
On Recognizable Timed Languages�

Oded Maler1 and Amir Pnueli2,3

1 CNRS-VERIMAG, 2 Av. de Vignate, 38610 Gières, France
Oded.Maler@imag.fr

2 Weizmann Institute of Science, Rehovot 76100, Israel
3 New York University, 251 Mercer St. New York, NY 10012, USA

Amir.Pnueli@cs.nyu.edu

Abstract. In this work we generalize the fundamental notion of recognizability
from untimed to timed languages. The essence of our definition is the existence
of a right-morphism from the monoid of timed words into a bounded subset of
itself. We show that the recognizable languages are exactly those accepted by de-
terministic timed automata and argue that this is, perhaps, the right class of timed
languages, and that the closure of untimed regular languages under projection is
a positive accident that cannot be expected to hold beyond the finite-state case.

1 Introduction

LetΣ∗ be the free monoid generated by a finite setΣ. A set (language) L ⊆ Σ∗

is recognizable if there exists a finite deterministic automaton A = (Q, δ, q0, F)
that accepts it. The automaton sends words into states via the mapping δ̂A :
Σ∗ → Q defined as δ̂A(ε) = q0 and δ̂A(w · a) = δ(δ̂A(w), a). A language L is
recognizable if L =

⋃
q∈F δ̂

−1
A (q) for some automaton A.

There are two common ways to express these notions more algebraically.
One is to speak of a monoid morphism ϕ from Σ∗ to a finite monoid M sat-
isfying ϕ(w · w′) = ϕ(w) · ϕ(w′). The disadvantage of this approach is that
the object under study is not anymore the “action” of a word w on the initial
state, but rather the whole transformation it induces onQ. This object is a much
less intuitive (and typically exponentially larger) than the automaton. An alter-
native, mentioned briefly in [E74], is to speak of right modules and of a module
morphism from the free module (Σ∗, Σ) to the finite module (Q,Σ).

For the purpose of this paper we define an equivalent variation on this no-
tion that will allow us to extend it easily to timed languages. Our definition is
inspired by automaton learning theory [G72,A87] where every state of the au-
tomaton is identified with (one of) the first words4 that reach it from q0. The
� This work was partially supported by a grant from Intel, by the European Com-

munity Projects IST-2001-35304 AMETIST (Advanced Methods for Timed Systems),
http://ametist.cs.utwente.nl and by the CNRS project AS 93, Automates,
modèles distribués et temporisés.

4 That is, a word that reaches the state via a cycle-free run.

standard prefix partial-order on Σ∗ is defined as u ≺ u · v for every u, v ∈ Σ∗.
A language is prefix-closed if it includes the prefixes of all its elements. The im-
mediate exterior of a prefix-closed languageP is defined as ext(P) = P ·Σ−P ,
i.e. the first words that go outside P .

Definition 1 (Recognizable Languages). A languageL is recognizable if there
exists a finite prefix-closed subset P ⊆ Σ∗, a “right”-morphism ϕ : Σ∗ → P
satisfying

ϕ(w) = w if w ∈ P ϕ(w · w′) = ϕ(ϕ(w) · w′)

and a subset F ⊆ P such that L =
⋃

w∈F

ϕ−1(w).

As an example let us look at the deterministic automaton of Figure 1 and
one of its spanning trees. The prefix-closed set P = {ε, b, ba, bb, baa, bbb, bbbb}
contains one representative for each of the states {q0, . . . , q7}. The choice of
P is not unique and may depend on the spanning tree chosen. For example,
we could replace ba and baa by bba and bbaa as representatives of q2 and q4,
respectively. The morphism from Σ∗ to P is defined, for elements outside P ,
via rewriting rules (“relations” in the algebraic jargon) that mimic the “non-
spanning” transitions in the transition graph. Such a rewriting rule is defined
for every element in ext(P). In our example the rules are a = ε, bba = ba,
bab = ε, bbba = ba, baaa = baab = baa, bbbbb = baa and bbbba = bbbb.
These rewriting rules can be applied only at the left of a word, that is, the rule
bba = a corresponds to the family bbaw = aw for every w ∈ Σ∗.

The recognition of a word by this structure proceeds like reading the word
by an automaton: a word w is scanned until a prefix u ∈ ext(P) is detected,
such that w = uv. Than the rewriting rule u = u′ is applied, reducing w to
w′ = u′v with u′ = ϕ(u) ∈ P and the process is continued with w′ until w is
reduced to a word in P which is tested for membership in F (in our example
F = {bb}).

For untimed languages this exercise seems nothing more than a fancy for-
mulation of acceptance by a finite automaton, yet it emphasizes the fundamental
property of finite-state systems and languages: the ability to distinguish between
a finite number of classes of input histories. Before adapting this notion for
timed languages let us recall some known facts about minimal automata and the
notion of a state in a dynamical system.

