

On the Effects of Noise and Speed on

Computations
Bernard Delyon Oded Maler!
INRIA /IRISA VERIMAG
Campus de Beaulieu B.P. 53x
35042 Rennes 38041 Grenoble
France France

E-mail: maler@imag.fr

1993

*To appear in Theoretical Computer Science.
TThis work was done while the author was at INRIA /IRISA, Campus de Beaulieu, 35042,
Rennes, France

Abstract

In this paper we propose a model that captures the influence of
noise and speed on the correct behavior of a computing device situ-
ated in a dynamic environment. Within this model we analyze the
relation between structural properties of automata and their immu-
nity to noise. We prove upper- and lower-bounds on the effect of
noise for various classes of finite automata. In addition we show sim-
ilar relatinoships between relative speeds of the automaton and the
environment and the accuracy of computation. Our model, combin-
ing basic notions from algebraic automata theory and the theory of
stochastic processes, can serve as a starting point for a rigorous theory
of computational systems embedded in the real world.

1 Introduction

Traditional computer science models try to abstract away as many real-world
features as possible. The external world appears in these models only after
being converted into a time-less sequence of symbols written on the input
tape of a Turing machine. Even if we consider sequential machines that are
constrained to process the input in the same order as it arrives, still some
simplifying assumption remain, and in particular:

1. The input symbols are immediately and precisely recognized.

2. The durations of the automaton transitions are negligible compared to
the arrival rate of input symbols.

When we consider “real” computers embedded in a physical environment,
as in the case of robots, controllers or signal processors, this idealization is
inadequate. External events do not appear with “labels” taken from the
machine’s alphabet, but are rather computed approximately from noisy data.
Moreover, they are not constrained to occur when the machine is “ready” to
process them.

The goal of this paper is to build a framework for comparing the “ideal”
behavior of a discrete computational device with its behavior in “realistic”
situations. The ideal behavior is the one usually studied in theoretical com-
puter science models, that is, the behavior of a transition system (the lan-
guage it accepts, its associated sequential function, etc.) when all inputs are
correctly interpreted and all state transitions are performed correctly with a
negligible duration.

The bridge between the idealized and real world is built by introducing
noise: with some probability the system takes a wrong transition. This
noise can result from the physical properties of sensors, from limitations
of classification algorithms, from unreliability of computational hardware or
from insufficient speed of the computer with respect to the arrival rate of
input symbols. Whatever the physical reason of the noise is, and no matter
what its logical form is (omission, misclassification or duplication of symbols)
in our model it is assumed to be reducible to a bound ¢ on the probability of
taking the wrong transition.

The noise transforms the original deterministic computational system into
a probabilistic one over the same set of states. The deviation of the noisy

system from the original “normative” behavior is defined as the expected
probability that these two systems are in different states given the same
input sequence of external events.

The class of systems we consider are finite-state automata and our main
result is in establishing the relation between the properties of the original
automaton and its expected asymptotic behavior in the presence of noise.
It turns out that some classes of automata are less sensitive to noise than
others. These results are finally applied to the case where the speeds of the
automaton and the environment are given in quantitative real time terms.

The significance of this work is in establishing a theoretical basis for the
performance analysis of embedded systems and in linking together concepts
and notions from automata theory, Markov processes and the theory of semi-
groups.

It should be noted that unlike other works on fault-tolerant computa-
tions, ours is not concerned with the design of computer architectures that
minimize the effect of noise on arbitrary computations. In contrast, we try to
classify computational tasks according to their inherent immunity to noise,
and in particular according to whether they can be performed in a satisfac-
tory manner in spite of temporary errors during execution.

The paper is organized as follows: in section 2 we define formally the noisy
version of an automaton and the distance between the ideal and the noisy
versions. In section 3, we calculate an upper bound on this distance for a class
of automata whose associated transformation semigroup contains a reset. In
section 4 we give a lower-bound on this distance for the complementary class
of automata. In section 5 we apply these results to real-time and in section
6 we conclude and mention briefly some relations with past and future work.

