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Abstract

In this paper we propose a model that captures the in�uence of

noise and speed on the correct behavior of a computing device situ�

ated in a dynamic environment� Within this model we analyze the

relation between structural properties of automata and their immu�

nity to noise� We prove upper� and lower�bounds on the e�ect of

noise for various classes of �nite automata� In addition we show sim�

ilar relatinoships between relative speeds of the automaton and the

environment and the accuracy of computation� Our model� combin�

ing basic notions from algebraic automata theory and the theory of

stochastic processes� can serve as a starting point for a rigorous theory

of computational systems embedded in the real world�



� Introduction

Traditional computer science models try to abstract away as many real�world
features as possible� The external world appears in these models only after
being converted into a time�less sequence of symbols written on the input
tape of a Turing machine� Even if we consider sequential machines that are
constrained to process the input in the same order as it arrives� still some
simplifying assumption remain� and in particular�

�� The input symbols are immediately and precisely recognized�

�� The durations of the automaton transitions are negligible compared to
the arrival rate of input symbols�

When we consider �real� computers embedded in a physical environment�
as in the case of robots� controllers or signal processors� this idealization is
inadequate� External events do not appear with �labels� taken from the
machine	s alphabet� but are rather computed approximately from noisy data�
Moreover� they are not constrained to occur when the machine is �ready� to
process them�

The goal of this paper is to build a framework for comparing the �ideal�
behavior of a discrete computational device with its behavior in �realistic�
situations� The ideal behavior is the one usually studied in theoretical com�
puter science models� that is� the behavior of a transition system 
the lan�
guage it accepts� its associated sequential function� etc�� when all inputs are
correctly interpreted and all state transitions are performed correctly with a
negligible duration�

The bridge between the idealized and real world is built by introducing
noise� with some probability the system takes a wrong transition� This
noise can result from the physical properties of sensors� from limitations
of classi�cation algorithms� from unreliability of computational hardware or
from insu
cient speed of the computer with respect to the arrival rate of
input symbols� Whatever the physical reason of the noise is� and no matter
what its logical form is 
omission� misclassi�cation or duplication of symbols�
in our model it is assumed to be reducible to a bound � on the probability of
taking the wrong transition�

The noise transforms the original deterministic computational system into
a probabilistic one over the same set of states� The deviation of the noisy
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system from the original �normative� behavior is de�ned as the expected
probability that these two systems are in di�erent states given the same
input sequence of external events�

The class of systems we consider are �nite�state automata and our main
result is in establishing the relation between the properties of the original
automaton and its expected asymptotic behavior in the presence of noise�
It turns out that some classes of automata are less sensitive to noise than
others� These results are �nally applied to the case where the speeds of the
automaton and the environment are given in quantitative real time terms�

The signi�cance of this work is in establishing a theoretical basis for the
performance analysis of embedded systems and in linking together concepts
and notions from automata theory� Markov processes and the theory of semi�
groups�

It should be noted that unlike other works on fault�tolerant computa�
tions� ours is not concerned with the design of computer architectures that
minimize the e�ect of noise on arbitrary computations� In contrast� we try to
classify computational tasks according to their inherent immunity to noise�
and in particular according to whether they can be performed in a satisfac�
tory manner in spite of temporary errors during execution�

The paper is organized as follows� in section � we de�ne formally the noisy
version of an automaton and the distance between the ideal and the noisy
versions� In section �� we calculate an upper bound on this distance for a class
of automata whose associated transformation semigroup contains a reset� In
section � we give a lower�bound on this distance for the complementary class
of automata� In section � we apply these results to real�time and in section
� we conclude and mention brie�y some relations with past and future work�

� Ideal and Noisy Automata

��� The E�ect of Noise

The essential behavior of a deterministic �nite�state automaton 
see ��� for
standard de�nitions and notations� is the mapping of external sequences
into internal states� When� for some reason� the automaton fails to take the
correct transition 
e�g�� the current input arrived before the previous one is
completely processed� we are at the risk that the intended relation between
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the input history and the internal state is no longer maintained� When we
have a bound on the probability of such a fault� the situation can be viewed
as if we work with a noisy version of our intended automaton which is just a
probabilistic automaton 
in the sense of ��� and ����� This notion is formalized
below�

De�nition � �Noisy Version� Let A � 
�� Q� �� be a deterministic au�

tomaton and let �� � � � � � be a probability� An ��noisy version of A
is any probabilistic automaton A� � 
�� Q� ��� where �� is a time�invariant

probabilistic transition function such that for every state q and input � sat�

isfying �
q� �� � q� we have Prf��
q� �� � q�g � � � � and consequently�P
q�� ��q� Prf��
q� �� � q��g � ��

An example of an automaton and one of its ��noisy versions is depicted in
�gure ���a� This particular pattern of noise is associated with a probability �
of omitting an input symbol and thus not performing a transition� Some in�
sight concerning the nature of this perturbation can be gained by employing
the alternative description via state�vector and transition�matrix terminol�
ogy� The current state can be represented by a probabilistic vector �v where
vi is the probability that the current state is qi� and every input letter �
in a stochastic automaton can be associated with a probabilistic transition
matrix M� such that M�

ij � Prf�
qi� �� � qjg� In the deterministic case
we are restricted to � � � vectors and matrices� The matrices for A and A�

appear in �gure ���b�

� Figure �� �

��� The Di�erence Between Behaviors

A useful conceptual tool for describing the joint behavior of two automata
reacting to the same input is their direct product�

De�nition � �Product of Probabilistic Automata� LetA� � 
�� Q�� ���
and A� � 
�� Q�� ��� be two probabilistic automata� Their cartesian product

A��A� is a probabilistic automaton A � 
�� Q� �� where Q � Q��Q� and �
is a probabilistic transition function such that for every 
q�� q��� 
p�� p�� � Q
and � � �

Prf�

q�� q��� �� � 
p�� p��g � Prf��
q�� �� � p�g � Prf��
q�� �� � p�g
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In the special case of deterministic automata this de�nition reduces to the
usual direct product� The product of A and A� from �gure �� appears in
�gure ���a� In terms of matrices this is equivalent to the following construc�
tion� for every � � �� let M�

� and M�
� be the corresponding matrices in A�

and A� respectively� The matrix associated with � in A� �A� is de�ned as
M� � M�

� �M�
� where � denotes the Kronecker product of the two matrices�

The resulting matrices for A� �A in our example appear in �gure ���b�

� Figure �� �

Now we have a probabilistic automaton where all the trajectories ending
in �diagonal� states� i�e�� states in f
q� q� � q � Qg� represent a good behav�
ior 
A� agrees with A� while other compound states indicate disagreement
between the two� In order to quantify this di�erence we associate with each
individual sequence w � �� a distance measure �w de�ned as

�w
A�A
�� � Prf�
q�� w� 	� ��
q�� w�g 
��

which indicates the probability of reaching a non�diagonal con�guration after
reading w starting at an initial state q�� Next we consider� for every k�
a probability distribution �k on all the input sequences of length k� This
induces an expected distance measure �k de�ned as�

�k
A�A�� �
X
w��k

�k
w� � �w
A�A
�� 
��

indicating the expected probability of error after reading k input symbols�
Finally we consider f�kg

�
k�� as a sequence of probability distributions on

f�kg�k��� The asymptotic expected distance between A and A� is

�
A�A�� � lim
k��

�k
A�A�� 
��

It is reasonable to assume additional restrictions on f�kg� such as

�k
w� �
X
���

�k��
w��

In the rest of this paper we will assume �k as induced by a Bernoulli process�
for every position in the sequence� the probability of a letter �i � � is a �xed
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probability pi� We will denote minfpig by �p� Following this assumption�
the expected behavior of A � A� can be modeled as an ordinary input�less
Markov chain 
���� where the labels on the transitions are replaced by their
corresponding probabilities� In matrix terms we replace the input�dependent
matrices M�� �M�� � 	 	 	 �M�m by a common averaged matrix

M �
mX
i��

pi �M
�i

representing the expected transition probabilities� In our example� by as�
suming probabilities p for a and � � p for b� the probabilistic automaton of
�gure �� becomes the chain of �gure ���

� Figure �� �

The distance between A and A�� now becomes�

�
A�A�� � lim sup
k��

�v� �M
k � �u 
��

where �v� is a row vector indicating the initial state and �u is a � � � vector
with �	s in the entries corresponding to non�diagonal states in A� �A� The
limit exists if M is aperiodic 
which is the case for most ��noisy versions��
The question we answer in this paper is the following� What is the relation

between the structure of A and �
A�A���

� Robustness of Synchronizing Automata

The essential observation underlying our results is the following� Suppose
that for two states q� q� � Q there exists a sequence w � �� that merges
them� i�e�� �
q� w� � �
q�� w� � q��� Then� whenever we are in an error
con�guration 
q� q�� or 
q�� q� in A � A�� an application of w will bring us
back to a correct diagonal con�guration 
q��� q���� and the e�ect of the past
error will be cancelled� If we had such a merging sequence for every pair of
states then we could recover from every error with a high probability�

De�nition � �Synchronizing Automata� An automaton is synchroniz�

ing if there exists a sequence w � �� and a state q� such that for all q � Q�
�
q� w� � q��
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We call such sequence a reset � some authors 
e�g�� ���� use the term
synchronizing sequence� or synchronizer� Note that if w is a reset then so is
wu for every u � ��� By 

A� we denote the length of the minimal reset in
A if there exists one or 
 otherwise� It can be shown that 

A� �
 implies


A� � jQj��

Claim � An automaton is synchronizing if and only if every pair of states

has a merging sequence�

Proof� One direction is obvious by the de�nition of resets� The other
can be proved inductively based on the following argument� Suppose w
merges q� and q� but not necessarily q�� that is� �
q�� w� � �
q�� w� � q
and �
q�� w� � q�� But q and q� have a merging sequence w� so �
q�� ww�� �
�
q�� ww�� � �
q�� ww��� Thus� if any pair of states has a merging sequence
we can construct a global reset�

De�nition 	 �Reset Probability� For every k � � we let R
k� denote the
probability that w � �k is a reset� Obviously if A is reset�free then R
k� � �
for every k�

Claim � �Probability of Resets� If A is synchronizing then

�� R


A�� � �p��A	�

�� Moreover� limk��R
k� � ��

Proof�

�� Trivial� follows from the existence of a reset induced by a sequence of
length 

A��

�� We take the transformation semigroup 
Q�S� �� generated by � and
convert it into an automaton 
�� S� �� with �
s� �� � s � �� as is done
in the proof of Cayley theorem� We replace the ��labeling of the edges
by their corresponding probabilities and get a Markov chain over the
space of transformations� The set of resets� which is the minimal right
ideal of S 
see �������� is an absorbing subset and its probability goes
to one�
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Unfortunately we cannot make use of the asymptotic convergence of S to
resets because as jwj grows� the probability that �
q� w� � ��
q� w� decreases�
In fact we have a trade�o� between an increasing probability for a reset in A
and a decreasing probability of an equivalent error�free behavior in A�� Our
main result is�

Theorem � �Robustness of Synchronizing Automata� LetA be a syn�

chronizing automaton with n states and let A� be an ��noisy version of A�
Then� for any k � ��

�
A�A�� �
� � �

�� � �R
k��

��

where � � 
�� ��k� By letting k � 

A� we obtain

�
A�A�� �
�� 
�� ����A	

�� 
�� ����A	 � �p��A	
�� ����A	

��

Proof� We partition the state�space of A � A� into two sets� the �good�
diagonal pairs G� and the �bad� error states B� We consider the transition
probabilities betweenG and B after reading k symbols� for some k� k � 

A��
The probability of staying in a diagonal state is at least the probability of
having k non�noisy transitions while the probability of returning from B to
G is the latter multiplied by the probability of a reset in A� Thus for every
t�

Pt�k
G� � 
�� ��k
Pt
G� �R
k�
� � Pt
G��� 
��

where Pt
G� denotes the probability of being at some element of G after
reading t symbols� The result follows from the well�known fact that if a
positive sequence fxkg�k�� satis�es xn�k � 
xk � �� � � 
 � �� then

lim inf
n��

xn �
�

� � 


Corollary 	 For every synchronizing automaton A

lim
���

�
A�A�� � � 
��
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The signi�cance of this result is in showing that the �global� accuracy of
computations with resets can always be improved by decreasing the �local�
noise� This means that computational tasks that fall into this category can be
made more and more reliable by improving the components realizing them�
e�g� by using redundant sensors� faster processors� etc� In the next section
we will see that in other cases the presence of a local noise� no matter how
small� causes a large global deviation from the correct behavior�

� Non�Robustness of Reset�Free Automata

After establishing an upper�bound on the distance for synchronizing au�
tomata� we would like to set a lower�bound for the complementary class of
reset�free automata� In the special case of permutation automata� i�e�� those
in which all the input letters induce permutations� we have the following
lower�bound�

Theorem 
 �Non�Robustness of Permutation Automata� Let A be any

n�state permutation automaton 
n � ��� Then

�� For any noisy version A� such that for every q� �� Prf��
q� �� 	� �
q� ��g �
� we have

�
A�A�� �
�

�

��

�� There exist an ��noisy version A� such that

�
A�A�� �
�n � �

�n

���

Proof�

�� The proof is similar to the previous one� This time we note that the
probability of a transition fromG to B is at least � while the probability
of moving back from B to G is at most � 
because of the lack of any
merging sequence� errors can only be corrected by subsequent errors��
Thus we have a symmetric chain that converges to ����
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�� We use the same argument but consider a noise pattern such that every
letter that induces a permutation in A� induces in A� with probability
�� a permutation completely di�erent from the original one� Thus� the
probability of moving from G to B is the same but the probability of
correcting an error decreases from � to ��n�

If we look at n asymptotically we see that for large permutation automata
there exists noise patterns that can make them being wrong most of the time�

Our last result concerns the whole class of reset�free automata� The
analysis here is a bit more complicated because the set B of non�diagonal
states divides into two subsets� W containing all the pairs which cannot
be merged by any sequence� and U containing those that are correctable�
The synchronizing case corresponds to W � �� while the permutation case
corresponds to U � �� We will denote by R�
k� the probability over �k of
those sequences leading from U to G�

Theorem � �Non�Robustness of Reset�Free Automata� For every reset�

free automaton A with n states there exists an ��noisy version A� such that

lim
���

�
A�A�� �
�

� � �

p


���

Proof� Our analysis is based on the following observations� �� There exist
at least two states q� q� that cannot be merged and since the automaton is
strongly�connected�� there exists at least one � � � and q� � Q such that
�
q�� �� � q� Then we de�ne a noisy version in which ��
q�� �� � q� with
probability �� This means that from 
q�� q�� � G we can go to 
q� q�� � W
with a probability not smaller than ��p� �� The probability of leaving W in
one step is smaller then � 
as in the permutation case�� �� The probability
of going from G to W in k steps is at least the probability of getting from
every 
q� q� � G to 
q�� q�� in k � � steps multiplied by ��p� From all this we
obtain�

Pt�k
W � � 
� � ��kPt
W � � ��pPt
G��pk��
� � ��k�� 
���

and
Pt�k
G� � 
�� ��k�Pt
G� �R�
k�Pt
U�� 
���

�When considering asymptotic probabilistic behavior we should only care about

strongly	connected components�
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Summing up 
��� and 
��� and using the fact that Pt
U� � ��Pt
G��Pt
W ��
we obtain an equation that we treat like 
�� in order to show that Pt
U� is
negligible when � is small� Thus we can replace Pt
G� by �� Pt
W � in 
����
let k � � and obtain the result�

� The Price of Being Slow

In this section we apply the previous results to real�time situations� In order
to do this we extend the model by using notions of timed sequences and
timed automata 
see ����� A timed sequence is w � 
s�� t��
s�� t�� 	 	 	 where
for every i� si � �� ti � IR� t� � � and ti � ti��� Intuitively each ti denotes
the �time�stamp� of the arrival of si�

A timed automaton is an automaton such that each of its transitions is
augmented with a number d indicating the time that must elapse between
the arrival of the input and the execution of the transition� Several results
have been proved concerning the timed sequences that can be accepted or
generated by various types of timed automata 
the version described here is
a simpli�ed one�� We are concerned here with the opposite problem� given a
set of timed sequences that does not necessarily obey the timing constraints
� what can be said about the expected behavior of the automaton 

In order to be able to speak quantitatively we make the following assump�
tions�

�� For every timed sequence and for every i � �� xi � ti�� � ti is an
exponential random variable with a parameter 
� Thus the mean time
between two arrivals of input is �

�
�

�� Similarily for every run and for every i � � the time yi between the
arrival of the ith input and the execution of the ith transition is also dis�
tributed exponentially with a parameter � � 
� so the mean duration
of a transition is �

�
�

We also assume that any input arriving before the previous transition
has been executed is lost� The probability of missing a symbol si is the
probability of xi � yi which is given byZ �

x��

Z �

y�x

e��x�e��ydxdy �

Z �

x��

e��xe��xdx �





� �

���
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Thus� such a real�time situation converts the ideal automaton 
in�nitely
faster than the environment� into an ��noisy version with � � �

���
� where in

probability � the automaton misses an input symbol and makes a self�loop
instead 
as in the example of �gure ���� So all our previous results can be
transferred to this situation� for synchronizing automata� by increasing �

that is� taking a faster automaton� we can decrease the error as much as we
want� For reset�free automata� no matter how fast they operate� the errors
eventually accumulate and their behavior becomes random with respect to
the intended one�

� Discussion

��� Past

In this paper we have built a model that captures an intuitive property of
computations in the presence of noise� the longer is the past history upon
which a computation depends� the larger is the probability of error� The
essence of the model is in considering a class of probability distributions on
�� such that the notion of expected distance between behaviors becomes
meaningful� This idea� inspired by an old paper on language identi�cation

������ is in contrast with traditional treatment of stochastic automata in
computer science 
see ���� ����� where such automata are used as acceptors of
individual sequences whose probability of reaching a terminal state is above
some threshold� Observations in the same spirit as ours have been made in
���� in the context of certain codes which can �self�synchronize� in high prob�
ability� This notion of expected correctness relative to some probability on
the input also underlies the pac�learnability model 
����� and we believe that
investigating its properties can contribute to the general shift from worst�case
to average�case analysis of computational phenomena�

The notion of comparing the ideal and the noisy behavior appears already
in Von Neumann	s seminal paper 
������ In that paper a similar question
of obtaining global correctness in spite of local noise is discussed and the
solution of redundancy is devised� It is interesting to note that Von Neumann
considered local!global relations in space� i�e�� some logical gates can be faulty
but the output of the whole circuit is correct� while we consider the same
relationship with respect to time� Another association which comes in mind
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is with Dijkstra	s notion of self�stabilizing system 
���� where the system can
go from any incorrect con�guration into a correct one after �nitely�many
steps�

��� Future

We will mention brie�y several research direction that can follow this work�

� It might be interesting to investigate speci�c classes of automata that
arise in the modeling of realistic situations� for example� automata
whose state�space is embedded in a metric space and the transitions
have some arithmetical or geometrical interpretation� In such a case the
distance between the behaviors will be more re�ned than the distance
we used in this paper which was induced by the discrete metric on the
state�space�

� The real�timemodel introduced in the previous section can be extended
to include a bounded bu�er � in this case an input symbol is lost only if
it arrives when the bu�er is full� Such a model will require alternative
de�nitions of distance that takes into account the di�erence between
logical 
i� and real 
ti� time� For example� the automaton can be
in the correct state with respect to the sequence it has read so far�
but in the wrong state if we consider additional symbols that have
already arrived and wait in the bu�er� A reasonable measure would
be the average length of a real�time interval in which the ideal and
the timed automaton agree� Within such a model� trade�o�s between
speed� accuracy and bu�er size could be computed�

� In our model we have only considered the task of mapping classes of
input histories into internal states� This model can be extended into
a full control model by specifying the dynamics of the environment�
the structure of observations 
the relation between the states of the
environment and the input of the program�� and the e�ect of the au�
tomaton	s output on the environment� For a discrete environment� such
an extension will add a robustness dimension to recent models 
�����
dealing with the control of discrete�event dynamical systems� If on
the other hand we consider automata interacting with a continuously
changing environment we come into the realm of hybrid systems 
����
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having much more intricate relationships between time� change� obser�
vation and noise� The modeling of such systems requires a broader
synthesis of computational and control�theoretic models�
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Figure �� �a� The product A��A� �b� A matrix representation ofA��A� The
indices of the rows and columns correspond to the pairs 
�� ��� 
�� ��� 
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Figure �� �a� The Markov chain associated with A� � A� �b� A matrix
representation�
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