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Abstract� In this paper we suggest numerical decision diagrams� a bdd

based data
structure for representing certain subsets of the Euclidean
space� namely those encountered in veri�cation of timed automata� Un

like other representation schemes� ndd�s are canonical and provide for
all the necessary operations needed in the veri�cation and synthesis of
timed automata� We report some preliminary experimental results�

� Introduction

Consider a transition system A � �Q� ��� where Q is the set of states and � � Q ��
�Q is a transition function� mapping each state q � Q into the set of q�successors
��q� � Q	

The problem of calculating or characterizing all the states reachable from a
subset F � Q of the state�space is one of the central problems in veri
cation	
The basic algorithm to calculate this set of states is the following�

F� �� F
for i � �� �� � � � � repeat

Fi�� �� Fi � ��Fi�
until Fi�� � Fi

where ��Fi� �
S
q�Fi

��q�	

Symbolic methods 
BCM����� 
McM��� have proved to be a very useful tool
in the analysis of large discrete transition systems composed of many interact�
ing components	 Instead of transforming the description of the system into an
enormous ��at� transition table over� IBm� on which reachability analysis is
practically impossible� these methods represent the transition relation as a for�
mula over the state variables	 Given such a formula T and a formula P describing
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� We use IB for f�� �g and IR for the non
negative reals�



the subset F of the state�space one can calculate a new formula P � characterizing
the set ��F � of immediate successors of F 	 Iterating the procedure until a 
xed�
point is reached yields a formula P � characterizing the set of all states reachable
from F 	 When � is expressed by a formula T �X�X ��� and F by a formula P �X�	
the above algorithm can be reformulated as�

P��X� �� P �X�
for i � �� �� � � � � repeat

Pi���X� �� Pi�X� � �Y �Pi�Y � 	 T �Y�X��
until Pi�X� � Pi���X�

The essence of any symbolic method is a data�structure for representing sets
�equivalently� the formulas characterizing them� on which the above operations
can be performed� in particular the forward �or backward� projection �line ���
boolean operations and equivalence testing	 Binary decision diagrams �bdd�s�

Bry��� are such a data�structure for boolean domains	 The calculation of the
forward projection is relatively�easy on large practical problems and the space
requirements for the representations are reasonable	 Given an ordering of the
variables� bdd�s also have the canonicity property� all equivalent formulas lead
to the same bdd and equivalence testing is thus trivial	

The veri
cation of timed automata introduces an additional ingredient� that
is� a set of continuous variables �clocks� ranging over non�countable domains	
The dynamics of the passage of time cannot be captured by a �next�state� tran�
sition relation� and symbolic methods are unavoidable as states and trajectories
cannot be enumerated	 The sets encountered in reachability analysis of timed
automata are thus certain subsets of IBm 
 IRd	 While the discrete part is stan�
dard� the subsets of IRd that need to be represented and manipulated are what
we call k�polyhedral sets� namely sets de
nable by a boolean combination of
basic inequalities of the form xi � c� xi � c� xi � xj � c and xi � xj � c� for
i� j � f�� � � � � dg and c � f�� � � � � kg	 Such polyhedral sets have been called regions
in 
AD���	

As long as these polyhedra are convex �i	e	� de
nable by conjunctions of basic
inequalities and their negations�� there exists a canonical representation� the dif�
ference bounds matrix �dbm� see for example 
Dil����	 This is a �d���
�d��� ma�
trix with entries taken from f�� � � � � kg denoting the constants in a non�redundant
set of inequalities whose intersection forms the region	 For this representation�
the intersection is done very easily via min and max operations	 The forward and
backward projections via elimination of the time quanti
er are also done very
e�ciently on dbm�s	 Things however get complicated when we have arbitrary
unions of convex polyhedra	 In this case there is no unique representation and
most tools represent such sets as a list of dbm�s	 The more �non�convex� the
set becomes� more matrices are required in order to represent it and this makes
equivalence testing and redundancy elimination di�cult	 Moreover� it is not clear
how this representation is to be combined with a symbolic representation of the
discrete part	

In this paper� we suggest an alternative bdd�based data�structure� Numerical
Decision Diagram �ndd� that has a caonicity property� given an ordering of the



clock variables� every k�polyhedral set has a unique minimal representation	 For
this data�structure we have boolean set�theoretic operations and equivalence
testing for free	� We present an algorithm to calculate forward and backward
projection in time for this data�structure and thus have all the ingredients needed
in order to do reachability analysis for timed automata	 Since this representation
is bdd�based it can be combined naturally with symbolic methods for the discrete
part of the system	