2 Ideal and Noisy Automata

2.1 The Effect of Noise

The essential behavior of a deterministic finite-state automaton (see [5] for
standard definitions and notations) is the mapping of external sequences
into internal states. When, for some reason, the automaton fails to take the
correct transition (e.g., the current input arrived before the previous one is
completely processed) we are at the risk that the intended relation between

the input history and the internal state is no longer maintained. When we
have a bound on the probability of such a fault, the situation can be viewed
as if we work with a noisy version of our intended automaton which is just a
probabilistic automaton (in the sense of [9] and [10]. This notion is formalized
below.

Definition 1 (Noisy Version) Let A = (X,Q,0) be a deterministic au-
tomaton and let ¢, 0 < ¢ < 1 be a probability. An e-noisy version of A
is any probabilistic automaton A" = (X,Q, ") where &' is a time-invariant
probabilistic transition function such that for every state q and input o sat-
isfying 6(q,0) = ¢ we have Pr{é'(q,0) = ¢'} > 1 — € and consequently,
Zq”;ﬁq’ Pr{5/(Q7U) = q”} <e

An example of an automaton and one of its e-noisy versions is depicted in
figure ?7-a. This particular pattern of noise is associated with a probability e
of omitting an input symbol and thus not performing a transition. Some in-
sight concerning the nature of this perturbation can be gained by employing
the alternative description via state-vector and transition-matrix terminol-
ogy. The current state can be represented by a probabilistic vector v where
v; is the probability that the current state is ¢;, and every input letter o
in a stochastic automaton can be associated with a probabilistic transition
matrix M7 such that M7 = Pr{é(¢;,o) = ¢;}. In the deterministic case
we are restricted to 0 — 1 vectors and matrices. The matrices for A and A’
appear in figure ?7-b.

< Figure ?7 >

2.2 The Difference Between Behaviors

A useful conceptual tool for describing the joint behavior of two automata
reacting to the same input is their direct product.

Definition 2 (Product of Probabilistic Automata) Let 4, = (X, Q1,61)
and Ay = (X, Q2,62) be two probabilistic automata. Their cartesian product
Ay X Ay is a probabilistic automaton A = (X,Q,6) where Q = Q1 X Qg and 6
is a probabilistic transition function such that for every (q1,q2), (p1,p2) € Q
and o € ¥

Pri{é((q1,92),0) = (p1,p2)} = Pr{éi(qu,0) = p1} - Prids(qz,0) = p2}

In the special case of deterministic automata this definition reduces to the
usual direct product. The product of A4 and A’ from figure ?? appears in
figure ?7-a. In terms of matrices this is equivalent to the following construc-
tion: for every o € X, let M7 and MJ be the corresponding matrices in A4,
and A, respectively. The matrix associated with o in A; x Aj is defined as
M? = M7 @ M3 where @ denotes the Kronecker product of the two matrices.
The resulting matrices for A" x A in our example appear in figure ??-b.

< Figure ?7 >

Now we have a probabilistic automaton where all the trajectories ending
in “diagonal” states, i.e., states in {(¢,q) : ¢ € Q}, represent a good behav-
ior (A’ agrees with A) while other compound states indicate disagreement
between the two. In order to quantify this difference we associate with each
individual sequence w € ¥* a distance measure p,, defined as

pu(A, A') = Pri{é(qo,w) # &'(go,w)} (1)

which indicates the probability of reaching a non-diagonal configuration after
reading w starting at an initial state go. Next we consider, for every k,
a probability distribution pj on all the input sequences of length k. This
induces an expected distance measure p* defined as:

FAA) = Y0 (w) - pu (A A) (2)

weDk

indicating the expected probability of error after reading &k input symbols.
Finally we consider {p}32, as a sequence of probability distributions on
{¥k}2 . The asymptotic expected distance between A and A’ is

p(A A = lim (A A) 3)
It is reasonable to assume additional restrictions on {py }, such as

(W) =Y i (wo)

oENL

In the rest of this paper we will assume py as induced by a Bernoulli process:
for every position in the sequence, the probability of a letter o; € ¥ is a fixed

probability p;. We will denote min{p;} by p. Following this assumption,
the expected behavior of A x A’ can be modeled as an ordinary input-less
Markov chain ([6]) where the labels on the transitions are replaced by their
corresponding probabilities. In matrix terms we replace the input-dependent

matrices M7, M?2_ ..., M?" by a common averaged matrix
m
M=) p-M"
=1

representing the expected transition probabilities. In our example, by as-
suming probabilities p for ¢ and 1 — p for b, the probabilistic automaton of
figure ?? becomes the chain of figure ?7?.