Every L ⊆ Σ∗ admits a unique canonical automaton AL (not necessarily
finite-state) that accepts it. Any other automaton accepting L can be reduced
to AL by an automaton homomorphism (merging of states). This automaton is

a

q1

q2

q4

q6

a

ba

b

b
q0

q3

q5

a

b

a

a

b
b

a

q1

q2

q4

a

ba

b
q0

q3

q5

a

a

b
b

b

(a) (b) (c) (d)

a, b

a

q1

q2

q4

q6

a

ba

b

b
q0

q3

q5

a

b

a

a

b
b

a, b a, b

a

q1

q2

q4

a

ba

b
q0

q3

q5

a

a

b
b

b

a, b

Fig. 1. (a) A deterministic automaton; (b) A spanning tree of the automaton (the solid lines); (c)
A minimal automaton for the language accepted by the automaton in (a); (d) A spanning tree for
the minimal automaton.

defined using the syntactic right-congruence5 relation induced by L on Σ∗

u ∼ v iff ∀w uw ∈ L ⇐⇒ vw ∈ L

The states of the minimal automaton forL are the equivalence classes of ∼. This
is the Nerode part of the Myhill-Nerode characterization of regular languages
as those for which ∼ has a finite index. A language like anbn can be proved
non-recognizable by showing that an
∼ am for every n
= m and hence ∼ has
an infinite index and no finite set of representatives of its congruence classes
exists.

By choosing proper representatives for each class we can have a set P of
minimal size. Figure 1-(c) shows a minimal automaton for our example. The
corresponding algebraic object is obtained from the non-minimal one by re-
moving bbbb from P , removing the rules bbbbb = baa and bbbba = bbbb and
adding the rule bbbb = baa.

2 Timed Languages

We consider timed languages as subsets of the time-event monoid T = Σ ∗�R+,
the free product (shuffle) of the free monoid (Σ∗, ·, ε) and the commutative
monoid (R+,+, 0). This monoid has been introduced in [ACM02] as an alterna-
tive semantic domain for timed behaviors, where elements of Σ indicate events
and elements of R+ denote passage of time. Elements of T can be written as

5 A right-congruence relation of Σ∗ is an equivalence relation such that u ∼ v implies uw ∼
vw for every w.

timed words of the form

t0 · a1 · t1 · a2 · t2 · · · an · tn (1)

with ti ≥ 0 and ai ∈ Σ ∪ {ε} for every i. Such a word indicates passage of t0
time, followed by the occurrence of a1, followed by passage of t1 time, etc. The
reader may find in [ACM02] more precise details, examples and a definition
of a canonical form to which two equivalent timed words can be reduced. For
example, a ·0 ·a′ can be reduced to a ·a′ and t · ε · t′ reduces to t+ t′. The prefix
partial-order relation on T is defined as u � u · v for any u, v ∈ T . Note that,
in particular, w · t � w · t′ whenever t ≤ t′.

A timed word w of the form (1) can be projected onto Σ∗ and R+, re-
spectively, via the following two morphisms: The untime function, μ(w) =
a1 · a2 · · · an and the duration function λ(w) = t0 + t1 + · · · + tn. For an
untimed word u, |u| indicates its logical length (number of letters). These func-
tions are lifted naturally from individual words to sets of words.

It is clear that the notion of finite recognizability is useless for timed lan-
guages. It suffices to look at the singleton language {5 · a}, consisting of the
word where a occurs at time 5, and see that it has an uncountable number of
Nerode classes as t
∼ t′ for every t
= t′ where t, t′ < 5. We believe that
the suitable notion for timed languages is that of boundedness (which implies
finiteness for discrete systems). Intuitively this means that one can distinguish
between a finite number of classes of (qualitative) histories and in each of these
classes it is possible to distinguish between durations taken from a bounded set.

Definition 2 (Bounded Timed Languages). A timed language L ⊆ T is
bounded if μ(L) is finite and λ(L) is bounded in the usual sense of R+.

We want to generalize Definition 1 to timed languages using a bounded
prefix-closed subset P of T and a morphism to it. Before giving a formal defi-
nition let us illustrate the idea using the language

{t · a · w : t ∈ [1, 5], w ∈ T }

consisting of all timed words that have no letters until 1 and an occurrence of
a somewhere in [1, 5]. The set P should contain all the time prefixes t with
t ∈ [0, 5]. All the words of the form t · a with t < 1 are Nerode equivalent (they
accept nothing) and can be represented by a and the same holds for all t with
t > 5. Likewise, the words of the form t · a with t ∈ [1, 5] are equivalent (they
accept everything) and hence can be represented by 1 · a. So for this language
we have

P = {t : t ∈ [0, 5]} ∪ {a} ∪ {1 · a}, F = {1 · a}

The immediate exterior of P contains all the a-continuations of P which are
outside P , namely the words t · a with t ∈ (0, 1) ∪ (1, 5] as well as a · a and
1 · a · a. The immediate exterior via time passage is harder to define due to the
density of (R,≤). In general, given a timed word w, one cannot6 characterize
its “first” time continuation. One solution would be to take an arbitrarily small
positive ε and let the exterior ofw be {w ·t : t ∈ (0, ε)}. We will use the notation
w · t for that, and denote the corresponding elements of ext(P) by a · t, 1 · a · t,
and 5 · t. The morphism is defined using the following rewriting rules:

{t · a = a : t ∈ [0, 1)} {t · a = 1 · a : t ∈ [1, 5]}

a · a = a · t = a 1 · a · a = 1 · a · t = 1 · a 5 · t = a

A discrete-time interpretation of this object appears in Figure 2. As one can
see, we need a formalism to express parameterized families of words belonging
to P and F as well as parameterized families of rewriting rules. The choice of
this formalism depends on the type of dense-time automata whose expressive
power we want to match. In this work we concentrate on timed automata and
before doing so let us give an example of a non-recognizable timed language,

Lbad = T · {a · t1 · a · t2 · · · tn · a : n ∈ N ∧
n∑

i=1

ti = 1}. (2)

This language, which can be “accepted” by a non-deterministic timed automa-
ton, was introduced by Alur [A90] to demonstrate the non-closure of timed au-
tomata under complementation. It is not hard to see that for every n

a · t1 · a · · · tn · a
∼ a · t1 · a · · · tn · a · tn+1 · a

whenever 0 <
∑n+1

i=1 ti < 1 and hence for any P , μ(P) should contain the
infinite language {an : n ∈ N} and P cannot be bounded.

3 Timed Automata

We consider Σ-labeled timed automata as acceptors of subsets of T . Timed au-
tomata are automata operating in the dense time domain. Their state-space is a
product of a finite set of discrete states (locations) and the clock-space R

m
+ , the

set of possible valuations of a set of clock variables. The behavior of the au-
tomaton consists of an alternation of time-passage periods where the automaton

6 Perhaps a definition can be given using non-standard analysis with infinitesimals, or by taking
limits on a sequence of discretizations with decreasing time steps.

a a a a a

a, t

a, t

a

1 2 3 4 5 a0

1a

t t t t t t

Fig. 2. An acceptor for a discrete time interpretation of [1, 5] · a · T . Transitions labeled by t in-
dicate passage of one time unit. Dashed arrows indicate non-spanning transitions that correspond
to the rewriting rules.

stays in the same location and the clock values grow uniformly, and of instanta-
neous transitions that can be taken when clock values satisfy certain conditions
and which may reset some clocks to zero.

The interaction between clock values and discrete transitions is specified
by conditions on the clock-space which determine what future evolution, either
passage of time or one or more transitions, is possible at a given part of the state-
space. The clocks allow the automaton to remember, to a certain extent, some of
the quantitative timing information associated with the input word. This ability
is bounded due to the finite number of clocks and due to the syntactic restrictions
on the form of the clock conditions, namely comparisons of clock values with
a finite number of rational constants. This, combined with the monotonicity of
clock growth, means that a clock becomes “inactive” after its value crosses the
value of the maximal constant κ and it cannot distinguish in that state between
time duration of length κ and of length κ+ t for any positive t.

Let X = {x1, . . . , xm} be a set of clock variables. A clock valuation is a
function x : X → R+. We use 1 to denote the unit vector (1, . . . , 1) and 0 for
the zero vector (0, . . . , 0).

Definition 3 (Clock and Zone Constraints). A clock constraint is either a sin-
gle clock constraint x� d or a clock difference constraint xi − xj � d, where
�∈ {<,≤,=,≥, >} and d is an integer. A zone constraint is a conjunction of
clock constraints.

Definition 4 (Timed Automaton).
A timed automaton isA = (Σ,Q,X, q0, I,Δ, F) whereQ is a finite set of states
(locations), X is a finite set of clocks, I is the staying condition (invariant),
assigning to every q ∈ Q a zone Iq, and Δ is a transition relation consisting
of elements of the form (q, a, φ, ρ, q′) where q and q′ are states, a ∈ Σ ∪ {ε},
ρ ⊆ X and φ (the transition guard) is a rectangular zone constraint. The initial
state is q0 and the acceptance condition F is a finite set of pairs of the from
(q, φ) where φ is a zone constraint.

A configuration of the automaton is a pair (q, x) consisting of a location
and a clock valuation. Every subset ρ ⊆ X induces a reset function Resetρ on
valuations which resets to zero all the clocks in ρ and leaves the other clocks
unchanged. A step of the automaton is one of the following:

– A discrete step: (q, x) δ−→ (q′, x′), for some transition δ = (q, a, φ, ρ, q′) ∈
Δ, such that x satisfies φ and x′ = Resetρ(x). The label of such a step is a.

– A time step: (q, x) t−→ (q, x + t1), t ∈ R+ such that x + t′1 satisfies Iq for
every t′ < t. The label of a time step is t.

A run of the automaton starting from the initial configuration (q0, 0) is a finite
sequence of steps

ξ : (q0, 0) s1−→ (q1, x1)
s2−→ · · · sn−→ (qn, xn).

A run is accepting if it ends in a configuration satisfying F . The timed word car-
ried by the run is obtained by concatenating the step labels. The timed language
accepted by a timed automaton A consists of all words carried by accepting runs
and is denoted by LA.

A timed automaton is deterministic if from every reachable configuration
every event and “non-event” leads to exactly one configuration. This means that
the automaton cannot make both a “silent” transition and a time passage in the
same configuration.

