Hybrid Systems
and
Real-World Computations

Oded Maler*
VERIMAG
Miniparc ZIRST
38330 Montbonnot, France
Oded.Maler@imag.fr

1 Introduction

In a preface to a book on computational geometry, J.T. Schwartz [Sc87] wrote:

Till now, computer science has been largely combinatorial and symbolic having
the manipulation of patterns and tables of data as its principal content. In robotics,
however, computer science makes contact with real-world geometric and physical
phenomena such as compliance of elastic bodies, the frictional phenomena that occur
when two bodies come in contact, errors in modeling which are tnevitable in the real
world, the sudden changes of state which occur when two bodies collide unexpectedly,
and so forth. It is to be expected that much interesting new computer science will
emerge from contact with these rich conceptual domains and, in particular, that
computer science will become more traditionally mathematical and “continuous”.

The theory of hybrid systems (HS), can be considered as an important step to-
ward the realization of this vision. By a hybrid system I mean a system which is a
product of the interaction between a discrete state-transition system (an automaton,
a program) and a continuous differential dynamical system. In this informal talk T
will try to explain what this theory is about and in what aspects it differs from other
computational theories. In order to do so I will first (section 2) point out explicitly
the underlying assumptions of traditional computability theory concerning the phe-
nomena it 1s supposed to model. In section 3 I will show how these assumptions are
not valid in what I call “real-life” computations, where the computer is embedded
in the physical world. In section 4 I will show how reactive and real-time systems
can be considered as preliminary steps toward hybrid systems.

Finally by mentioning some trends and developments in computer science, Al,
robotics and cognitive science, I hope to put HS in a broader perspective and show
you that the transition to HS might be even more significant than you think. Since,
unlike other participants, I did not have any astonishing new results on HS since the
announcement of this workshop? the talk will be completely non-technical, and the
uninterested ones among the audience can find comfort in other presentation in this
workshop.

* This talk was presented in the first workshop on hybrid systems, Lyngby, Denmark, 1992.
2 Later I had something, see [MP93].,



2 Computations

Before digital computers came into existence, the only real instance of the phe-
nomenon of computation was some type of human activity. And it must be said that
this activity is only the tip of the iceberg of the operation of the nervous system
— and we will come back to this point when we discuss Al and robotics. For the
purpose of this discussion the computation

12413 = 25 (1)
or the deduction
(Yo, y)husband (2, y) = wife(y, x), husband(aa, bb) - wife(bb, aa) (2)

are symbol manipulations of the same sort. The basic assumptions in this process
of computation are:

1. The input and the output are symbols, formal entities, and the “computer” can
access them directly and accurately.

2. Even if these symbols denote something in the “real” world, such as 12 apples or
a certain married couple (and this is presumably our motivation to perform the
computation) still we behave as if the real-world has frozen since the encoding of
the input. Thus if the encoding was faithful and the computations were correct
(in whatever sense) then the results can be decoded and stand for something
true and still relevant about the real world.

In other words, we ignore the possibility that by the time our computations
terminate, a¢ and bb might be divorced and most of the apples turned into
Calvados.

Still another way to see it is by declaring that by investigating computability in
the classical sense we are interested in computations that are:

— Not related to the real-world.?

— Related to the stationary or the slowly-changing features of the world, e.g.,
calculate the number of angels that can stand on a pin-head (assuming it is a
universal constant).

— Performed off-line, that is, it is assumed that the computation is taking place
either before or after the process it is supposed to model. The computation is
1solated from the processes of acquiring the input from the world and returning
the output to it.

The mathematical models of computability theory are indeed tailored for these
phenomena: if we look at a typical Turing machine, what we see is a sequence of dead
symbols on the input tape, additional symbols that denote the transition function
and an abstract head working in a cycle of discrete steps of read-interpret-move-
write. The theory is not concerned with any possible change in the input symbols
(or in what they stand for) after the computation has been started. It also treats the

® Which some of you will admit in private.



operations of symbol reading or writing and head movement as the atomic actions
which can be performed in a perfect manner.