< Figure ?7 >
The distance between A and A’, now becomes:

p(A, A') = limsupvy - M* - @ (4)

k—oo
where vy is a row vector indicating the initial state and w is a 0 — 1 vector
with 1’s in the entries corresponding to non-diagonal states in A’ x A. The
limit exists if M is aperiodic (which is the case for most e-noisy versions).

The question we answer in this paper is the following: What is the relation
between the structure of A and p(A, A')?

3 Robustness of Synchronizing Automata

The essential observation underlying our results is the following: Suppose
that for two states ¢,¢’ €) there exists a sequence w € X7 that merges
them, i.e., 6(¢,w) = 6(¢',w) = ¢”. Then, whenever we are in an error
configuration (¢,¢’) or (¢’,¢) in A x A’, an application of w will bring us
back to a correct diagonal configuration (¢”,¢"), and the effect of the past
error will be cancelled. If we had such a merging sequence for every pair of
states then we could recover from every error with a high probability.

Definition 3 (Synchronizing Automata) An automaton is synchroniz-
ing if there exists a sequence w € ¥* and a state ¢' such that for all ¢ € @Q,

o(q,w) =4¢'.

We call such sequence a reset — some authors (e.g., [2]) use the term
synchronizing sequence, or synchronizer. Note that if w is a reset then so is
wu for every u € ¥*. By ((A) we denote the length of the minimal reset in
A if there exists one or 0o otherwise. It can be shown that ((A) < oo implies

((A) < QF.

Claim 1 An automaton is synchronizing if and only if every pair of states
has a merging sequence.

Proof: One direction is obvious by the definition of resets. The other
can be proved inductively based on the following argument: Suppose w
merges ¢; and ¢z but not necessarily ¢s, that is, 6(¢1,w) = 6(¢g2,w) = ¢
and 6(¢s,w) = ¢'. But ¢ and ¢’ have a merging sequence w’ so (¢, ww') =
6(q2, ww') = 6(gs, ww’). Thus, if any pair of states has a merging sequence
we can construct a global reset.]

Definition 4 (Reset Probability) For every k > 0 we let R(k) denote the
probability that w € ¥* is a reset. Obviously if A is reset-free then R(k) = 0
for every k.

Claim 2 (Probability of Resets) If A is synchronizing then
1. R(U(A)) > ptA).
2. Moreover, limg_... R(k) = 1.

Proof:

1. Trivial, follows from the existence of a reset induced by a sequence of

length ((.A).

2. We take the transformation semigroup (@, S,-) generated by ¥ and
convert it into an automaton (¥, .5,v) with v(s,0) = s- 0, as is done
in the proof of Cayley theorem. We replace the Y-labeling of the edges
by their corresponding probabilities and get a Markov chain over the
space of transformations. The set of resets, which is the minimal right
ideal of S' (see [2],[7]) is an absorbing subset and its probability goes
to one. |

Unfortunately we cannot make use of the asymptotic convergence of S to
resets because as |w| grows, the probability that 6(¢,w) = 6'(¢,w) decreases.
In fact we have a trade-off between an increasing probability for a reset in A
and a decreasing probability of an equivalent error-free behavior in A’. Our
main result is:

Theorem 3 (Robustness of Synchronizing Automata) Let A be a syn
chronizing automaton with n states and let A" be an e-noisy version of A.
Then, for any k > 0,

! 1_77
pAA) < T (5)

where 1 = (1 — ¢)k. By letting k = ((A) we obtain

Ay <)
PSS = T2 (1= ofA) 1 pHA (1 — o)

Proof: We partition the state-space of A x A’ into two sets, the “good”
diagonal pairs (¢, and the “bad” error states B. We consider the transition
probabilities between G and B after reading k& symbols, for some k, k > ((A).
The probability of staying in a diagonal state is at least the probability of
having £ non-noisy transitions while the probability of returning from B to
(7 is the latter multiplied by the probability of a reset in A. Thus for every
t?