Definition 5 (Deterministic Timed Automaton). A deterministic timed au-
tomaton is an automaton whose guards and staying conditions satisfy:

1. For every two distinct transitions (q, a, φ1, ρ1, q1) and (q, a, φ2, ρ2, q2), φ1

and φ2 have an empty intersection (event determinism).
2. For every transition (q, ε, φ, ρ, q′) ∈ Δ, the intersection of φ with Iq is, at

most, a singleton (time determinism).

In deterministic automata any word is carried by exactly one run. We denote the
class of timed languages accepted by such automata by DTA.

Before defining the recognizable timed languages let us present a particular
atomic type of zones called regions, introduced in [AD94], which play a special
role in the theory of timed automata. Intuitively a region consists of all clock
valuations that are not (and will not be) distinguishable by any clock constraint.
A region constraint is a zone constraint where for every x it contains a constraint
of one of the following forms: x = d, d < x < d + 1 or κ < x and for every

pair of clocks — either xi − xj = d or d < xi − xj < d + 1. The set of all
regions over m clocks with a largest constant7 κ is denoted by Gm

κ .
Regions are the elementary zones from which all other zones can be built.

Two clock valuations that belong to the same region satisfy the same guards and
staying conditions. Moreover, by letting time pass from any two such points, the
next visited region is the same. Finally, any reset of clocks sends all the elements
of one region into the same region. This motivates the definition [AD94] of the
“region automaton”, a finite-state automaton whose state space isQ×Gm

κ and its
transition relation is constructed as follows. First we introduce a special symbol
τ which indicates the passage of an under-specified amount of time, and connect
two regions R and R′ by a τ -transition, denoted by (q,R) τ−→ (q,R′) if time
can progress in (q,R) and R′ is the next region encountered while doing so.
Secondly, for every transition (q, a, φ, ρ, q ′) and every R which satisfies φ we
define a transition (q,R) a−→ (q′,R′) if R′ is the result of applying Resetρ to
R. As an example consider the deterministic automaton and its corresponding
region automaton appearing on Figure 3. The automaton accepts any word with
3 a’s such that the second occurs 1 time after the beginning and the third — 1
time after the first.8

4 Recognizable Timed Languages

Let Tn = {t0, . . . , tn} be an ordered set of non-negative real variables. A con-
tiguous sum over Tn is Sj..k =

∑k
i=j ti and the set of all such sums over Tn is

denoted by Sn. A timed inequality on Tn is a condition of the form Si..j ∈ J
where J is an interval with natural endpoints. A timed condition is a conjunction
of timed inequalities.

A timed language L is elementary if μ(L) = {u} with u = a1 · · · an and
the set {(t0, . . . tn) : t0 · a1 · · · an · tn ∈ L} is definable by a timed condition Λ.
We will sometime denote elementary languages by a pair (u,Λ). The immediate
exterior ext(L) of an elementary language L = (u,Λ) consists of the following
sets: for every a ∈ Σ, exta(L) is the set (u · a, Λa) where Λa = Λ ∪ {tn+1 =
0}. The immediate exterior via time passage is extt(L) = (u,Λt) where Λt is
obtained from Λ as follows. If Λ contains one or more equality constraints of

7 There are some simplifications in the description in order to avoid a full exposition of the
theory of timed automata. In particular, if some clock x > κ in some region, we do not care
anymore about its comparisons with other clocks. This way the region automaton has just one
terminal state in which all the clocks are larger than κ. Readers interested in all the subtle
details may consult [B03].

8 Note that the existence of two transitions leaving q2, one labeled with x = 1 and one with
x = 1, a, is not considered a violation of determinism. A word 1 · t for an arbitrarily small t
will take the former and the word 1 · a will take the latter.

x1 = 1

q2

q5

q1

x1 ≤ 1

x1 ≤ 1, a/x2 := 0

x1 ≤ 1

q3

x2 ≤ 1

q4

x2 = 1, ax1 = 1 x1 < 1, a

x2 < 1, a

x2 = 1

x1 = 1, a

1

2

3

4

5

6

7

9

10

q1 q2
q3

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

30

27

28

29

q4q5

8

Fig. 3. A timed automaton with 2 clocks and its region automaton. Solid arrows indicate time
passage and ε transitions while dashed arrows are a transitions. The a-labeled self-loops from all
regions associated with q4 and q5 are depicted in a StateChart style. The regions are detailed in
Table 1.

the form Sj..n = d, these constraints are replaced by constraints of the form
d < Sj..n. Otherwise, let j be the smallest number such that a constraint of the
form Sj..n < d appears in Λ. This constraint is replaced by Sj..n = d.

Definition 6 (Chronometric Subset). A subset P of T is chronometric if it can
be written as a finite union of disjoint elementary languages.

Definition 7 (Chronometric Relational Morphism). Let P be bounded and
prefix-closed subset of T . A chronometric (relational) morphism Φ from T to
P is a relation definable by a finite set of tuples (u,Λ, u′, Λ′, E) such that each
(u,Λ) is an elementary language included in ext(P), each (u′, Λ′) is an el-
ementary language contained in P , and E is a set of equalities of the form∑n

i=j ti =
∑n′

i=k t
′
i, where n = |u| and n′ = |u′|. It is required that all (u,Λ)

are disjoint and their union is equal to ext(P). For every w = t0 · a1 · · · an · tn
and w′ = t′0 · b1 · · · bn′ · t′n′ , (w,w′) ∈ Φ iff there exists a tuple (u,Λ, u′, Λ′, E)
in the presentation of Φ such that w ∈ (u,Λ), w′ ∈ (u′, Λ′) and the respective
time values for w and w′ satisfy all the equalities in E. The definition of Φ for
words outside ext(P) is done via the identity Φ(u · v) = Φ(Φ(u) · v).