And this is almost what traditional computability theory (and its derived com-
plexity theory) is all about. An interesting and fascinating phenomenon, yet a very
marginal one compared to the whole spectrum of natural phenomena. Even if we ig-
nore physics, chemistry and most of biology and restrict our domain of interest to the
information-processing activities performed by the central nervous systems (CNS)
of humans, still “classical” off-line computation constitutes a negligible fraction.

3 Motor Control and Robotics

How different is the activity I have just discussed from what most of my brain is doing
right now when T am talking to you (or typing this abstract). Consider just a simple
action such as reaching some point with the tip of a finger: the CNS receives visual
signals projected on the retina, as well as measurements from receptors attached
to muscles and tendons. Based on those it “computes” and outputs certain nerve
pulses that activate certain muscle groups and cause their contraction. All this is
done in a manner which is completely embedded in the real-world: as the hand
moves, the sensory “input” to the computation changes. On the other hand, the
same “output” signal going from a motor-neuron to a muscle can have a completely
different external effect if transmitted after some delay, or in another context.

This is most of what the CNS does, controlling in the loop of receptors and mus-
cles, in order to facilitate our survival in the real world by moving toward pleasant
and useful locations, running away from unpleasant ones, maintaining our posture
and stability in the presence of gravitation and other disturbances. Nobody yet re-
ally understands how this is done — how by employing such huge ensemble of noisy
sensors and effectors we achieve these magical capabilities to move our hand to a
certain point and grasp an object. One can appreciate the complications by trying
to build robots that mimic these capabilities: take several joints and motors, add
some sensors for force, touch, stretch, light etc., and build a control program that
continuously reads these sensors and commands the motors. What can be said about
the behavior of such a program? In what language can it be expressed? How and
under what assumptions could these properties be verified? What kind of computer-
1zed tools can be used in order to improve the development process of such artifacts?
Such questions, at least to me personally, constitute the primary motivation for a
theory of HS.

4 From Static to Dynamic Environments

I have described two extreme types of computational phenomena, the traditional
“autistic” computation and the one embedded in the real-world. The shift from the
former to the latter is not sharp but gradual and can be done along independent
dimensions. I'll briefly summarize the way I view the main steps.



4.1 Reactive Systems

Harel and Pnueli in their often-quoted (and seldom read) paper [HP85] distinguished
transformational systems (a static environment) from reactive ones. Intuitively, reac-
tivity 1s intended to capture the phenomenon of an ongoing interaction between the
environment and the computer. One may legitimately ask whether there is some-
thing new in this notion — why cannot we reduce a reactive computation into a
classical transformational computation where all the actions of the environment and
the computer are written on the input and output tapes respectively? Where does
the reactivity hide in this model? The answer lies in the sequential interpretation of
the input representation and its association with the direction of time. While gen-
eral recursion theory can be viewed as dealing with functions from X* to Y™, the
corresponding strings are considered as encodings of some countable domains, and
bear no temporal meaning. Time does not exist during the process of input reading
which can be completed before the computation starts.

In contrast, (deterministic) reactive machines define monotone? functions from
(X*, =) to (Y*, <), where < is the prefix partial-order relation. Again, we can assign
various meanings to < such as inclusion of intervals if we consider positional encod-
ing of numbers; but the crucial step is by unifying < with the temporal order of
occurrence of events. From computability point of view, what has been introduced
is the notion of progressive (in time) knowledge concerning the input as well as
progressive production of output. For a deterministic reactive machine M, we can
associate a monotone function f: X* — Y™ such that for every # € X*, f(z) is the
set of output actions performed by M after reading z. We can then view a reactive
computation of M oninput & = zy29,..., 2, € X* as an element of (X UY)* defined

by:

Ce(e) =z - fler) - xo - (f(x)/flmiza)) .. xn - (f(21 .. tno1)/f21 .. 20))

where / is defined by «/xa’ = a’. Take another machine M’ having a function f’
such that f(x) = f'(x), still C¢(2) # Cp(2) if for some &' < =, f(2') # f'(2).
In other words, two reactive computations on the same input, even if they finally
produce the same output, are considered different if the interleaving of inputs and
outputs are not the same.®

By making this finer distinction between performing an action before or after the
occurrence of an environmental event we make our first contact with the sad (but
apparently inevitable) facts of life, the irreversibility of Time and all that.