Poi(G) = (1= " (P(G) + R(K)(1 = P(G))) (7)
where P;((7) denotes the probability of being at some element of ' after
reading ¢ symbols. The result follows from the well-known fact that if a
positive sequence {xy}72, satisfies @, 41 > axr + 5, 0 < o < 1, then

p

liminfz, >
n—0o0

—«
|

Corollary 4 For every synchronizing automaton A
limp(A, A) =0 (8)

e—0

The significance of this result is in showing that the “global” accuracy of
computations with resets can always be improved by decreasing the “local”
noise. This means that computational tasks that fall into this category can be
made more and more reliable by improving the components realizing them,
e.g, by using redundant sensors, faster processors, etc. In the next section
we will see that in other cases the presence of a local noise, no matter how
small, causes a large global deviation from the correct behavior.

4 Non-Robustness of Reset-Free Automata

After establishing an upper-bound on the distance for synchronizing au-
tomata, we would like to set a lower-bound for the complementary class of
reset-free automata. In the special case of permutation automata, i.e., those
in which all the input letters induce permutations, we have the following
lower-bound:

Theorem 5 (Non-Robustness of Permutation Automata) Let A be any
n-state permutation automaton (n > 1). Then

1. For any noisy version A" such that for every q,o, Pr{é'(¢q,0) # 6(¢q,0)} >
€ we have

p(AA) = (9)

[N

2. There exist an e-noisy version A’ such that

2n — 1
2n

p(AA) = (10)

Proof:

1. The proof is similar to the previous one. This time we note that the
probability of a transition from (' to B is at least € while the probability
of moving back from B to (i is at most € (because of the lack of any
merging sequence, errors can only be corrected by subsequent errors).
Thus we have a symmetric chain that converges to 1/2.

2. We use the same argument but consider a noise pattern such that every
letter that induces a permutation in A, induces in A" with probability
€, a permutation completely different from the original one. Thus, the
probability of moving from ' to B is the same but the probability of
correcting an error decreases from ¢ to ¢/n.]

It we look at n asymptotically we see that for large permutation automata
there exists noise patterns that can make them being wrong most of the time.

Our last result concerns the whole class of reset-free automata. The
analysis here is a bit more complicated because the set B of non-diagonal
states divides into two subsets: W containing all the pairs which cannot
be merged by any sequence, and U containing those that are correctable.
The synchronizing case corresponds to W = (), while the permutation case
corresponds to U = (). We will denote by R'(k) the probability over ¥* of
those sequences leading from U to G.

Theorem 6 (Non-Robustness of Reset-Free Automata) For every reset-
free automaton A with n states there exists an e¢-noisy version A" such that

1
li N >
lim p(A, A') > o

(11)

SN

Proof: Our analysis is based on the following observations: 1) There exist
at least two states ¢, ¢’ that cannot be merged and since the automaton is
strongly-connected,! there exists at least one ¢ € ¥ and ¢* € @ such that
6(¢*,0) = q. Then we define a noisy version in which §'(¢*,0) = ¢’ with
probability e. This means that from (¢*,¢*) € G we can go to (¢,¢') € W
with a probability not smaller than ep. 2) The probability of leaving W in
one step is smaller then e (as in the permutation case). 3) The probability
of going from G to W in k steps is at least the probability of getting from
every (¢,q) € G to (¢*,¢*) in k — 1 steps multiplied by ep. From all this we
obtain:

Pryp(W) 2 (1 =€) P(W) + epP(G)p" (1 — €)' (12)

and

Prii(G) = (1=) [P(G) + R (k) P(U)] (13)

'When considering asymptotic probabilistic behavior we should only care about
strongly-connected components.