The rest of the paper is organized as follows	 In section � we present timed
automata and de
ne the components of their reachability analysis algorithms	 In
section � we de
ne ndd�s and their forward projection algorithm for the discrete�
time interpretation of timed automata	 In section � we show how a discretization
scheme� 
rst reported in 
GPV���� can be used to extend the scope of ndd�s to
the dense�time interpretation	 Finally we present some experimental results	

� Timed Automata

First� some notations	 We use bold�face letters to denote points in IRd	 Thus� v
stands for �v�� � � � � vd�� where vi � IR� for every i � �� � � � � d	 For points u�v � IRd�
we write u � v to denote that ui � vi� for every i � �� � � � � d	 A subset S � IRd

is called monotonic if v � S implies u � S� for every u � IRd satisfying u � v	

For the sake of �the few� readers not familiar with timed automata we start
with an informal illustration of the behavior of these creatures	 Consider the
timed automaton of 
gure �	 It has two states and two clocks z� and z�	 Suppose
it starts operating in the con
guration �q�� �� �� �the two last coordinates denote
the values of the clocks�	 Then it can stay at q� as long as the staying condition
for q� is true� namely z� � �	 Meanwhile the values of the clocks grow and the
set of all con
gurations reachable from �q�� �� �� without leaving q� is f�q�� t� t� �
� � t � �g	 However� after one second� the condition z� 
 � �the guard of the
transition from q� to q�� is satis
ed and the automaton can move to q� while
setting z� to �	 Hence the additional reachable con
gurations are f�q�� t� �� � � �
t � �g	 Having entered q� in one of these con
gurations� the automaton can
either stay there as long as z� � � 	 z� � � or can unconditionally move to
�q�� �� ��� etc	

z� � ��z� �� �

�z� �� z� �� �

q�

z� � �

q�

z� � ��
z� � �

Fig� �� A timed automaton�

� That is� for the same price as for bdd�s in general�



Since the state�space of timed automata contains real values� we have an
in
nite�state automaton and an enumerative approach� where all states and
transitions are enumerated� is impossible	 We will use notation such as Gqq� to
denote the set of values in the clock space that satisfy the condition ��guard��
for the transition from q to q� �� q	 Similarly� Gqq denotes the set of clock values
allowing the automaton to stay in q ��staying conditions��	 In timed automata
such sets are restricted to be k�polyhedral subsets of IRd� that is� the class of
sets obtainable by applying set�theoretic operations to half�spaces of the form
fv � vi � cg� fv � vi � cg� fv � vi � vj � cg or fv � vi � vj � cg for some integer
c � f�� � � � � kg� where k is some positive integer	� These sets constitute the 
nite
region graph 
AD��� whose properties underlie all analysis methods for timed
automata	

A function from IRd to itself is a reset function if it sets some of its arguments
to � and leaves the others intact	 We will use Rqq� to denote the reset function
associated with every pair of states �we take Rqq to be the identity function�	

We will make the following simplifying assumptions concerning the timed
automata that we consider� �� There is only one transition associated with every
pair of states	 �� The values of the clocks are bounded by k	 Hence the clock
space is 
�� k�d	 �� Gqq� is convex for every q� q� � Q� and �� Gqq is monotonic
for every q � Q	 The readers can convince themselves that it costs few states to
convert any timed automaton into one satisfying these properties	

We let K denote the interval 
�� k� in the dense�time interpretation or the
set f�� � � � � k � �g in the discrete�time interpretation	 For every z � IRd we use
z� t to denote z� t � � where � � ��� �� � � � � �� is a d�dimensional unit vector	

De�nition � �Timed Automaton�� A timed automaton is A � �Q�Z� �� such
that� Q is a discrete set� Z � Kd is the clock space �Q
 Z is the con�guration
space� and � � Q 
 Z �� �Q�Z is the transition relation� It is required that �
admits the following decomposition� For every q� q� � Q� let Gqq� � Z be a k�
polyhedral monotonic set and let Rqq� � Z �� Z be a reset function� Then� for
every �q� z� � Q
 Z