As an example of a component (u,Λ, u′, Λ′, E) of a chronometric morphism let

(u, Λ) = (t0 · a · t1 · a , {0 < t0 < 1, 0 < t1 < 1, 0 < t0 + t1 < 1}),

(u′, Λ′) = (r0 · a · r1 · a · r2 , {0 < r0 < 1, r1 = 0, 0 < r2 < 1, 0 < r0 + r1 + r2 < 1})
and

E = t0 + t1 = r0 + r1 + r2.

This components corresponds to the non-spanning transition R8 · a = R17 in
the region automaton of Figure 3.
The relation Φ is said to be well formed if the following holds for each tuple
(u,Λ, u′, Λ′, E) in Φ:

– For every w ∈ (u,Λ), there exists w′ ∈ (u′, Λ′) such that (w,w′) ∈ Φ.
– For every w′ ∈ (u′, Λ′), there exists w ∈ (u,Λ) such that (w,w′) ∈ Φ.

A relation Φ is said to be compatible with a chronometric subset F if for every
(u,Λ, u′, Λ′, E) in Φ, either (u′, Λ′) ⊆ F or (u′, Λ′) ∩ F = ∅.
Remark: From a well formed relational chronometric morphism Φ one can de-
rive a (functional) chronometric morphism ϕ : T → P by letting ϕ(w) be
some w′ such that (w,w′) ∈ Φ. From the relation described above we can
derive functional morphisms such as ϕ(t0 · a · t1 · a) = t0 · a · a · t1, or
ϕ(t0 · a · t1 · a) = a · a · (t0 + t1). While functional morphisms follow more
closely the spirit of classical theory, relational morphisms are more suitable for
the proofs in this paper.

Definition 8 (Recognizable Timed Languages). A timed language L is recog-
nizable if there is a chronometric prefix-closed set P , a chronometric subset F
of P and a chronometric relational morphism Φ : T → P compatible with F
such that L =

⋃

w∈F

Φ−1(w).

4.1 From Deterministic Automata to Recognizable Languages

We are now ready to prove the first result, stating that every language accepted
by a DTA is recognizable, by assigning timed words to reachable configura-
tions. The correspondence between values of clock variables in the automaton
and values of time variables in an input word of length n is done via a clock
binding over (X,Tn), a function β : X → Sn associating with every clock
x a contiguous sum of the form Sj..n. Recall that a region is a conjunction of
single clocks constraints and clock difference constraints. By substituting β(x)
for x, the former become timed inequalities and the latter become inequalities
on Sj..n − Sk..n = Sj..k and, hence, timed inequalities as well.

Claim 1 (DTA ⇒ REC) From every deterministic timed automaton A one can
construct a chronometric prefix-closed subset P of T and a morphism Φ : T →
P such that if (w,w′) ∈ Φ then w and w′ lead to the same configuration from
the initial state.

Sketch of Proof: Build the region automaton for A and pick a spanning tree
in which each region is reached via a simple path. Starting from the root we
associate with every region an elementary timed language in a prefix-closed
manner. More precisely with every region R of the automaton we associate the
triple (u,Λ, β) where (u,Λ) is an elementary timed language with |u| = n and
β is a clock binding on (X,Tn). We decompose Λ into two sets of timed in-
equalities Λ− and Λ+ where Λ− consists of the “anachronistic” inequalities not
involving tn and Λ+ — of “live” constraints involving tn. Note that transitions
may change the binding and move some inequalities from Λ+ to Λ−.

For the initial region R0 = (q0, 0), u = ε, Λ = Λ+ is t0 = 0 and all
clocks are bound to t0. Consider now the inductive step. Given a region R with
(u,Λ, β) we compute (u′, Λ′, β′) for its successor (via a spanning transition)
R′. There are two cases:

1. R′ is a simple time successor of R: in this case u′ = u and β′ = β. We
let Λ′− = Λ− and obtain Λ′

+ from the region formula ψ′ by replacing every
clock x by β(x).9

9 Note that Λ+ and Λ′
+ are very similar consisting of almost identical sets of inequalities dif-

fering from each other only by replacing one or more inequalities of the form Si..n = d by
d < Si..n < d + 1, etc.

2. R′ is a transition successor of R via an a-labeled10 transition: in this case
u′ = u·a·tn+1, we have a new time variable tn+1 and the (T n+1, X) binding
β′ is derived from β and from the corresponding transition as follows. If a
clock x is not reset by the transition then β ′(x) = Si..n+1 whenever β(x) =
Si..n. If x is reset then β ′(x) = tn+1 (note that x = 0 in R′). To compute
Λ′− we add to Λ− the substitution of β(x) for x in ψ and let Λ′

+ be the
substitution of β ′(x) in ψ′.