Note that in this formulation of reactivity we consider the most general envi-
ronment, in the sense that it can generate all possible sequences of events. On the
other hand, it is a rather limited class of “obedient” environments which generate

* And continuous or even Lipschitz, if you want.

5 In fact, the technical story is a bit more complicated, because if X itself is infinite than
it should be encoded by some D*, so the real model is of a two-dimensional tape, one
dimension for the encoding of the domain (this dimension is neutral with respect to time)
and one to denote the order of events, with respect to which we require monotonicity. In
this case, a non-reactive system is a reactive system for which the second dimension is
trivial.



their events only when the reactive machine is ready to process them. This seems
in contrast with our real world: in terms of content, the real world is much more
restricted — it obeys some regularities and not every wild sequence of events may
happen. On the other hand, the world is much less patient concerning timing and
scheduling. So proving something with respect to this environmental model amounts
to worst-case analysis with respect to content and best-case analysis with respect
to timing. But our particular world is not the best neither the worst of all possible
ones.

4.2 Time is Money

Another independent departure from the autistic undisturbed view of computation
is by considering the time it takes to perform a computation. When it is measured
as the number of abstract computation steps, we can ask whether their number is
finite or infinite, how it grows asymptotically with the size of the input, and all those
fascinating questions which we leave for the best minds of our decade to struggle
with.

Less interesting theoretically, but sometimes practically more important is the
question of “real” time, how much it will take from the onset of the computation
till the output is produced. The answer depends on the specific program and the
quantitative time we assign to each operation of the underlying hardware. Thus, if we
replace our old Turing machine by a new one having 100 times faster head-movement
speed, we still compute the same function although we may get the result faster. In
the context of a static environment, this has no theoretical significance. Questions of
speed become meaningful only when the computation time goes beyond the range in
which the environment can be approximated as static. Take, for example, a payroll
program: whether 1t takes one hour or two to run it is rather meaningless; if however
its computation time is in the scale of weeks, than it can be viewed as a real-time
application.

This also explains how people dealing with Control (the area where real-life
“computations” are currently practiced) treat computational phenomena. Based on
their analysis of the dynamics of the environment, they can assume, that the change
occurring within intervals smaller than, say, 5 milliseconds, are negligible. Thus, a
computations that can be carried out within such an interval can be viewed as a good-
old autistic transformational computation ignoring the dynamics of the environment.
And my feeling 1s, that this is all they want from computers and computer scientists:
“Just supply us with a black box computing some f within ¢ seconds, and don’t
interfere with our mathematics” — but maybe we will have to.

4.3 Combining Reactivity with Real-time

Recall that a specification is a set of equations on the input and output. An accept-
able implementation in a given environment is a machine such that all the compu-
tations that may result from its interaction with the environment are solutions of

those equations. In the case of reactive systems we can use temporal equations® on

% Or any other esoteric formalism.



(X 4Y)* (or (X +Y)¥) which describe the acceptable interleavings of input-output
events. In order to verify that an implementation satisfies the requirements we must
use additional assumptions (e.g., synchrony hypothesis) which “guarantee” that the
actual interleaving will be exactly as the reactive machine intends, that is, the ma-
chine i1s much faster than the environment and can generate as many output events
as 1t wishes between any two input events.