Summing up (12) and (13) and using the fact that P,(U) = 1= P,(G)— P,(W),
we obtain an equation that we treat like (7) in order to show that P(U) is
negligible when e is small. Thus we can replace P,(G) by 1 — P,(W) in (12),
let £ = 1 and obtain the result. |

5 The Price of Being Slow

In this section we apply the previous results to real-time situations. In order
to do this we extend the model by using notions of timed sequences and
timed automata (see [1]). A timed sequence is w = (s1,%1)(82,%2)... where
for every ¢, s; € ¥, t; € IR, tg = 0 and ¢; < t;41. Intuitively each ¢; denotes
the “time-stamp” of the arrival of s;.

A timed automaton is an automaton such that each of its transitions is
augmented with a number d indicating the time that must elapse between
the arrival of the input and the execution of the transition. Several results
have been proved concerning the timed sequences that can be accepted or
generated by various types of timed automata (the version described here is
a simplified one). We are concerned here with the opposite problem: given a
set of timed sequences that does not necessarily obey the timing constraints
— what can be said about the expected behavior of the automaton?

In order to be able to speak quantitatively we make the following assump-
tions:

1. For every timed sequence and for every ¢ > 0, x; = #;31 — ¢; is an
exponential random variable with a parameter o. Thus the mean time
between two arrivals of input is é

2. Similarily for every run and for every : > 0 the time y; between the
arrival of the ¢*" input and the execution of the :** transition is also dis-
tributed exponentially with a parameter § < «a, so the mean duration

1

of a transition is 3-

We also assume that any input arriving before the previous transition
has been executed is lost. The probability of missing a symbol s; is the
probability of #; < y; which is given by

o o —ax —By _ o —ax —fz _
e e dad —/ ae” e P dy =
/1’:0 /y:ac 6 Y =0 o+ 6

(14)

10

Thus, such a real-time situation converts the ideal automaton (infinitely
faster than the environment) into an e-noisy version with € = o where in
probability ¢ the automaton misses an input symbol and makes a self-loop
instead (as in the example of figure ??). So all our previous results can be
transferred to this situation: for synchronizing automata, by increasing /3
(that is, taking a faster automaton) we can decrease the error as much as we
want. For reset-free automata, no matter how fast they operate, the errors
eventually accumulate and their behavior becomes random with respect to
the intended one.

6 Discussion

6.1 Past

In this paper we have built a model that captures an intuitive property of
computations in the presence of noise: the longer is the past history upon
which a computation depends, the larger is the probability of error. The
essence of the model is in considering a class of probability distributions on
¥* such that the notion of expected distance between behaviors becomes
meaningful. This idea, inspired by an old paper on language identification
([13]), is in contrast with traditional treatment of stochastic automata in
computer science (see [9], [10]) where such automata are used as acceptors of
individual sequences whose probability of reaching a terminal state is above
some threshold. Observations in the same spirit as ours have been made in
[3], in the context of certain codes which can “self-synchronize” in high prob-
ability. This notion of expected correctness relative to some probability on
the input also underlies the PAC-learnability model ([12]) and we believe that
investigating its properties can contribute to the general shift from worst-case
to average-case analysis of computational phenomena.

The notion of comparing the ideal and the noisy behavior appears already
in Von Neumann’s seminal paper ([14]). In that paper a similar question
of obtaining global correctness in spite of local noise is discussed and the
solution of redundancy is devised. It is interesting to note that Von Neumann
considered local /global relations in space, i.e., some logical gates can be faulty
but the output of the whole circuit is correct, while we consider the same
relationship with respect to time. Another association which comes in mind

11

is with Dijkstra’s notion of self-stabilizing system ([4]) where the system can
go from any incorrect configuration into a correct one after finitely-many
steps.

6.2 Future

We will mention briefly several research direction that can follow this work.

o [t might be interesting to investigate specific classes of automata that
arise in the modeling of realistic situations, for example, automata
whose state-space is embedded in a metric space and the transitions
have some arithmetical or geometrical interpretation. In such a case the
distance between the behaviors will be more refined than the distance
we used in this paper which was induced by the discrete metric on the
state-space.

e The real-time model introduced in the previous section can be extended
to include a bounded buffer — in this case an input symbol is lost only if
it arrives when the buffer is full. Such a model will require alternative
definitions of distance that takes into account the difference between
logical (¢) and real (;) time. For example, the automaton can be
in the correct state with respect to the sequence it has read so far,
but in the wrong state if we consider additional symbols that have
already arrived and wait in the buffer. A reasonable measure would
be the average length of a real-time interval in which the ideal and
the timed automaton agree. Within such a model, trade-offs between
speed, accuracy and buffer size could be computed.