��q� z� �

�
�q�� z�� � �t � K

�
z� t � Gqq �Gqq� 	
z� � Rqq� �z� t�

��
���

The meaning of ��q� z� is the set of Q 
 Z con
gurations the automaton can
reach starting at �q� z� by waiting t time �possibly zero�� and then taking at
most one transition		

Every subset of Q 
 Z encountered in the analysis of timed automata can
be decomposed into a 
nite union of sets of the form fqg 
 P where P is k�
polyhedral	 We will write such sets as �q� P �	 We will extend functions on ele�

� In fact� we can use c � f�� r� �r � � � � krg for some positive rational r�
� In the treatment here� we assume that all sets of the form Gqq are de�nable by a
positive boolean combination of inequalities of the form xi � ci and xi � xj � cij �
All the techniques presented here can be generalized to apply to the more general
case that some of the inequalities de�ning Gqq are strict�



ments to functions on sets in the natural way� e	g	 ��q� P � �
S
z�P ��q� z� and

Rq�q� �P � �
S
z�P Rqq� �z�	

Next� we de
ne a function � � �Z �� �Z �time forward projection� as�

��P � � fz� t � z � P� t � Kg � Z�

It is not hard to see that the immediate successors of a set of con
guration �q� P �
can be written as

���q� P �� � �q� bP � � �
q� �
q

�q�� Pq��

where bP � ��P � � Gqq and for every q�� Pq� � Rqq� � bP � Gqq� �� This concludes
the motivation for the paper as we see that the additional machinery needed
to analyze timed automata consists of calculations of boolean operations� R�P ��
and ��P � on k�polyhedral sets	

� Numerical Decision Diagrams� Discrete Time

��� Representation

The idea of ndd�s is elementary	 When we consider Kd under the discrete inter�
pretation� we have nothing but subsets of a 
nite set	 Obviously� every element
of K can be coded in binary using b � dlog ke bits� where dlog ke is the smallest
integer not smaller than log k	 Consequently� we can represent every subset of
Kd as a boolean function of d � b boolean variables	 This function can be rep�
resented by a bdd in the usual way	 We will use standard positional encoding�
i	e	� every number n � K is represented by a set of values x�� � � � xb�� such that

n �
Pb��

i
� xi � �
i	

The 
rst question concerning the implementation is the ordering of the bits
of every number	 Although� especially for sets of the form x � c� putting the
most signi
cant bit 
rst might lead to smaller bdd�s� we prefer to put the least
signi
cant bit 
rst� because it facilitates the calculation of �	 Examples of sets
and their ndd representation for d � � and k � � appear in 
gure �	 When there
are more than one clock variables� there are various ways to order their bits� for
example� x�� x�� � � � � y�� y�� � � �	

In order to represent decision trees and bdd�s textually we will use the ex�
pression bdd�xi� L�R� to denote a tree that tests xi� branches to the subtree L
on zero and to the subtree R on one	 For example� the tree obtained from the
bdd for x � � in 
gure � is written as�

bdd�x�� bdd�x�� �� bdd�x�� �� ����
bdd�x�� bdd�x�� �� ��� � ��
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Fig� �� Some �
polyhedral sets in one
dimension and their corresponding ndd�s�

��� Operations

Beside set�theoretic operations that we have for free� the reset operation is also
elementary� in order to calculate R�P � for a reset function R that resets� say�
the variable x� you build a bdd for the set x � � and intersect it with the bdd
for �xP 	 What remains to show is how to calculate ��P �� which we will 
rst
demonstrate on the semantic level	

Given P � Kd� ��P � can be written as fz � �t � K s�t� z � t � Pg	 Before
applying the existential quanti
er we have a set P � � Kd�� representing all the
tuples �t� z� such that z � t � P 	 We will present a procedure that converts
a b � d�variable ndd for P into a b � �d � ���variable ndd for P � �with t as
an additional K�variable� encoded using the boolean variables t�� t�� � � � � tb���	



Eliminating the existential quanti
er for t from P �� we obtain the bdd for ��P �	
The procedure will initially create the ndd for the set P� � f�t� z� � z � t � Pg
where � stands for subtraction modulo k	 Then� by intersecting P� with the set
P� � f�t� z� � z 
 t � �g we get P � �see 
gure ��	

P � K

P � � P� � P� � K� ��P � � K

P� � f�x� t� � x� t � Pg

�





 





�







�
�

� 


P� � f�x� t� � t � xg

Fig� �� Calculating ��P � via moving to d�� dimensions �P �� and then projecting away
the time� We �rst make the subtraction modulo k �creating P�� and then intersect with
P� to get rid from over�ow�

To illustrate the construction of P�� we consider 
rst the case that d � ��
i	e	 only one clock	 The recursive function sub�B� borrow� presented in table �
takes an ndd B for P � K and produces an ndd for P� � K� as described
above	 The parameter borrow represents the �borrow� bit which is propagated
from right to left on performing binary subtraction	 The external invocation of
this function is done with borrow � �	 For simplicity of presentation� we assume
that B has nodes for all variables� with entries of the form bdd�xi� L� L� in case
the function is independent of xi	 An optimized version can be derived for the
more general case of skipped variable tests	�

The e�ect of applying the function to an arbitrary decision tree over f�� � � � � �g
is depicted in 
gure �	 The extension to d � � is rather straightforward	

� As usual in bdd applications� all calls are hashed so that repeated calls with the
same arguments will not repeatedly traverse the complete subtrees�



function sub�B� borrow�
begin

if B is a leaf
then return�B��
else let B � bdd�xi� L�R�

if borrow � �
then return�bdd�ti�bdd�xi� �sub�L� ��� sub�R� �����

bdd�xi� �sub�R� ��� sub�L� �������
else return�bdd�ti� bdd�xi� �sub�R� ��� sub�L� ����

bdd�xi� �sub�L� ��� sub�R� �������
end

Table �� The function sub�

� Dense Time

The above construction is su�cient for analyzing timed automata under the
discrete�time interpretation	 It is however known that some timed automata
can produce behaviors �state�sequences� under a dense semantics which are not
possible under any discrete�time semantics	 In this section we introduce a dis�
cretization scheme 
GPV���� having the two following important properties� ��
It preserves the qualitative behavior of the automaton� that is� for every se�
quence of discrete transitions in the semantics of a timed automaton A� there is
a similar sequence in the semantics of its discretization eA and vice versa	 �� It
is amenable to representation by ndd�s	

For each clock value zi� i � �� � � � � d� let Ii and fi denote the integer and
fractional parts of zi� respectively	 Two clock valuations z � �I��f�� � � � � Id�fd�
and z� � �I ���f ��� � � � � I

�
d�f �d� are de
ned to be region equivalent � written z � z��

if

d�
i
�

�
�Ii � I �i� 	 �fi � �� f �i � ��

	
	

�
i�j�f������dg

�fi � fj � f �i � f �j��

We consider automata with Z � Kd	 We will use a discretization step� � �	��d�

and let eK � fn� � � � n � �kdg	 In other words� we cut every unit interval into
�d equal segments and pick the endpoints	 The discretized clock space �that is�
the domain over which discretized clocks range� iseZ � eKd � f�z�� � � � � zd� � �i� j jzi � zj j � �m�g�

Note that we take from eKd only points such that the di�erence between any pair
of clock valuations is an even multiple of � �see 
gure ��	 For any polyhedral
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Fig� �� Applying sub to an arbitrary decision tree over f�� �� �� �g� The circled leaves
will become zero when we intersect with f�x� t� � x � tg�

set P � we let its discretization be eP � P � eZ	 It is not hard to see that� for every
k�polyhedral set P � we have P �� � i� eP �� �	 Another important property of
this scheme is the following�

Claim�� Let z � ez� 
 for some ez � eZ� j
j � �� Then

z � P � �ez � P � ez�� � P �

�and hence at least one of them belongs also to eP ��

Proof� If ez � �z�� � � � � zd� � P we are done� otherwise there is one or more
inequalities of the form zi � ci satis
ed by ez � 
 but not by ez �which implies
that zi � �dn� for some integer n�	 These inequalities must be satis
ed by ez��
as well	 On the other hand� if there is an inequality of the form zj � cj satis
ed
by ez � 
 but not by ez � �� we have zj � ��dn � ���� which contradicts the
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Fig� �� Left� discretizing ��� ���� the circled points are the elements of eZ while the

squared points belong to eKd � eZ� Right� illustration of claims � and ��

assumption ez � eZ	 In addition� ez� 
 and ez�� satisfy together every diagonal
inequality �of the form zi � zj � c� and we can conclude that ez�� � P 	

Note that this fails to be true for points outside eZ	 Consider z � ��� �	�� and
P � �� � x � �� 	 �� � y � �� 	 �y � x�	 Here z � 
 � P but neither z nor
z�� � ��	�� �� belong to P 	