All these consideration deal with qualitative time — the relative order of occur-
rences of events in the machine and in the external world. A more detailed analysis
can be performed by using the very powerful and useful illusion of absolute time.
Instead of comparing the machine with the environment, we measure each of them
against some universal clock, and then can say that a computation step takes between
[ and u clock ticks or that environmental events are separated from each other by at
least d clock events. This way, the “real” time can serve as a “common currency” for
a more detailed and realistic analysis of the behavior of the implementation. Using
this metric time is sometimes more practical because you are more likely to find a
machine whose speed is defined in “absolute” seconds, rather than find one which is
claimed to produce its output between the arrival of customer n and the arrival of
customer n + 1 for every n and for every request-generating process.

At the requirement level, by using real-time, we can also replace the messianic
style of specification (“eventually”) with a more concrete one (“2 weeks after the
deadline”), and as I said before, by specifying this type of bounded response prop-
erties, we express implicitly some further assumptions concerning the dynamics of
the environment — in this case, the patience threshold of proceedings editors.

To summarize, by augmenting reactivity with real-time we have a more detailed
picture of the comparative dynamics between the implemented machine and its
environment.

4.4 Hybrid Systems

Finally, when we come to HS, we try to incorporate as much of the environment as
possible into our models. To this end, the environment is not considered anymore as
a (time-constrained) generator of discrete events, but rather as continuously chang-
ing and as obeying some more-or-less specified rules such as differential equations.
The previous robotics example when viewed as a hybrid system consisting of compo-
nents that model the arm dynamics (conditional differential equations), the control
program (a timed transition system), and interaction between the two via sensors
and actuators. Discrete transitions can now be triggered by continuous variables that
path certain thresholds, and those transitions, in turn, can influence the dynamics
of the continuous component. For such a hybrid system we can try to predict the
properties of the possible behaviors, e.g., “every object will be reached by the tip of
the arm within ¢ seconds”.

This completes the passage from a static environment, via an environment that
makes discrete transitions, down to a continuously-changing one. On the other hand,
by considering specific classes of evolution rules for the environment (e.g., observed
properties of rigid objects obeying Newtonian mechanics), the class of possible se-
quences of events (predicates on the continuous variables) would be much more
restricted than in the “most general” environment.



Exercise to the reader: why mathematical control theory (e.g., [S090]) is not
sufficient? In other words, why can’t we have only a continuous model plus a “non-
constructive” control function augmented with some considerations of delays and
sampling?

5 Relation to other Trends

I will conclude this presentation by mentioning some other contemporary scientific
developments which one might (possibly but not necessarily) see as relevant to the
discussion.

5.1 On-line algorithms

A currently active sub-field of algorithmic complexity theory is dealing with what
is called dynamic and on-line algorithms. In these models, initially motivated by
problems in operating systems such as optimal caching policies; the algorithm is
required to solve an optimization problem in a changing environment or with a
progressive knowledge of the input. For example, consider a traveling salesman in
an Fuclidean space who always knows only k cities in advance. The performance
of such algorithms is compared to the optimal solution when all the information is
given in advance (see for example [BLS92]). This sort of research can be seen as
a preliminary step toward the extension of complexity theory along the reactivity
dimension.

5.2 Qualitative physics

This is a sub-field of AT (see [WK89]) concerned with building models of complex
devices (electrical circuits, refrigerators) which can be used for predicting their be-
haviors, diagnosing their faults, etc. The ultimate goal of this field is to mechanize
the reasoning process of engineers and other experts. One of the approaches in this
field is to model the devices by means of qualitative differential equation over discrete
domains, such as {—,0,+}, and try to predict their possible behaviors by simula-
tion. This approach has been recently criticized (see [DS92] together with a long
list of commentaries) for being too simplistic and ignorant of the wealth of existing
mathematical techniques dealing with qualitative analysis of continuous dynamical
systems (e.g., [HS62]). Such criticism might as well be applicable in the future to
the theory of hybrid systems...

5.3 Discrete-event control

This development (e.g., [RW87]) is more anecdotal. Tt is a reformulation by control
theorists of some aspects of the theory of discrete reactive systems using control
terminology. Thus the environment is a plant and the program is a supervisor that
can prevent some events from occurring in the plant. All the problems of reach-
ability analysis, program synthesis, etc., are treated in the control framework of
observability, controllability and optimal controller synthesis. Although initiated by



a prominent control theorist, this theory treats discrete event systems in a com-
plete isolation from continuous processes, and thus, 1t cannot contribute much to
the theory of HS.