From this construction it is easy to see that the union of the obtained languages
is prefix-closed (we proceed by concatenation and by respecting past timing
constraints) and chronometric and that all reachable configurations are covered
by words.

Next, we construct the relation Φ based on transitions which correspond to
back- or cross-edges in the spanning tree. Consider a non-spanning transition
leading from region R with characteristic (u,Λ, β) into region R ′ with char-
acteristic (u′, Λ′, β′). Let (u′′, Λ′′, β′′) be the language and binding associated
with the successor of R according to the previously described procedure. This
transition contributes to Φ the tuple (u′′, Λ′′, u′, Λ′, E). For each clock x which
is not reset by the transition,E contains the equality β ′(x) = β′′(x). If x is reset
by the transition, then E contains the equality β ′(x) = 0.

Table 1 shows the correspondence between the regions of Figure 3 and ele-
mentary languages. The numbering of the regions is consistent with the chosen
spanning tree.

4.2 From Recognizable Languages to Deterministic Automata

We will now prove the other direction by building a deterministic timed automa-
ton for a given recognizable language. To facilitate the construction we will use
an extended form of timed automata, proposed in [SV96], where transitions can
be be labelled by assignments of the form x := 0 and x := y (clock renaming).
As shown in [SV96] such automata can be transformed into standard timed au-
tomata (see also [BDFP00]).

Claim 2 (REC ⇒ DTA) From every chronometric subset P of T and a
chronometric morphism Φ : T → P one can build a DTA A such that if two
timed words lead to the same configurations in A then (w,w ′) ∈ Φ.

Sketch of Proof: The construction of the automaton starts with an untimed au-
tomaton (with a tree structure) whose set of states is μ(P) with ε as the initial

10 The special case where the transition is not labeled is resolved by introducing a new time
variable tn+1 such that the word can be written as t0 · · · an · tn · ε · tn+1.

state and a transition function such that δ(u, a) = u ·a whenever u ·a is in μ(P).
We then decorate the automaton with staying conditions, transition guards, and
resets as follows. With every transition we reset a new clock so that for every
word t0 ·a1 · · · an · tn, the value of clock xi at any state a1 · · · aj , i ≤ j is bound
to Si..j .

For every state u = a1 · · · an ∈ μ(P) let

Λ(u) = {(t0, . . . , tn) : t0 · a1 · · · an · tn ∈ P}.

By decomposing Λ(u) into anachronistic (Λ−) and live (Λ+) constraints and
substituting xi instead of every Si..n in Λ+, we obtain the staying condition for
state u.

For every u and a such that u · a is in μ(P) let

Hu,a = {(t0, . . . , tn) : t0 · a1 · · · an · tn · a ∈ P}.

Without loss of generality we assume that Hu,a is definbable by a timed con-
dition.11 Hence every expression Si..j in it can be replaced by xj − xi and the
whole condition can be transformed into a zone constraint that will serve as the
guard of the transition between u and u · a. This way we have an automaton in
which every element of P reaches a distinct configuration.

Consider an element (u·a, Λ, u′, Λ′, E) ∈ Φ, such that (u·a, Λ) ∈ exta(P),
with |u| = n and |u′| = n′. Such an element introduces into the constructed
automaton an a-labeled transition from u to u′. For every constraint of the form
Sj..k ∈ J included in Λ, we include in the transition guard the constraint xj −
xk ∈ J . For every equality S ′

j..n′ = Sk..n included in E, we add to the reset
function the assignment xj := xk.

Likewise every (u,Λ, u′, Λ′, E) ∈ Φ such the (u,Λ) ⊆ extt(P) induces a
timed transition from u to u′ with a guard and a reset function similar to the
previous case.

Corollary 1 (REC=DTA). The recognizable timed languages are those ac-
cepted by a deterministic timed automaton.

5 Discussion

Ever since the introduction of timed automata and the observation that their lan-
guages are not closed under complementation, researchers were trying to find a

11 In general it could be definable by a finite union of timed conditions and we should make
several transitions from u to u · a.

R q ψ u β Λ

1 q1 0 = x2 = x1 t0 x1 = t0 t0 = 0
x2 = t0

2 q1 0 < x2 = x1 < 1 t0 x1 = t0 0 < t0 < 1
x2 = t0

3 q1 x2 = x1 = 1 t0 x1 = t0 t0 = 1
x2 = t0

4 q2 0 = x2 = x1 t0at1 x1 = t0 + t1 t0 = t1 = 0
x2 = t1

5 q2 0 < x2 = x1 < 1 t0at1 x1 = t0 + t1 t0 = 0 0 < t1 < 1
x2 = t1

6 q2 x2 = x1 = 1 t0at1 x1 = t0 + t1 t0 = 0 t1 = 1
x2 = t1

7 q2 0 = x2 < x1 < 1 t0at1 x1 = t0 + t1 0 < t0 < 1 t1 = 0
x2 = t1

8 q2 0 < x2 < x1 < 1 t0at1 x1 = t0 + t1 0 < t0 < 1 0 < t1 < 1 0 < t0 + t1 < 1
x2 = t1

9 q2 0 < x2 < x1 = 1 t0at1 x1 = t0 + t1 0 < t0 < 1 0 < t1 < 1 t0 + t1 = 1
x2 = t1

