J.G. Thistle and W.M. Wonham, Control of Infinite Behavior of Finite Au-
tomata, SIAM J. of Control and Optimization 32, 1075-1097, 1994.

[Tho94] W. Thomas, On the Synthesis of Strategies in Infinite Games, In
E.W. Mayr and C. Puech (Eds.), Proc. STACS 95, volume 900 of Lect.
Notes in Comp. Sci., 1-13, Springer-Verlag, 1995.

[TB73] B.A. Trakhtenbrot and Y.M. Barzdin, Finite Automata: Behavior and Syn-
thesis, North-Holland, Amsterdam, 1973.

[WD91] H. Wong-Toi and D.L. Dill, Synthesizing Processes and Schedulers from
Temporal Specifications, in E.M. Clarke and R.P. Kurshan (Eds.),
Computer-Aided Verification 90, DIMACS Series, AMS, 177-186, 1991.

[WH92] H. Wong-Toi and G. Hoffmann, The Control of Dense Real-Time Discrete
Event Systems, Technical report STAN-CS-92-1411, Stanford University,
1992.

This article was processed using the INTpX macro package with LLNCS style

