
Hardware Timing Verification using KRONOS �

Oded Maler Sergio Yovine

SPECTRE – VERIMAG

Miniparc-ZIRST, 38330 Montbonnot, France

E-mail: fOded.Maler,Sergio.Yovineg@imag.fr

Abstract

In this paper we describe the KRONOS system, a tool for

verifying real-time properties based on the model of timed-

automata. As an example, we show how KRONOS is applied

to the verification of a MOS circuit under various delay

assumptions.

1 Introduction

The use of finite-state automata as models of synchronous

circuits is as old as computer science. Recently, verifica-

tion methods for finite-state systems have proliferated from

academia to industry with the progress in efficient tech-

niques for symbolic model-checking [10], [3]. Timed au-

tomata, that is, automata augmented with fictitious clocks

that can measure the time between various events, were in-

troduced by Dill and Alur [7], [2] as models for real-time

systems and asynchronous circuits.

At this real-time level of modeling, systems are not

viewed anymore as generators of sequences over an abstract

time domain, but rather as generators of signals over the real

time domain. This allows us to speak quantitatively about

the implementation (the time it takes for an instruction to

be performed or for a gate to switch), the environment (the

minimal time between two requests) and the requirements

(the response time of the system).

The KRONOS system [4], [5], developed at VERIMAG dur-

ing the last five years, represents the state-of-the-art in ver-

ification tools for real-time. It has been applied in the past

�In Proc. 7th Israeli Conference on Computer Systems and Software

Engineering, June 12-13, 1996, Herzliya, Israel.

to the verification of a variety of time-dependent protocols.

In this paper we illustrate the application of KRONOS in

another domain, namely timing analysis of hardware cir-

cuits. The theoretical basis of the translation of Boolean

asynchronous circuits with delay uncertainties into timed

automata has been presented in [11]. Here we apply this

methodology to the verification of a MOS circuit, a problem

posed to us by members of IBM Haifa research group.

The paper is organized as follows. In section 2 we give

a short introduction to timed automata and real-time logics

which constitute the theoretical infrastructure for KRONOS.

In section 3 we describe the KRONOS system and in section

4 we demonstrate how MOS circuits are modeled as timed

automata and verified using KRONOS.

2 Theoretical Background

2.1 Timed Automata

A timed automaton A is a tuple hS�X �L� E � I� �i. S

is a finite set of locations. X is a finite set of real-valued

variables called clocks whose values increase uniformly with

time. L is a finite set of labels. E is a finite set of edges. Each

edge e is a tuple �s� L� �� �� s�� where s� s� � S, L � L, � is

a linear constraint on the values of the clocks expressing the

timing condition requiered for the transition to be taken, and

� � X is the set of clocks to be reset to 0 by the transition.

I is a function that associates a constraint on clocks to each

location. � is a labeling of the locations with a set of atomic

propositions over P. Readers who wish at this point to see

a concrete example are invited to jump to the beginning of

section 4.

1

A state of A is a pair �s� v� where v is a clock valua-

tion. The state �s� v� has a discrete transition to �s�� v��,

denoted �s� v� �e �s�� v��, if v satisfies the constraint �

labeling the edge e and v� is such that v��x� � 0 if x � �,

otherwise v��x� � v�x�. That is, discrete transitions con-

sist in moving to another state by taking an edge whose

condition is satisfied by the values of the clocks. The state

�s� v� has a time transition of duration t to �s� v ��, denoted

�s� v��t �s� v��, if v��x� � v�x� � t for all x � X , and for

all t�, 0 � t� � t, v � t� satisfies the invariant I�s�. That

is, time transitions consist in letting time progress without

changing the control location. A run r � R of A is a

sequence q0 �t0 q�0 �
e0 q1 � � � such that

P
i�0 ti diverges.

2.2 Symbolic Verification

KRONOS implements a symbolic verification method

based on predicate transformers for computing the set of

predecessors (backward analysis) and successors (forward

analysis) of sets of states symbolically represented as dis-

junctions of convex polyhedra. A more detailed description

of the symbolic verification method can be found in [9].

Backward analysis. Given a set of states Q � Q and an

edge e � E , the predecessors of Q by e are those states that

can reach a state inQ by letting time elapse for some amount

and then moving through e. We define:

prede�Q� � fq� j �q � Q� t � R�� q� �t�e qg�

The set of all predecessors of Q is pred�Q� �
S
e�E prede�Q�.

Forward analysis. Given a set of states Q � Q and an

edge e � E , the successors ofQ by e are those states that can

be reached from a state in Q by a time transition followed

by a discrete transition through e. We define:

poste�Q� � fq� j �q � Q� t � R�� q�t�e q�g�

The set of all successors ofQ is post�Q� �
S
e�E poste�Q�.

2.3 The logic TCTL

TCTL [1, 9] is an extension of the temporal logic

CTL [8] that allows reasoning about the quantitative real-

time elapsed between events along the runs of a timed au-

tomaton. The formulas of TCTL are defined by the following

grammar:

� ::� p j �� j �1 � �2 j ��I� j 	�I�

where p � P is a basic predicate and I is an interval. I

may be open or closed, bounded or unbounded. Intuitively,

��I�means that there exists a run and a state where� holds

and the timed elapsed until this state since the initial state of

the run belongs to the interval I. The formula 	�I� means

that for all runs the above property holds. We write 	�� for

����� meaning that � holds in all states of all runs. The

formal semantics of TCTL is given in [1, 9].