e In our model we have only considered the task of mapping classes of
input histories into internal states. This model can be extended into
a full control model by specifying the dynamics of the environment,
the structure of observations (the relation between the states of the
environment and the input of the program), and the effect of the au-
tomaton’s output on the environment. For a discrete environment, such
an extension will add a robustness dimension to recent models ([11])
dealing with the control of discrete-event dynamical systems. If on
the other hand we consider automata interacting with a continuously
changing environment we come into the realm of hybrid systems ([8])

12

having much more intricate relationships between time, change, obser-
vation and noise. The modeling of such systems requires a broader
synthesis of computational and control-theoretic models.

Acknowledgements

We would like to thank A. Benveniste, A. Juditsky, A. Pnueli and an anony-
mous referee for their attention and comments.

References

1]

R. Alur and D. Dill, The theory of timed automata, in: J. de Bakker,
C. Huizing, W. de Roever, and G. Rozenberg, eds., Proceedings of the
REX Workshop ”Real-Time: Theory in Practice “, Lect. Notes in Comp.
Sci., Vol. 600 (Springer, Berlin, 1992) 28-44.

J. Berstel and D. Perrin, Theory of Codes (Academic Press, New-York,
1985).

R.M. Capocelli, L.G. Gargano and U. Vaccaro, On the Characterization
of Statistically Synchronizable Variable-Length Codes, IEEE Trans. on
Information Theory, 34 (1988) 817-825.

E.W. Dijkstra, Self-stabilizing systems in spite of distributed control,
Comm. of the ACM 17 (1974) 643-644.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation (Addison-Wesley, Reading, MA, 1979).

J.G. Kemeny and J.L. Snell, Finite Markov Chains (Van Nostrand, New-
York, 1960).

G. Lallement, Semigroups and Combinatorial Applications (Wiley, New-
York, 1979).

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems,
in: J. de Bakker, C. Huizing, W. de Roever, and G. Rozenberg, eds.,
Proceedings of the REX Workshop "Real-Time: Theory in Practice”,
Lect. Notes in Comp. Sci., Vol. 600 (Springer, Berlin, 1992) 28-44.

13

[9]

[10]

[11]

[12]

[13]

[14]

A. Paz, Introduction to Probabilistic Automata (Academic Press, New-

York, 1970).

M.O. Rabin, Probabilistic automata, Information and Control 6 (1963)
230-245.

P.J.G. Ramadge and W.M. Wonham, The control of discrete event sys-
tems, Proc. of the IEEE 77 (1989) 81-98.

L.G. Valiant, A theory of the learnable, Comm. of the ACM 27 (1984)
1134-1142.

R.M. Wharton, Approximate language identification, Information and
Control 26 (1974) 236-255.

J. Von Neumann, Probabilistic logics and the synthesis of reliable or-
ganisms from unreliable components, in: C. Shannon and J. McCarthy,
eds., Automata Studies (Princeton University Press, Princeton, 1956)
205-228.

14

Figure 1: (a) A deterministic automaton A and one of its e-noisy versions
A'. (b) A matrix representation of A and A’

15

(a)
Me MP
0 € 0 1—c¢ 0 ¢ 0 1—c¢
€ 0 1 —ce¢ 0 0 ¢ 0 1—c¢
0 1 —c¢ 0 € 0 00 1
1 —ce¢ 0 € 0 0 00 1

Figure 2: (a) The product A'x A. (b) A matrix representation of A'x A. The
indices of the rows and columns correspond to the pairs (0,0),(0,1),(1,0) and

(1,1).

16

(1 —p)e

0 € 0 1—c¢

pe (L=ple p(1—¢) (1=p)(1—¢
0 pl—¢ 0 pe+ (1 —p)
pl—¢ 0 pe 1—p
(b)
Figure 3: (a) The Markov chain associated with A" x A. (b) A matrix

representation.

17