The discretized forward projection e� � �eZ � �eZ is the restriction of � to
points in eZ and time values in eK�e�� eP � � fez� � eZ � �ez � eP �et � eK s�t� ez� � ez� etg�
Claim� Discretization Preserves Forward Projection� For every
k�polyhedral set P and P � such that P � � ��P �

e�� eP � � fP ��

Proof� One direction� e�� eP � � fP � is obvious because eP � P and eK � K	

For the other direction� suppose some ez� � ��P � � eZ� implying that ez� can
be written as �n��� � � � � nd��� and that for some z � Z� t � K� z � t � ez�
hence z � �n�� � t� � � � � nd� � t�	 Let t � m� � t� for some t� � �	 Then
z � ��n��m��� t�� � � � � �nd�m��� t��	 According to the previous claim eitherez or ez�� is in eP and their temporal successor ez� is in e�� eP �	

Having shown that forward projection �as well as boolean operations� on Z

andK can be imitated by discretized operations on eZ and eK� the only remaining
problem is concerned with the reset operator	 The problem is that eZ is not closed
under reset functions � for example� resetting the 
rst coordinate of ����� � eZ
we obtain ��� �� � eKd � eZ �because the di�erence between the points is not

an even multiple of ��	 This is important because claim � does not hold on eKd

but only on eZ	 In order to calculate successors on the discretization we need
an �adjustment� operator� which� after applying a reset� will delete points that



went out of eZ and replace each of them by one or more region�equivalent points
in eZ	 This extra operator can be viewed as the price we pay for dense reasoning	

For eachm � f�� � � � � d��g� let us de
ne a function �m � eKd � �eZ as follows�

�m�z� � fz� �
d�

i
�

�
�Ii � I �i� 	


BBBB�
fi � � 	 f �i � �
�

fi � ��l � ��� 	 l � m 	 f �i � ��l � ���
�

fi � ��l � ��� 	 l � m 	 f �i � ��l��

�CCCCA
	
g

The function �m returns a non�empty set if and only if all the non�zero frac�
tional parts of z are odd multiples of �� and none of them falls in the inter�
val 
�m�� ��m� ����	 Its e�ect is to add � to all fractional parts fi satisfying
� � fi � �m� and subtract� from all fractional parts satisfying ��m���� � fi	
Zero fractional parts are left unchanged	 One can see that if z satis
es these con�
ditions then �m�z� � fz�g and z� � z	 This operator is illustrated in 
gure �	

Based on this family of functions we de
ne � � eKd � �eZ as

��z� �



z if z � eZSd��
m
�

�m�z� otherwise
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Fig� �� The e�ect of the adjustment operator �� for K � ��� ��� and� � ��� �all points

are multiples of ��� �a� A point z� � ��� �� �� 
� � eZ� �b� After restting the second clock

we obtain z� � ��� �� �� 
� 	� eZ� �c� Applying �� we push the non
zero clocks toward
the �hole� around � and obtain z� � ��� �� �� �� which is region
equivalent to z�� Note
that in this graphical representation the passage of time is via clock
wise rotation�

It is not hard to see that the application of � to any P � eKd yields a subset
P � � eZ such that� for every z � P � there is at least one z� � P � satisfying z � z�	
Based on this function� we can de
ne for every reset function R � Z � Z a dis�

cretized reset function eR � eZ � �eZ as eR�ez� � ��R�ez��	 It follows that� for every



P � eR� eP � has elements of every region equivalence class which are represented in
R�P �	

This is all we need� we just add to the ndd solution for integer time is
d � log��d� bits to represent the 
ner grid and to replace every reset function Rqq�

by its adjusted version gRqq� 	 The same arithmetical calculation of time successors
described in section � will work� when we add the fractional bits to the clock
and time variables	 The adjustment operation seems to be the hard part of the
calculation �we have only implemented the discrete�time representation so far�
but at least this operation is performed only on the fractional bits �and hence is
sensitive to the number of clocks but not to their ranges�	 In fact there is a trade�
o� between two discretization schemes �see 
GPV����� one with � � �	�d� ���
where resets behave normally but the evolution of time is distorted and loses
some of its arithmetical content� and the other one we describe here� were time
evolution remains arithmetic while resetting is more involved	

