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Abstract� This paper presents algorithms for the symbolic synthesis of
discrete and real�time controllers� At the semantic level the controller is
synthesized by �nding a winning strategy for certain games de�ned by au�
tomata or by timed�automata� The algorithms for �nding such strategies
need� this way or another� to search the state�space of the system which
grows exponentially with the number of components� Symbolic methods
allow such a search to be conducted without necessarily enumerating the
state�space� This is achieved by representing sets of states using formulae

syntactic objects� over state variables� Although in the worst case such
methods are as bad as enumerative ones� many huge practical problems
can be treated by �ne�tuned symbolic methods� In this paper the scope
of these methods is extended from analysis to synthesis and from purely
discrete systems to real�time systems�
We believe that these results will pave the way for the application of
program synthesis techniques to the construction of real�time embedded
systems from their speci�cations and to a solution of other related design
problems associated with real�time systems in general and asynchronous
circuits in particular�

� Introduction

Apart from the di�erent underlying state�spaces and time domains� perhaps
the largest di�erence between control theory and computer science� lies in the
relative weight of analysis and synthesis methods� Analysis can be roughly stated
as� Will this happen� while synthesis as� How can we make this happen�

� This research was supported in part by the European Community projects BRA�
REACT
�	���� HYBRID EC�US�	�� and INTAS������
 as well as by Research
Grant ����	������ of Russian Foundation of Fundamental Research� Verimag is
a joint laboratory of cnrs� inpg� ujf and verilog sa� spectre is a project of
inria�

� We take computer science to denote here the community of those who want to reason
formally about the behavior of computers�



There is nothing inherent in the nature of the discrete or the continuous
that makes control people more centered around synthesis and informaticians
around analysis �also called �veri	cation
�� The study of �passive
 analysis of
continuous systems is simply not called �control
 but rather the theory of dy�
namical systems� di�erential equations� etc� On the other hand� the attempts
to build automatic program synthesis �or �derivation
� methods� although nu�
merous� have mostly been considered as sci�	 dreams� given the common belief
that analysis�veri	cation is already hard enough� One line of research in pro�
gram synthesis concentrated on non�reactive programs� i�e� systems that operate
in a �static
 environment� e�g� 
MWa���� In this framework a program is de�
rived as a constructive proof of an existential statement which constitutes the
speci	cation� In spite of the absence of external disturbances� this problem is
much harder than the one we consider because no a�priori program structure is
assumed�

For reactive systems �systems that maintain an ongoing interaction with a
dynamic environment� the synthesis problem has been posed as early as ���� by
Church 
Chu��� in the context of digital circuits� Church�s problem was solved
by B�uchi and Landweber 
BL��� �a readable exposition of their result appeared
in 
TB����� More modern e�orts toward automatic synthesis have been made
by various authors such as 
EC���� 
MWo���� 
PR���a�� 
PR���b�� 
ALW��� or

WD���� but apart from some impressive theoretical results �in particular� com�
plexity bounds� the work on synthesis remained marginal compared to the vast
literature on veri	cation and� as far as we know� has not been transferred from
academia to industry� Interestingly� a large body of work dealing with discrete
synthesis came from outsiders to computer science� namely the DEDS model
of Ramadge and Wonham 
RW��� in which the controller can inhibit certain
transitions of an automaton in order to achieve some behavioral speci	cations�

Meanwhile there have been some breakthroughs in the veri	cation area� The
analysis problem� although intractable in terms of worst�case asymptotic com�
plexity� became feasible for industrial size problems� especially in hardware� This
success is due to the use of symbolic methods 
BCM����� 
McM��� that do not
transform the description of the system into an enormous ��at
 automaton but
rather represent the transition relation as a formula over the state variables�
Given such a formula T and a formula P describing some subset F of the state�
space one can calculate a new formula P � characterizing the set F � of successors
�or predecessors� of F � The goal of this paper is to discuss the transfer of this
technology from analysis to synthesis and from discrete to real�time systems� The
only work along similar lines we are aware of is that of Ho�mann and Wong�
Toi 
HW���a�� 
HW���b�� 
BHG���� who introduce symbolic methods into the
Ramadge�Wonhammodel� Another interesting approach to introducing syntac�
tics into controller synthesis is reported in 
DV���� Although our paper presents
no new theoretical result� we hope that it will contribute to a better understand�
ing of the nature of real�time discrete control and its associated computational
problems�

The rest of the paper is organized as follows� In section � we set the stage for



the discrete case and give semantic and symbolic characterizations of winning
strategies� The derivation of a discrete scheduler in section � illustrates the idea�
Timed automata and real�time games are introduced in section � along with
a solution of the symbolic synthesis problem� In section � we demonstrate a
solution of a real�time version of the scheduler problem� Finally we mention
application and implementation issues�

� Discrete Systems

��� The Core Idea behind Discrete Synthesis

The most fruitful approach to discrete program synthesis is to view the ongoing
interaction between the system one wants to design and the environment� in
which it is supposed to operate as some variant of the von Neumann�Morgenstern
discrete games� A strategy for a given game is a rule that tells the controller how
to choose between several possible actions in any game position� A strategy is
good if the controller� by following these rules� always wins �according to a given
de	nition of winning� no matter what the environment does 
PR���a�� 
NYY����

The existence �and extraction� of a strategy for 	nite games is done using
the max�min principle of 
NM���� disguised sometimes as searching AND�OR
trees or as the elimination of an alternating pair of the logical quanti	ers � and
� � This principle is illustrated using the game at the left part of 	gure �� In
this game the controller starts from position � and can choose between the two
actions a� and a�� Then the environment can choose between b� and b�� The
winning condition is speci	ed via some subset F of f�� �� �� �g� A run of the
game is winning if it ends up in an element of F � Suppose F � f�� �g � in this
case the 	rst player has no winning strategy at state � because if it chooses a��
the adversary can take b� and reach state �� If it chooses a� the adversary can
reach state � by taking b�� Hence� � is not a winning position� If� on the other
hand� we consider a game with the same transition structure but with F � f�� �g
then there is a winning strategy as the controller can� by making a�� �force
 the
environment into F �

The convention that each player plays in its own turn can be replaced by
having a simultaneous move� In this case there are no two types of states and
the transition between states is made by a joint action of the two players as
in the right of 	gure �� This is the convention that we adopt in this paper and
hence� the notions of �	rst
 and �second
 player bear no ordinal meaning�� For
games on continuous time the notion of turns becomes anyway meaningless�

Some readers may wonder whether such trivialities deserve a relatively long
verbal exposition� We consider this to be the essence of any synthesis algorithm�

� As one control theoretician once said� �you CS people call environment everything
that lies outside the computer��

� It can be shown that every von Neumann�Morgenstern game can be converted into
an equivalent simultaneous action game�
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Fig� �� A simple game�

a fact which is sometimes obscured by fancy complicated constructs� The math�
ematical formulation of this notion for a game with a state�space Q is via an
operator � � �Q � �Q assigning for every F � Q the set ��F � denoting its con�
trollable predecessors� that is� the set of states from which the controller can force
its adversary into F � In the example above f�g �� ��f�� �g� and f�g � ��f�� �g��
Calculating this operator� together with some set�theoretical operations consti�
tutes the core of any synthesis algorithm�

��� Semantic Version

De�nition� �Game Automaton�� A game automaton is A � �Q� �� q�� F �
where Q � Qx � Qy is a set of states� � � Q � �Q is the transition relation�
q� � Q is the initial state of the game and F � Q is a set of accepting states�
We assume that � admits a decomposition into �x � Q� �Qx and �y � Q� �Qy

such that for every q � Q� ��q� � �x�q�� �y�q��

One can see that the game automaton is a product of two automata communi�
cating via their states� that is� the transition made by the X�automaton may
depend on the current state of the Y �automaton and vice versa�

A run of the game is any in	nite sequence � � q
��� q
��� � � � such that q
�� � q�
and for every i� q
i� �� � ��q
i��� The 	rst player wins a run of the game if the
run always stays in F � Otherwise it loses the run�
Remark �� We have considered one of the several possible de	nitions of winning�
namely the ��condition �also known as �safety
� or �closed
 game�� One can
imagine the �dual
 game as viewed from the second player�s perspective � this
player wins a run of the game if it succeeds to steer the run at least once into
Q 	 F � These are called ��games ��eventuality
� �open
�� Since the emphasis
in this paper is on real�time and on symbolic methods� we will not refer here to
more complicated winning conditions � see 
Tho��� for a recent survey�

A strategy for the 	rst player is a transition relation ��x � Q � �Qx such
that ��x�q� � �x�q� for every q � Q� This can be viewed as a rule telling the



controller which actions it should take while being at any q � Q� A strategy
can be deterministic �j��x�q�j � �� but it need not be so � in case we need later
to implement it� we can 	x arbitrarily some q� � ���q�� When we replace �x by
��x we obtain a more restricted automaton A� with �� � �� A strategy ��x is a
winning one if all the runs of A� are winning�

The search for a strategy is performed via the determination of the set F �

of winning states� This is done iteratively starting with F� � F � Every iteration
we create Fi�� by removing from Fi all the states from which the 	rst player
cannot force the game to stay in Fi� It is not hard to see that a state q belongs
to Fi if� starting from q� the controller can stay in F for at least i steps� This
procedure converges to the set F � of winning states� If q� � F � the controller
has a winning strategy� Formally�

De�nition� �Controllable Predecessors�� Let A � �Q� �� q�� F � be a game
automaton� We de�ne a function � � �Q 
� �Q as

��P � � fq � �q�x � �x�q� �q
�

y � �y�q� �q
�

x� q
�

y� � Pg

The algorithm for calculating the winning states works as follows�

Algorithm� �Synthesis for Discrete ��Games��

F� �� F

for i � �� �� � � � � repeat
Fi�� �� Fi � ��Fi�

until Fi�� � Fi

The algorithm is illustrated in 	gure �� The strategy for every q � Q is
extracted as follows�

���q� �

�
� if q �� F �

fq�x � �q
�

y � �y�q� �q
�

x� q
�

y� � F �g otherwise

Note that in the 	rst case �q �� F �� we do not care because anyway we cannot
win after arriving to such a state� This might be di�erent had we been interested
in more quantitative notions of winning� e�g� expected probability�
Remark �� We extract the strategy after having completed the calculation of
the winning states� We could have done it incrementally by removing losing
transitions after each iteration� In games with winning condition other than ��
it might be better �and sometimes even necessary� to calculate �� iteratively
along with the calculation of F ��

This is all that needs to be said about safety games� More complex games
require more complicated iterative procedures and sometimes they cannot be
won by simple strategies �those that depend only on q� but rather need some
more information on the history of the game �as a continuous controller needs
sometime to know the sign of the derivative of the state�variable�� We refer the
reader again to the survey 
Tho��� as well as to 
TW����



F 	

F� � F�

F� � F�

Fi � Fi��

Fig� �� An illustration of algorithm ��

��� Symbolic Version

So far we have considered the state�space of A to be an amorphous set Q void of
any structure� Large complex systems� however� are usually composed of smaller
sub�systems� and the global state�space is the Cartesian product of the local
ones �and so is the transition relation�� Instead of creating this huge automaton
and applying analysis or synthesis algorithms to it� symbolic methods keep the
transition relation in a syntactic form and operate on it�

Suppose a system is de	ned using a set X � fx�� � � � � xkg of Boolean vari�
ables� Hence Q � f�� �gk and every subset F of Q can be described by one �or
more� Boolean formula P over X� A transition relation R � f�� �gk�f�� �gk can
be written as a formula over a set X 
X� of variables where each x�i represents
the value of xi in the �next
 state�

A symbolic analysis method consists of a class F of syntactic objects �for�
mulae� covering all the subsets of Q� such that for every set�theoretic operation
on �Q there is a corresponding semantics�preserving operation on F � In partic�
ular one needs a class of objects in which there are syntactic operations that
correspond to� �� standard set�theoretic operations� �� the predecessor operator
�� and �� equality testing� This is all one needs in order to perform algorithm ��
Certain classes of syntactic objects� such as ordered BDDs 
Bry���� have a canon�
icity property� namely one�to�one mapping between syntactic objects and the sets
they denote � this makes equality testing trivial� In our exposition we will not
insist on a particular representation �which is an implementation question� but
rather use arbitrary Boolean formulae� Note that elimination of quanti	ers is a
simple syntactic operation for Boolean formulae�

�xi P �x�� � � � � xi� � � � � xk� � P �x� � � � � �� � � � � xk� �P �x�� � � � � �� � � �xk�

and

�xi P �x�� � � � � xi� � � � � xk� � P �x� � � � � �� � � � � xk� �P �x�� � � � � �� � � �xk�



In order to adapt the symbolic method for synthesis we must 	rst intro�
duce some notion of interaction between automata and �ownership
 of state�
variables� Intuitively every process has its own set of local variables which cannot
be changed by other processes� On the other hand� it may �read
 the state of
other processes and base its decision concerning which transition to make on the
values of these variables� Syntactically� if the corresponding sets of variables are
X and Y � the respective transition formulae of the two automata can be written
as TX�X�Y�X�� and TY �Y�X� Y ��� When we compose them together we obtain
a closed system where both X and Y are internal variables and the transition
formula is T �X�Y�X�� Y �� � TX�X�Y�X �� � TY �Y�X� Y ���

In a control setting we let a variable set X denote the controllable variables�
namely the variables owned by the controller and which he can change �or re�
frain from changing�� The other set Y consists of environmental variables which
the controller cannot in�uence directly �however� since TY depends on X� the
controller can in�uence them indirectly� which is essentially what control is all
about��

We use quanti	ers of the form �X or �X as an abbreviation for �x� �x� � � ��
etc�� and assume without loss of generality that the transition relation is com�
plete� Given TX � TY and a set F expressed by a formula P �X�Y �� the syntactic
predecessor operator is de	ned as follows�

��P ��X�Y � � �X� 
TX�X�Y�X
�� � �Y � �TY �Y�X� Y

��� P �X�� Y ����

To rephrase it verbally� the immediate controllable predecessor of P are all the
states from which there is an X �action
 such that for every Y action the
resulting state satis	es P �

Having all the other ingredients of a symbolic method we can plug it into
algorithm � and converge to a formula P � characterizing all the winning states�
The controller is derived from Tx� Ty and P � as follows�

T �

X�X�Y�X
�� � TX �X�Y�X

�� � P ��X�Y � � �Y � �TY �Y�X� Y
��� P ��X�� Y ���

The transition relation expressed by T �

X is a subset of the one expressed
by TX and is obtained by restricting the possible values for X�� The transition
relation of the whole system after the controller is synthesized is expressed by
T ��X�Y�X�� Y �� � T �

X�X�Y�X
���TY �Y�X� Y ��� All its runs are winning for the

	rst player�
This is all the story� The question whether there exists an e�cient imple�

mentation scheme allowing large�scale synthesis is an empirical open question�
Some positive evidence is reported in 
BHG�����

� Example� A Discrete Scheduler

Suppose we have two identical processes with the corresponding state variables
S� and S�� Each of them can be either in I �idle� or W �waiting�� A process can
be at Si � I as long as it wishes and can generate a request �move to Si � W �



only if at least � time units have elapsed since the previous request� It can move
from Si � W to Si � I whenever the scheduler gives it a permission by letting
the variable Gi � � �we assume here that the service is immediate�� For modeling
this behavior we use for each i a variable Ci ranging over f�� �� �� �g measuring
the number of steps since the previous request� The system is depicted in 	gure �
and the product of Si and Ci is the automaton of 	gure �� The whole system
consists of a product S� � C� � S� � C� � G where G is the automaton for the
scheduler that we want to synthesize� It is a ��variable ���state� automaton that
decides the values of G� and G�� We have not drawn the whole system �the
formulae are su�ciently large��

Si 	

Ci 	

I W

	 � � �

Ci � �

Si � I

Si � W

Gi � 	

Gi � �

Fig� �� The automata for process i � f�� �g� responsible for the variables Si and Ci�
Unlabeled transitions can be made unconditionally�

The transition formula Ty appears below� Since we start with the most liberal
controller that allows everything� we have Tx � true and T � Ty does not
mention the variables G�

� and G�

��

Ty�S�� C�� S�� C�� G�� G�� S
�

�� C
�

�� S
�

�� C
�

�� �

�S� � I � �S�� � I � �C� � � � S�� � W ���
S� � W � �G� � � � S�� � I �G� � � � S�� � W ���
�C� � � �C�

� � � �C� � � �C�

� � � �C� � � �C�

� � ��
C� � � � �S� � I �C�

� � � � S� � W �C�

� � ����
�S� � I � �S�� � I � �C� � � � S�� � W ���
S� � W � �G� � � � S�� � I �G� � � � S�� � W ���
�C� � � �C�

� � � �C� � � �C�

� � � �C� � � �C�

� � ��
C� � � � �S� � I �C�

� � � � S� � W �C�

� � ���

The performance speci	cations �winning conditions� are that no process will
wait in W more than � time units� and that mutual exclusion is satis	ed� i�e�



Gi � 	

Gi � � Gi � � Gi � � Gi � �

Gi � 	 Gi � 	 Gi � 	
W	 W� W� W�

I	 I� I� I�

Si 	

Ci	

Fig� �� The automaton Si � Ci for i � f�� �g� Note that the only �external� variable
this automaton refers to is Gi�

that at least one of G�� G� is zero� This can be expressed by the formula

P �S�� C�� S�� C�� G�� G�� �
��S� � W � C� � � � S� � W �C� � W �G� � � �G� � ��

By performing the algorithm we obtain the following sequence of formulae�

P� � ��S� �W �C� � � � S� �W �C� � W �G� � � �G� � ��
P� � P�� ��G� � � �G� � ��
P� � P�� ��S� �W �C� � � �G� � � � S� � W �C� � � �G� � ��
P� � P�� ��S� �W �C� � � �G� � � � S� � W �C� � � �G� � ��

The 	rst iteration excludes violation of mutual exclusion� The second itera�
tion excludes the case where for some i� Ci � � and Gi � � � in this case the
next step will take us to a bad state Ci � ��Si �W � Finally the third iteration
excludes the states where the two processes have moved to W and the scheduler
has not allocated the resource to at least one of them� The resulting controller�
appearing in 	gure �� is speci	ced by the formula T �

x �

T �

x �G�� G�� S�� C�� S�� C�� G
�

�� G
�

�� �

��S� � W �C� � ��� G�

� � ���
��S� � W �C� � ��� G�

� � ���
�G� � � � S� � W �C� � ��
G� � � � S� � W � C� � ��� �G�

� � � �G�

� � ��



�
S� �W �C� � 	�	�

�
S� �W � C� � 	�

		

G� �

G� �

�	�
S� � W �C� � 	�

�
S� � W �C� � 	��
S� � W �C� � 	��
�
S� � W �C� � 	��
�
S� � S� � W �C� � C� � ��

Fig� �� The resulting scheduler obtained by restricting the complete ��state automaton�

� Timed Systems

	�� Real�Time Games

In real�time games the outcome of the players� actions depend also on their tim�
ing because performing the same action �now
 or �later
 might have completely
di�erent consequences� For such games we take the model of timed automata

AD���� in which automata are equipped with auxiliary continuous variables
called clocks which grow uniformly when the automaton is in some state� The
clocks interact with the transitions by participating in pre�conditions �guards�
for certain transitions and they are possibly reset when some transitions are
taken�

In this continuous�time setting� a player might choose at a given moment to
wait some time t and then take a transition� Unlike purely�discrete games� it
should consider not only what the adversary can do after this action but also
the possibility that the latter will not wait for t time� and perform an action at
some t� � t� Thus the two�person game becomes a three�player game in which
Time can interfere in favor of both other players�

While synthesizing a controller for timed automata one should be careful not
letting any of the players win by �Zenonism
� that is� by preventing the time
from progressing as does the Tortoise in its race against Achilles�

	�� Semantic Version

For the sake of readers not familiar with timed automata we start with an infor�
mal illustration of the behavior of these creatures� Consider the timed automaton
of 	gure �� It has two states and two clocks z� and z�� Suppose it starts operating
in the con	guration �q�� �� �� �the two last coordinates denote the values of the
clocks�� Then it can stay at q� as long as the staying condition for q� is true�



namely z� � �� Meanwhile the values of the clocks grow and the set of all con�
	gurations reachable from �q�� �� �� without leaving q� is f�q�� t� t� � � � t � �g�
However� after one second� the condition z� � � �the guard of the transition
from q� to q�� is satis	ed and the automaton can move to q� while setting z�
to �� Hence the additional reachable con	gurations are f�q�� t� �� � � � t � �g�
Having entered q� in one of these con	gurations� the automaton can either stay
there as long as z� � � � z� � � or can unconditionally move to �q�� �� ��� etc�

z� � ��z� �� 	

�z� �� z� �� 	

q�

z� � �

q�

z� � ��
z� � �

Fig� �� A timed automaton�

Since the state�space of timed automata contains real�variables� we have an
in	nite�state automaton and a purely�semantic approach� where all states and
transitions are enumerated� is impossible� We will use notation such as Tqq� to
denote the set of values in the clock space such that a transition from q to q� �� q

is possible ��guards
�� Similarly� Tqq denotes the set of clock values for which the
automaton can stay in q ��staying conditions
�� In timed automata such sets are
restricted to be k�polyhedral subsets of �IR��d� that is� the class of sets obtainable
by set�theoretic operations from half�spaces of the form f�v�� � � � � vd� � vi � cg�
f�v�� � � � � vd� � vi � cg� f�v�� � � � � vd� � vi 	 vj � cg or f�v�� � � � � vd� � vi 	 vj � cg
for some integer c � f�� � � � � kg� where k is some positive integer� In fact� we
can use c � f�� r� �r � � � � krg for some positive rational r� These sets constitute
the 	nite region graph 
AD��� whose properties underly all analysis methods for
timed automata� Since we model interaction between two automata� the guards
and staying conditions of one automaton may depend� in addition� on the state
of the other automaton and thus can be a union of sets of the form fqig � Li
with Li � �IR��d� We will call such sets k�polyhedral as well�

A function f � IRd � IRd is a reset function if it sets some of its arguments
to � and leaves the others intact� We will use Rqq� to denote the reset function
associated with every pair of states� Without loss of generality we assume that
there is only one transition associated with every ordered pair of states� Finally�
for z � �IR��d we use z � t to denote z � t � � where � � ��� �� � � � � �� is a
d�dimensional unit vector�



De�nition� �Timed Game Automaton�� A timed game automaton is A �
�Q�Z� �x� �y� q�� F � such that


 Q � Qx � Qy is a discrete set�

 Z � Zx �Zy � �IR��d is the clock space �Q� Z is the con�guration space��

 �x � Q� Z � IR� � �Qx�Zx and

 �y � Q� Z � IR� � �Qy�Zy are the transition relations for the two players�

 q� � Q� and

 F � Q� Z is a set of accepting con�gurations�

It is required that �x and �y admit the following decomposition	 For every qx� q
�

x �
Qx and qy� q

�

y � Qy� let Tqxq�

x
� Qy �Z and Tqyq�

y
� Qx�Z be k�polyhedral sets

and let Rqxq�

x
� Zx � Zx and Rqyq�

y
� Zy � Zy be reset functions� Then for every

�qx� zx� � Qx � Zx� �qy� zy� � Qy � Zy 	

�x��qx� zx� qy� zy�� t� �

��
�
�q�x� z

�

x� �
�t� � 
�� t� �qy� z � t�� � Tqxqx�
�qy� z � t� � Tqxq�

x
� z�x � Rqxq�

x
�z � t�g

��
�

�y��qy� zy� qx� zx�� t� �

��
�
�q�y� z

�

y� �
�t� � 
�� t� �qx� z � t�� � Tqyqy�
�qx� z � t� � Tqyq�

y
� z�y � Rqyq�

y
�z � t�g

��
�

The meaning of �x��qx� zx� qy� zy�� t� is the set of Qx �Zx con	guration the 	rst
player can reach by waiting t time� and then making at most one transition�
given that the other player has done nothing meanwhile� The meaning of �y is
symmetric� This allows us to de	ne the predecessors operator rather simply�

De�nition	 �Timed Controllable Predecessors�� For a given timed game
automaton A � �Q�Z� �x� �y� q�� F � we de�ne a function � � �Q�Z 
� �Q�Z as

��F � �

������
�����

�qx� zx� qy� zy� �
�t � � ��q�x� z

�

x� � �x��qx� zx� qy� zy�� t�
�t� � t �� q�y� z

�

y� � �y��qy� zy� qx� zx�� t
�� �qx� zx � t�� q�y� z

�

y� � F�
t � t� � �q�x� z

�

x� q
�

y� z
�

y� � F�
t ��� q�x �� qx

������
�����

Verbally this means that from the con	guration �qx� zx� qy� zy� the controller
can force the game to stay in F by taking a transition after waiting t such that
whatever transition the environment can take during the interval 
�� t� will not
steer the game out of F � This is the essence of the de	nition �lines � and ���
Line � takes care of the special case where t� � t and the two players make their
transition simultaneously� The last line makes sure that the 	rst player will not
play Zenonist tricks� i�e� will try to prevent the progress of time without taking
any transition� He is allowed to refrain from action only if it chooses t ��� We
assume� initially� that �x is strongly non�Zeno� i�e� there is minimal period of
time d such that every two discrete transitions must be separated by an interval
of at least d� This condition can be relaxed into a condition on cycles� but� as



observed in the context of asynchronous circuits 
MP���� you really do not need
to interleave two discrete transitions in zero time�

An important fact about this operator �	rst stated explicitly in 
MPS����
but really follows immediately from region�graph properties�� The class of k�
polyhedral sets is closed under �� This means that algorithm �� when initiated
with a k�polyhedral set F � is guaranteed to converge to a 	xed point F � as the
number of k�polyhedral sets is 	nite� The strategy ��x� which is a restriction of
�x� can be obtained by restricting the sets Tqxq�

x
as follows�

T �

qxq�

x

� Tqxq�

x
� f�qy� zx� zy� � �x��qx� zx� qy� zy�� �� � F �g

This approach to real�time synthesis has been 	rst presented in 
MPS���� Al�
ternative approaches� e�g� 
OW���� 
BW��� are based on a discrete time model�
Wong�Toi and Ho�mann 
WH��� use timed automata� but then they discretize
the system into an untimed automaton �essentially the region graph� and syn�
thesize the controller using discrete symbolic methods�

	�� Symbolic Version

For timed automata we need syntactic objects to represent subsets of the binary
hypercube �discrete sets of states� as well as k�polyhedral subsets of the Eu�
clidean space �which cannot be enumerated anyway�� Systems of linear inequal�
ities and sets of vertices are among the syntactic objects used to represent such
sets� A very useful representation by Dill�s di
erence bounds matrices 
Dil����
This representation is employed in the timed automata analysis tool Kronos�
developed at Verimag 
DOY���� and it does not have a canonicity property
�unless the set is convex�� Following our presentation of the discrete case� we
will not commit ourselves to this or that representation formalism but rather
use arbitrary linear inequalities� The ideas in this section are adapted from the
symbolic analysis methods for timed automata 
HNSY���� 
ACD����

As before� we will use discrete sets of variables X and Y � whose sets of
valuation constitute the sets Qx andQy� and augment them with two sets of clock
variables Cx and Cy ranging over the non�negative reals and whose valuations
are the elements of Zx and Zy respectively� All variable will have primed versions�
X�� C�

x� Y
� and C�

y to represent next�states in transition formulae�

The game automaton is described by the formulae Tx�X�Cx� Y� Cy� X
�� C�

x�
and Ty�Y�Cy� X�Cx� Y

�� C �

y� � Such formulae specify the instantaneous transition
relation� namely the transitions that can be made in zero time� These formulae
should also capture the �idle
 transition and thus they contain a conjunction
with X � X� � Cx � C �

x and Y � Y � � Cy � C�

y respectively� They are the
syntactic equivalents of the Tqq� of the semantic version�

The formulae Tx�X�Cx� Y� Cy� X
�� C�

x� C
�

y� t� and Ty�Y�Cy� X�Cx� Y
�� C�

y� C
�

x� t�
which indicate what the two automata can make by waiting t and doing at most
one transition� are constructed from Tx and Ty� They are the analogues of �x
and �y � Note that t is a free variable in these formulae�



Tx�X�Cx� Y� Cy� X
�� C�

x� C
�

y� t� �
�t� � t Tx�X�Cx � t�� Y� Cy � t�� X�Cx � t���

Tx�X�Cx � t� Y� Cy � t�X�� C�

x�
Ty�Y�Cy� X�Cx� Y

�� C�

y� C
�

x� t� �
�t� � t Ty�Y�Cy � t�� X�Cx � t�� Y� Cy � t���

Ty�Y�Cy � t�X�Cx � t� Y �� C�

y�

For a formula P �X�Cx� Y� Cy� denoting a set of con	gurations we de	ne a
predecessor formula as�

��P ��X�Cx� Y� Cy� �

	

�t � � �X � �� X �C �

x Tx�X�Cx� Y� Cy� X
�� C�

x� t��
�t� � t �Y � �C�

y �Ty�Y�Cy� X�Cx� Y
�� C�

y� t
���

��t � t� � P �X�� C�

x� Y
�� C�

y�� � �t � t� � P �X�Cx � t� Y �� C�

y���

�
A�

	

�t � � Tx�X�Cx� Y� Cy� X�Cx � t� t��

�t� � t �Y � �C�

y �Ty�Y�Cy� X�Cx� Y
�� C�

y� t
��� P �X�Cx � t� Y �� C�

y�

�
A

As before� we can apply algorithm � and converge to a formula P � from
which we derive the controller as a restricted transition formula T �

x � Note that
this formula returns revised guards and staying conditions� something which is
very useful for many design problems beside synthesis�

T �

x �X�Cx� Y� Cy� X
�� C�

x� �

�t � � Tx�X�Cx� Y� Cy� X
�� C�

x� t��
�t� � t �Y � �C�

y �Ty�X�Cx� Y� Cy� Y
�� C�

y� t
��� P ��X �� C�

x� Y
�� C�

y���
�t � � �X � X�� � �t � � �X �� X��

This concludes the symbolic synthesis for timed systems�
Remark �� Logically speaking� the language we use here is some decidable
fragment of the 	rst�order logic over the reals with constants� addition and order�

� Example� A Real�Time Scheduler

We take again two processes and a scheduler� Each process �see 	gure �� has one
discrete variable Si which can be in one of three states� Idle� Waiting and Busy�
It has two clocks� ci which is used to enforce minimal inter�arrival time of �� and
di which measures service time � we assume that every process must spend one
time unit at B before coming back to I�

The scheduler is as in the discrete example� We do not start the synthesis�
however� with the most general scheduler but rather enforce a strong non�Zeno
condition using the variable z� The scheduler has to spend at least ��� time at



Si�

I W

true Gi � 	

ci � ��ci �� 	

Gi � 	�

di � ��

Gi � ��di �� 	

B

Gi � ��
di � �

Fig� 	� A timed automaton for Si� ci and di� i � f�� �g�

every state �see 	gure ��� For simplicitywe exclude the bad state G� � ��G� � �
from the initial scheduler� The corresponding transition formulae are�

Ty�S�� c�� d�� S�� c�� d�� G�� G�� z� S
�

�� c
�

�� d
�

�� S
�

�� c
�

�� d
�

�� �

�
S� � I � S�� � I � c�� � c� � d�� � d��
S� � I � c� � � � S�� � W � c�� � � � d�� � d��
S� � W �G� � � � S�� � W � c�� � c� � d�� � d��
S� � W �G� � � � S�� � B � c�� � c� � d�� � ��
S� � B �G� � � � d� � � � S�� � B � c�� � c� � d�� � d��
S� � B �G� � � � S�� � W � c�� � c� � d�� � d��
S� � B � d� � � � S�� � I � c�� � c� � d�� � d�



��

S� � I � S�� � I � c�� � c� � d�� � d��
S� � I � c� � � � S�� � W � c�� � � � d�� � d��
S� � W �G� � � � S�� � W � c�� � c� � d�� � d��
S� � W �G� � � � S�� � B � c�� � c� � d�� � ��
S� � B �G� � � � d� � � � S�� � B � c�� � c� � d�� � d��
S� � B �G� � � � S�� � W � c�� � c� � d�� � d��
S� � B � d� � � � S�� � I � c�� � c� � d�� � d�




Tx�G�� G�� z� S�� c�� d�� S�� c�� d�� G
�

�� G
�

�� z
�� �

�G� � � �G� � �� � �G�

� � � �G�

� � ���
G�

� � G� �G
�

� � G� � z
� � z�

�G�

� �� G� �G�

� �� G�� � z � ���� z� � �

The winning condition is



P �S�� c�� d�� S�� c�� d�� G�� G�� z� � ��S� �� I � c� � � � S� �� I � c� � ��

The iteration for the winning states goes as follows�

P� � ��S� �� I � c� � � � S� �� I � c� � ��
P� � P�� ��S� � B � z � ��� � c� 	 d� � � � c� 	 z � ����

S� � B � z � ��� � c� 	 d� � � � c� 	 z � ����
S� � W� � z � ���� c� 	 z � ����
S� � W� � z � ���� c� 	 z � ����

P� � P�� ��S� � W � c� � ����
S� � W � c� � ����
S� � B � c� 	 d� � � � c� � ����
S� � B � c� 	 d� � � � c� � ����

P� � P�� ��S� � W � z � ���� c� 	 z � ��
S� � W � z � ���� c� 	 z � ��
S� � B � z � ��� � c� 	 d� � � � c� 	 z � ��
S� � B � z � ��� � c� 	 d� � � � c� 	 z � ��

P� � P�� ��S� � W � c� � ��
S� � W � c� � ��
S� � B � c� 	 d� � ��
S� � B � c� 	 d� � ��

P� � P�� ��S� � W � z � ���� c� 	 z � ����
S� � W � z � ���� c� 	 z � ����

P� � P�� ��S� � S� � W � c� � ���� c� � ����
S� � W � S� � B � c� � ��� � c� 	 d� � ��
S� � B � S� �W � c� � ��� � c� 	 d� � ��

P
 � P�� ��S� � S� � W � z � ��� � c� 	 z � � � c� 	 z � ��
S� � W � S� � B � z � ���� c� 	 z � � � c� 	 d� � ��
S� � B � S� �W � z � ���� c� 	 z � � � c� 	 d� � ��

P� � P
� ��S� � S� � W � c� � � � c� � ��
P� � P�� ��S� � S� � W � z � ��� � c� 	 z � ���� c� 	 z � ����

The 	rst � iterations deal with failures not related to interaction of the two
processes� At each step a part of �size
 ��� is subtracted from the set of winning
con	gurations �this is due to the anti�Zeno constant ��� of the initial controller��
The condition �P� means that it is too late to serve a process� The condition
P� and the 	rst line of P� exclude a situation when we are unable to start a
service in due time because of switching delays� The last � iterations correspond
to failures related to interaction of the processes� This is done in steps of �size

���� The synthesized controller is expressed by the formula�



 We leave the drawing of the controller to the reader�



T �

x �G�� G�� z� S�� c�� d�� S�� c�� d�� G
�

�� G
�

�� z
�� �

P ��S�� c�� d�� S�� c�� d�� G�� G�� z��
Tx�G�� G�� z� S�� c�� d�� S�� c�� d�� G

�

�� G
�

�� z
���

�S� �� I � S� �� I � c� � ���� c� � ���� �G� � � �G� � ���� �G�

� � � �G�

� � ���
�S� � B � S� �W � c� � � � c� � ��� G�

� � ��
�S� � W � S� � B � c� � � � c� � ��� G�

� � ��
�S� � S� � W � c� � c� � ��� �G�

� � � �G�

� � ���
�S� � S� � W � c� � � � c� � ��� G�

� � ��
�S� � W � S� � W � c� � � � c� � ��� G�

� � ��
�S� � B � C� � ����� G�

� � ��
�S� � B � C� � ����� G�

� � ��
�S� � W �G� � � � c� � ����� �G�

� � � �G�

� � ���
�S� � W �G� � � � c� � ����� �G�

� � � �G�

� � ���
�S� � W �G� � G� � � � c� � ����� G�

� � ��
�S� � W �G� � G� � � � c� � ����� G�

� � ��
�S� �� I � c� � ��� G�

� � ��
�S� �� I � c� � ��� G�

� � �

true true

true
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z � 	���z �� 	 z � 	���z �� 	

G��

G��

z � 	���z �� 	

Fig� 
� The initial scheduler�



� Discussion

We have demonstrated how the synthesis problem for real�time systems can be
formulated and solved symbolically� As one potential application let us mention
the delay analysis of asynchronous circuits� It has been shown 
MP��� that every
such circuit can be modeled as a timed automaton such that every wire requires
one Boolean variable and one clock variable� The guards and staying conditions
for the automaton are derived from the delay characteristics of the gates and from
constraints on the variability of the input signals� Using the method described in
this paper� we can formulate a game by considering the inputs as environmental
variables �Y � and the outputs of the gates as controllable variables� By solving
the synthesis problem for some winning condition �speci	cation�� we obtain the
minimal timing requirements the gates need to satisfy in order to meet the
speci	cation� If we switch the roles and treat the gate variables as 	xed and the
inputs as controllable� we solve the opposite problem� what is the largest class
of input signals against which the circuit will behave properly�

Without a convincing implementation� all this remains� of course� wishful
thinking� For the discrete part of the system� there is no a�priori reason to believe
that the practical hardness of synthesis is much bigger than that of veri	cation�
The main challenge is to 	nd more e�cient data�structures and algorithms for
treating k�polyhedral sets� and combining them with the discrete ones�
Acknowledgment� This work grew out of discussions with J� Sifakis� We thank
A� Bouajjani and Y� Lakhneche for commenting on previous drafts of the paper
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References

�AD��� R� Alur and D�L� Dill� A Theory of Timed Automata� Theoretical Com�
puter Science ���� �������� �����

�ACD��� R� Alur� C� Courcoubetis� and D�L� Dill� Model Checking in Dense Real
Time� Information and Computation �	�� ����� �����

�ALW��� M� Abadi� L� Lamport� and P� Wolper� Realizable and Unrealizable Con�
current Program Speci�cations� In Proc� ��th ICALP� volume �
� of Lect�
Notes in Comp� Sci�� pages ���
� Springer�Verlag� �����

�BHG���� S� Balemi� G�J� Ho�mann� P� Gyugyi� H� Wong�Toi and G�F� Franklin�
Supervisory Control of a Rapid Thermal Multiprocessor� IEEE Trans� on

Automatic Control ��� �	�	��	��� �����
�Bry��� R�E� Bryant� Graph�based Algorithms for Boolean Function Manipulation�

IEEE Trans� on Computers C���� �

����� �����
�BCM���� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L� Dill� and L�J� Hwang� Sym�

bolic Model�Checking� �	�� States and Beyond� Proc� LICS���� Philadel�
phia� ���	�

�BW��� B�A� Brandin and W�M� Wonham� Supervisory Control of Timed Discrete�
event Systems� IEEE Transactions on Automatic Control� ��� ��������
�����

�BL��� J�R� B�uchi and L�H� Landweber� Solving Sequential Conditions by Finite�
state Operators� Trans� of the AMS ���� �������� �����



�Chu��� A� Church� Logic� Arithmetic and Automata� in Proc� of the Int� Cong� of

Mathematicians ���	� ������ �����

�DOY��� C� Daws� A� Olivero and S� Yovine� Verifying et�lotos Programs with
Kronos� Proc� FORTE��
� Bern� �����

�DV��� A� Deshpande and P� Varaiya� Control of Discrete Event Systems in Tem�
poral Logic� Unpublished manuscript� �����

�Dil��� D�L� Dill� Timing Assumptions and Veri�cation of Finite�State Concur�
rent Systems� in J� Sifakis 
Ed��� Automatic Veri�cationMethods for Finite

State Systems� volume �	
 of Lect� Notes in Comp� Sci�� Springer� �����

�EC��� E�A� Emerson and E�M� Clarke� Using Branching Time Temporal Logic to
Synthesize Synchronization Skeletons� Science of Computer Programming
�� �������� �����

�HNSY��� T� Henzinger� X� Nicollin� J� Sifakis� and S� Yovine� Symbolic Model�
checking for Real�time Systems� Information and Computation ���� ����
���� �����

�HW���a� G� Ho�mann and H� Wong�Toi� Symbolic synthesis of supervisory con�
trollers� Proc� of the ���	 American Control Conference� �
����
��� �����

�HW���b� G� Ho�mann and H� Wong�Toi� Symbolic Supervisory Synthesis for the
Animal Maze� Proc� of Workshop on Discrete Event Systems� ������
�
Birkhauser Verlag� �����

�MPS��� O� Maler� A� Pnueli and J� Sifakis� On the Synthesis of Discrete Controllers
for Timed Systems� In E�W� Mayr and C� Puech 
Eds��� Proc� STACS ����
volume �		 of Lect� Notes in Comp� Sci�� �������� Springer�Verlag� �����

�MP��� O� Maler and A� Pnueli� Timing Analysis of Asynchronous Circuits using
Timed Automata� Proc� Charme���� to appear� �����

�MWa�	� Z� Manna and R�J� Waldinger� A Deductive Approach to Program Synthe�
sis� ACM Trans� of Prog� Lang� and Sys� �� �	����� ���	�

�MWo��� Z� Manna and P�Wolper� Synthesis of Communication Processes from Tem�
poral Logic Speci�cations� ACM Trans� of Prog� Lang� and Sys� �� ������
�����

�McM��� K�L� McMillan� Symbolic Model�Checking
 an Approach to the State�

Explosion problem� Kluwer� �����

�NYY��� A� Nerode� A� Yakhnis and V� Yakhnis� Concurrent Programs as Strate�
gies in Games� in Y� Moschovakis 
Ed��� Logic From Computer Science�
Springer� �����

�NM��� J� von Neumann and O� Morgenstern� Theory of Games and Economic

Behavior� Princeton University Press� �����

�OW�	� J�S� Ostro� and W�M� Wonham� A Framework for Real�time Discrete Event
Control� IEEE Trans� on Automatic Control ��� ������
� ���	�

�PR���a� A� Pnueli and R� Rosner� On the Synthesis of a Reactive Module� In Proc�

��th ACM Symp� Princ� of Prog� Lang�� pages �
����	� �����

�PR���b� A� Pnueli and R� Rosner� On the Synthesis of an Asynchronous Reactive
Module� In Proc� ��th ICALP� volume �
� of Lect� Notes in Comp� Sci��
�����
�� �����

�RW��� P�J� Ramadge and W�M� Wonham� The Control of Discrete Event Systems�
Proc� of the IEEE 

� ������ �����

�TW��� J�G� Thistle and W�M� Wonham� Control of In�nite Behavior of Finite Au�
tomata� SIAM J� of Control and Optimization ��� �	
���	�
� �����



�Tho��� W� Thomas� On the Synthesis of Strategies in In�nite Games� In
E�W� Mayr and C� Puech 
Eds��� Proc� STACS ���� volume �		 of Lect�
Notes in Comp� Sci�� ����� Springer�Verlag� �����

�TB
�� B�A� Trakhtenbrot and Y�M� Barzdin� Finite Automata
 Behavior and Syn�
thesis� North�Holland� Amsterdam� ��
��

�WD��� H� Wong�Toi and D�L� Dill� Synthesizing Processes and Schedulers from
Temporal Speci�cations� in E�M� Clarke and R�P� Kurshan 
Eds���
Computer�Aided Veri�cation ���� DIMACS Series� AMS� �

����� �����

�WH��� H� Wong�Toi and G� Ho�mann� The Control of Dense Real�Time Discrete
Event Systems� Technical report STAN�CS��������� Stanford University�
�����

This article was processed using the LaTEX macro package with LLNCS style