10 q2 x2 = 0 x1 = 1 t0at1 x1 = t0 + t1 t0 = 1 t1 = 0
x2 = t1

11 q5 x1 > 1 x2 > 1 t0εt1 x1 = t0 + t1 1 < t0 + t1
x2 = t0 + t1

12 q5 x1 = x2 = 0 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = t2 = 0
x2 = t1 + t2

13 q5 0 < x1 = x2 < 1 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = 0 0 < t2 < 1
x2 = t1 + t2

14 q5 x1 = x2 = 1 t0at1at2 x1 = t0 + t1 + t2 t0 = t1 = 0 t2 = 1
x2 = t1 + t2

15 q3 x2 = x1 = 1 t0at1at2 x1 = t0 + t1 + t2 t0 = 0 t1 = 1 t2 = 0
x2 = t1 + t2

16 q5 0 = x2 < x1 < 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 t2 = 0
x2 = t1 + t2

17 q5 0 < x2 < x1 < 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 < 1

18 q5 0 < x2 < x1 = 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 = 1

19 q5 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2 0 < t0 + t2 > 1

20 q5 0 < x2 = 1 < x1 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0 t3 = 1
x2 = t1 + t2

21 q3 0 < x2 < x1 = 1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 = 1 t2 = 0

22 q3 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 + t2 > 1 0 < t2 < 1 t1 + t2 < 1

23 q3 0 < x2 = 1 < x1 t0at1at2 x1 = t0 + t1 + t2 0 < t0 < 1 0 < t1 < 1
x2 = t1 + t2 t0 + t1 + t2 > 1 0 < t2 < 1 t1 + t2 = 1

24 q5 0 < x2 < 1 < x1 = 1 t0at1εt2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0 0 < t3 < 1
x2 = t1 + t2

25 q3 x1 = 1 x2 = 0 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = t2 = 0
x2 = t1 + t2

26 q3 0 < x2 < 1 < x1 t0at1at2 x1 = t0 + t1 + t2 t0 = 1 t1 = 0 0 < t2 < 1
x2 = t1 + t2

27 q4 x2 = x1 = 1 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 0 t1 = 1 t2 = 0 t3 = 0
x2 = t1 + t2 + t3

28 q4 1 < x11 < x2 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = 0 t2 = 1 t3 > 0
x2 = t1 + t2 + t3

29 q4 0 < x2 = 1 < x1 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = 0 t2 = 1 t3 = 0
x2 = t1 + t2 + t3

30 q5 x1 = 1 x2 = 0 t0at1at2at3 x1 = t0 + t1 + t2 + t3 t0 = 1 t1 = t2 = t3 = 0
x2 = t1 + t2 + t3

Table 1. Correspondence between regions in the automaton of Figure 3 and timed words.

well-behaving sub-class of languages.12 Among the proposals given, we men-
tion the event-clock automata of [AFH99] where for each letter in the alphabet,
the automaton can measure only the time since its last occurrence. It was shown
that these languages admit a deterministic timed acceptor. Recognizable timed
languages take this idea further by allowing the automaton to remember the
occurrence times of a finite number of events, not necessarily of distinct types.

The ideas of [AFH99] were developed further in [RS97] and [HRS98], re-
sulting in a rich class of timed languages characterized by a decidable logic.
While being satisfactory from a logical point of view, the automaton character-
ization of this class is currently very complicated, involving cascades of event-
recording and event-predicting timed automata. We feel that our more restricted
class of recognizable languages captures the natural extension of recognizability
toward timed languages, namely which classes of input histories can be distin-
guished by a finite number of states and a finite number of bounded clocks.13

Deterministic timed languages have not been studied much in the literature
due to several reasons. The first is a slight confusion about what deterministic
means in this context and between acceptors and generators in general. A transi-
tion guarded by a “fat” condition of the form x ∈ [l, u] is non-deterministic only
if it is not labeled by an input letter. If it is labeled by an input a the transition is
deterministic, reacting differently to t · a and t′ · a for t
= t′.

Another reason for ignoring deterministic automata is the centrality of the
equivalence between DFA and NDFA in the untimed theory which serves to
show that regular languages are closed under projection. Recognizable timed
languages are indeed not closed under projection. The non-recognizable lan-
guage Lbad (2) can be obtained from a recognizable language over {a, b} by
projecting away b. Not seeing b, the automaton has to “guess” at certain points,
whether b has occurred. When this guessing has to be done a finite number of
times, the Rabin-Scott subset construction can simulate it by a DFA that goes si-
multaneously to all possible successors. However when these hidden events can
occur unboundedly within a finite interval and their occurrence times should be
memorized, finite subset construction is impossible. In this context it is worth
mentioning the result of [W94] about the determinizability of timed automata
under a uniform bounded variability assumption and also to point out that for the
same reasons determinization is always possible under any time discretization.