� Concluding Remarks

��� Related Work

Various tools for the analysis of timed and hybrid automata have been developed
recently� e	g	 kronos 
DOY���� uppal 
BGK�� and Hy�Tech 
AHH���	 The 
rst
two represent polyhedral sets by dbms	 An alternative approaches is to transform
the timed automaton into a huge discrete automaton �the region graph� and than
encode its using boolean variables and bdd�s	��

The idea of extending bdd�s for the purpose of solving arithmetical con�
straints has been proposed by Rauzy 
Rau���	 The structures he proposes are�
however� not canonical	 Our method can be applied as well outside the analysis
of timed automata� e	g	� as a decision procedure for some decidable theories in
bounded arithmetics �see also 
WB����	 In fact� the forward projection calcu�
lation can be easily adapted to clocks having non�uniform rates in f�������g
and can be applied to the analysis of larger classes of hybrid systems and to
programs with bounded integer variables	

��� Experimental Results

For experimentation we have used a system developed at Verimag for repre�
senting and manipulating communicating automata augmeneted with bounded
variables 
BFK���	 This system takes such automata and translates them into
bdds using one of several publicly�available bdd packages � we have used the
CUDD package 
S��� of Colorado University	 We have incorporated a discrete�
time version of the ndd representation into that system and tested its perfor�
mance on various timed automata corresponding to digital circuits with delays

�
 In �CC��� this approach has been applied to the degenerate case of one
clock
automata�



�the exact de
nitions and the translation procedure from circuits to timed au�
tomata are described in 
MP����	 We will report here the results obtained with
two generic families of automata� for which we tried to calculate all the reachable
con
gurations starting from an initial state	

The 
rst family consists of one�state automaton having n clocks and n tran�
sitions	 The automaton �see 
gure ��a� can let time progress as long as none
of the clocks has reached its upper bound ui	 Whenever a clock Ci reaches the
lower bound li � ui� a self�looping transition which resets Ci can be taken	 These
automata allow us to isolate the complexity of representing and manipulating
polyhedral sets from that of treating the discrete state�space	

Ci � ui

Ci � li�Ci �� �

Ci � li�Ci �� �

Ci � ui

	a
 	b


V
i
Ci � ui

� � �

Ci � li�Ci �� �

vi � � vi � �

Fig� 	� The automata used for experiments� �a� A one
state automaton with n clocks
and n transitions� �b� A basic two
state automaton with one clock�

The second family consists of a product of n two�state automata of the type
appearing in �
gure ��b�	 Such a product is the natural way to model n inde�
pendent non�deterministic input oscillators and it is a necessary ingredient in
any attempt to do exhaustive timing analysis of asynchronous circuits	

The main di�erence between the two examples is that in the second we have
�n discrete states	 While the set of reachable con
guration for this example will
be of the form f�q� P��gq�f���gn � the set of reachable clock con
gurations of the

rst automaton will be

S
q Pq � which seems in general to be simpler to repre�

sent	 In fact� for the constants we have chosen all the clock space is eventually
reachable� but some very �hard� sets are encountered in the intermediate stages
of the 
xed�point calculations	

We have taken clock values in the range ������ let li � �� ui � �� and
compared the results with those of kronos which uses dbms	 For this set of
examples the ndd results were much better	 It should be noted� however� that
dbms implement the richer dense semantics and are not sensitive to the range
of clock values as long as they do not cross the maximal integer value	 In con�
trast� the performance of ndds depends critically on the number of bits used
to encode clock values	 Moreover� the examples were chosen so that they gen�
erate intermediate polyhedral sets which are very �non�convex�� which makes



life hard for the dbm implementation �but also for ndds�	 Finally the current
forward simulation algorithm of kronos keeps all reachable regions in a form
of a simulation graph�� and this turns out to be ine�cient for these examples �
we believe that changing this implementation detail will allow kronos to treat
larger examples	 The results are summarized in table �	 They were obtained on
a SUN Ultra�Sparc � with ���MB of memory	

one state many states

no DBM NDD DBM NDD

time regions time max ndd time regions time max ndd
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Table �� Comparative results of the ndd and dbm implementations�

Our intermediate conclusion is that the analysis of timed automata with
many clocks is not yet feasible	 We have managed to handle additional non�trivial
examples �such as an interconnected chain of XOR gates� with ����� clocks� but
a closer investigation of polyhedral sets and their various representation schemes
is needed in order to push performance limitations forward	
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�� This is the number appearing in the �regions� column in the table�
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