5.4 Foundations of AI

Al 1s concerned with building models and imitations of intelligent behavior. For many
years it has concentrated on the higher-level cognitive capabilities of humans such as
problem-solving, chess-playing, abstract planning and natural language processing.
The ultimate goal was to build a machine that could pass the Turing test, that is,
will be able to communicate through a terminal without being distinguishable from
a human being. During the last decade this “symbolic” approach to Al has been
attacked from several directions.

One of the well-known arguments (and an endless source of diverging debates)
was put forward by Searle [Se80] and is known as the “Chinese room” argument.
It claims that it is possible to pass the Turing test without “understanding” and
without being “really intelligent”. The proof is by putting me (or you, or any non
Chinese-speaking individual), inside a room together with a huge table which essen-
tially is an effective description of a function from C* to C* where C 1s the Chinese
alphabet. Suppose that using these instructions I can successfully communicate with
Chinese-speaking persons — does this imply that I understand Chinese?

Without opening this can of worms, I’ll just mention one analysis of this situation
given by Harnad [Ha90] where he accepts Searle’s argument for the case where the
communication is entirely symbolic — Chinese characters in and Chinese characters
out. In this case the symbols I read and write bear no meaning at all.” On the other
hand, Harnad claims, Searle’s argument fails if the machine passes the total Turing
test (TTT) in which the interaction is not restricted to teletype communication but
extended to full robotic capacities, and in that case, the symbols will be “grounded”
on sensory-motoric experience from which they will take their meaning.

I mention these arguments not in order to motivate anyone in the audience to
solve these open problems of mind and meaning, but rather to indicate another
motivation for breaking the walls of the Turing ghetto, and let machines (and their
underlying theories) interact with the external world in a non-symbolic manner.
Similar arguments, formulated against the symbolic dogma of cognitive psychology
have been raised by Hofstadter [Ho82] under the title: “waking up from the boolean
dream”. Within the connectionist movement Smolensky [Sm88] argued in favor of
studying the manner in which “symbolic” events in the brain are realized by sub-
symbolic activities of a complex neural-like dynamical systems. It is worth noting
that technically, as is the case with HS, some branches of connectionism also require
a mixture of continuous and discrete mathematical techniques.

5.5 Behavior-based robotics

Last but not least, let me mention another trend in Al which goes together with the
abovementioned ones. This is the field of behavior-based robotics led by Brooks at

" We will not consider the question whether or not my words bear any meaning when I
express myself in English...



MIT. In contrast with traditional symbolic AI which, as I said before, concentrated
on abstract high-level activities, this approach suggests building intelligence from
the bottom-up, and takes low-level creatures such as insects as the normative model
for intelligent machine. The underlying ideology (the most recent version is [Br91])
is based on an observation, similar to the one I described at the beginning, that
abstract reasoning is marginal with respect to the real-life “situated” computations
involved in motor control, many of which we share with our evolutionary ancestors.

Unlike traditional AT approaches to robotics, which were based on a cycle of
sensory reading, interpretation into a symbolic structure, reasoning and comput-
ing on this structure and then acting, Brooks suggested an alternative architecture
(“subsumption”, [Br86]) based on an asynchronous network of interacting automata
connected to sensors, actuators and timers. Analyzing the behavior of systems based
on such architectures is, I think, a real challenge for theoreticians of concurrent, re-
active, and eventually hybrid systems. Even when we come back after this workshop
to our dry formal systems, proof rules, and the rest of our particular tricks-of-the-
trade, we should keep in mind some more “live” motivations for all this Hybrid
System enterprise, and to my mind, being able to reason about the behavior of such
robots is a good one.

6 Conclusion

Hybrid systems research might lead to interesting developments in computer science
and in mathematics. It might as well be useful.
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