The closest work to ours, in the sense of trying to establish a semantic input-
output definition of a state in a timed system, is [SV96], motivated by testing of

12 The question whether a non-deterministic timed automaton can be determinized is undecid-
able, see [T03].

13 Note that in the untimed theory recognizability implies decidability but not vice versa, for
example the emptiness problem for push-down automata is decidable.

timed automata. In that paper the authors give an algorithm for semantic mini-
mization of timed automata and also make useful observations about clock per-
mutations and assignments and about the relevance of clocks in various states.
Similar observations were made in [DY96] where clock activity analysis was
used to reduce the dimensionality of the clock space in order to save memory
during verification.

Another related work is that of [BPT03] which is concerned with data lan-
guages, languages over an alphabet Σ × D where D is some infinite domain.
Based on ideas developed in [KF94], they propose to recognize such languages
using automata augmented with auxiliary registers that can store a finite num-
ber of data elements but not perform computations on these values. The results
in [BPT03] show that acceptance by such automata coincides with their notion
of recognizability by a finite monoid. These very general results can be spe-
cialized to timed languages by interpreting D as absolute time and every pair
(a, d) ∈ Σ × D as a letter a and a time stamp d. Although the special nature
of time can be imposed via monotonicity restrictions on the d’s, we feel more
comfortable with our more “causal” treatment of time as an entity whose elapse
is consumed by the automaton in the same way input events are. Other investi-
gations of the algebraic aspects of timed languages are reported in [D01].

To summarize, we have defined what we believe to be the appropriate notion
of recognizability for timed systems and have shown that it coincides with ac-
ceptance by a deterministic timed automaton. We believe that this is the “right”
class of timed languages and we have yet to see a useful and realistic timed lan-
guage which is outside this class. Our result also makes timed theory closer to
the untimed one and opens the way for further algebraic investigations of timed
languages.

Let us conclude with some open problems triggered by this work:

1. What happens if contiguous sums are replaced by arbitrary sums or by linear
expressions with positive coefficients? Clearly, the former case corresponds
to “stopwatch automata” and the latter to some class of hybrid automata and
it is interesting to see whether such a study can shed more light on problems
related to these automata.

2. Is there a natural restriction of the timed regular expressions of [ACM02]
which guarantees recognizability? Unfortunately, dropping the renaming
operation will not suffice because the language Lbad (2) can be expressed
without it.

3. Can our results be used to develop an algorithm for learning timed languages
from examples and for solving other related problems such as minimization
and test generation?

4. Can recognizability be related to the growth of the index of the Nerode con-
gruence for a discretization of the language as time granularity decreases?

Acknowledgment: This work benefited from discussions and monologues with
Eugene Asarin, Stavros Tripakis, Pascal Weil, Yassine Lakhnech, Paul Caspi
and Sergio Yovine, as well as from thoughtful comments from anonymous ref-
erees that improved the correctness and presentation of the results.

References

[A90] R. Alur, Techniques for Automatic Verification of Real-Time Systems, PhD Thesis,
Stanford, 1990.

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science
126, 183–235, 1994.

[AFH99] R. Alur, L. Fix, and T.A. Henzinger, Event-Clock Automata: A Determinizable
Class of Timed Automata, Theoretical Computer Science 211, 253-273, 1999.

[A87] D. Angluin, Learning Regular Sets from Queries and Counter-Examples, Informa-
tion and Computation 75, 87-106, 1987.

[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular Expressions The Journal of the
ACM 49, 172-206, 2002.

[B03] P. Bouyer, Untameable Timed Automata!, Proc. STACS’03, 620-631, LNCS 2607,
Springer, 2003.

[BDFP00] P. Bouyer, C. Dufourd, E. Fleury and A. Petit, Expressiveness of Updatable Timed
Automata, Proc. MFCS’2000, 232-242, LNCS 1893, Springer, 2000.

[BPT03] P. Bouyer, A. Petit, and D. Thérien, An algebraic Approach to Data Languages and
Timed Languages, Information and Computation 182, 137-162, 2003.

[D01] C. Dima, Real-Time Automata, Journal of Automata, Languages and Combinatorics
6, 3-24, 2001.

[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of Timed Au-
tomata, Proc. RTSS’96, 73-81, IEEE, 1996.

[E74] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, New-
York, 1974.

[G72] E.M. Gold, System Identification via State Characterization, Automatica 8, 621-636,
1972.

[HRS98] T.A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens, The Regular Real-time Lan-
guages, Proc. ICALP 98, 580-591, LNCS 1343, Springer, 1998.

[KF94] M. Kaminski and N. Francez, Finite-memory Automata, Theoretical Computer Sci-
ence 134, 329-363, 1994.

[RS97] J.-F. Raskin and P.-Y. Schobbens, State Clock Logic: A Decidable Real-Time Logic,
in Hybrid and Real-Time Systems (HART), 33-47, LNCS 1201, Springer, 1997.

[T03] S. Tripakis, Folk Theorems on the Determinization and Minimization of Timed Au-
tomata, Proc. FORMATS’03, 2003.

[SV96] J.G. Springintveld and F.W. Vaandrager, Minimizable Timed Automata, Proc.
FTRTFT’96, 130-147, LNCS 1135, Springer, 1996.

[W94] Th. Wilke, Specifying State Sequences in Powerful Decidable Logics and Timed
Automata, Proc. FTRTFT’94, LNCS 863, 694-715, Springer, 1994.