Model-checking consists in verifying whether a timed

automaton A satisfies a TCTL-formula �. Model-checking

can be done symbolically using the backward and forward

verification methods. We illustrate here how the methods

work for only two of the temporal operators. For more

details see [9].

Suppose we want to verify qinit
 ��Q, that is, if

a state in Q is reachable from the initial state qinit. The

backward-computation algorithm is as follows: start with

Q0 � Q, and for i � 0 compute Qi�1 � Qi � pred�Qi�.

If qinit � Qi for some i, the answer is “YES”, otherwise,

the answer is “NO”. This procedure always terminates. A

similar algorithm is used to verify qinit
 ��IQ.

To check that the system, always remains at a set of states

Q we verify the formula qinit
 	�Q, or equivalently,

��qinit ���Q�, that is, there is no run starting at qinit
that reaches a state outsideQ. On this formula, the forward-

computation algorithm works as follows: start with Q0 �

fqinitg, and for i � 0 compute Qi�1 � Qi � post�Qi�. If

Qi � �Q �� � for some i, the answer is “NO”, otherwise,

the answer is “YES”. Notice that during the computation

we can keep track of the transitions taken, so as when the

answer is “NO” we can exhibit a counter-example, that is,

a sequence of transitions that leads from qinit to a state in

�Q.

3 The Tool KRONOS

KRONOS [4, 5] is a tool developed with the aim to as-

sist the user to validate complex real-time systems. The

tool checks whether a real-time system modeled by a timed

automatonA satisfies a timing property specified by a TCTL-

formula �. Figure 1 illustrates the structure of the tool.

2

A1� � � � �An

A
TCTL�formulaTimed Automaton

COMPOSITION

Model�checker

�

YES�NO
Diagnostics

Figure 1. The KRONOS system.

A system is usually described as a set of timed automata

that run in parallel and synchronise via the names label-

ing the edges. The parallel composition of timed automata

is defined in [5]. KRONOS takes as input a set of files

each one describing a single component and computes their

product which is itself a timed automaton. The latter as

well as the TCTL-formula to be checked are fed into the

model-checker that answers “YES” whenever the formula

is verified, otherwise it answers “NO” exhibiting a counter-

example. The syntax of the input (automata, formulae) and

output (counter-example) files, is demonstrated via exam-

ples in the appendices.

KRONOS has been used to verify a variety of protocols

whose correctness strongly depends on timing parameters.

Some examples of benchmarks verified with KRONOS are the

Fischer’s mutual exclusion protocol [6], the Tick-Tock [4]

and the FDDI [6] communication protocols, and the Philips

audio control protocol [5].

4 Circuit Timing Analysis

In this section we show how MOS circuits are modeled by

a timed automata and how they are verified using KRONOS.

This is not intended to be a complete nor accurate intro-

duction to VLSI, but rather an illustration of the modeling

principles.

A MOS transistor (figure 2) is a three-terminal device. It

can be in two basic states On and Off. When it is On, the

current flows between terminals X1 and X2. The transition

between the two states is controlled by the switching termi-

nal S. When the transistor is Off and S goes up (we denote

this event by S �), after a delay of 1 time unit the state of

the transistor becomes On. When S switches back, the gate

goes to Off immediately. The modeling of such a transistor

as a timed automaton is rather straightforward: The transi-

tion from an Off to Rising state is triggered by the event S �.

This transition resets the clock C to zero. If an event S �

arrives during the interval �0� 1� the automaton goes back to

Off. Otherwise, when C � 1 is goes to On (emitting the

signal T �) and stays there until the next S � event.

Remark: We can employ other transistor models as well.

For example, if a non-zero delay is associated with falling

of the transitor, we would need a 4-state automaton with

the additional state Falling. We can also model uncertain-

ties in delays. The formal translation of general Boolean

asynchronous circuits into timed automata is described in

[11].

The circuit we consider appears in figure 3. It consists

of 8 transistors and 4 input wires P , A, B, and C which

behave as follows:

� P goes high immediately at start, then goes down after

20 time units, goes up again after 8 time and restarts

again.

� A can rise between 0 and 6 time units after start (i.e.

after P goes up) and falls down 16 units later.

� B rises 3.3 units after A and falls 10 units later

� C rises between 1 and 3 units after start and falls be-

tween 23.5 and 24.9 units after start.

The transistors T1, T5 and T6 switch to On by the falling

of their input signals. The value on the X wire is On if

current flows thru T1 but not leaking via T2 and T3 or T4.

The input signals are modeled by the four timed automata in

figures 4–7. State staying conditions (invariants) are written

inside the states. Transitions are labeled by conditions (if

not trivial), by event labels and by sets of clocks tobe reset.

Note that we allow non-determinism in the behavior of the

inputs. For example, when CA is in the interval �0� 6� A

can either stay at A0 or move to A1 and generate an A �

transition. An example of the KRONOS source files for the

input A and its transistor T2 appears in appendix 1.

3

�

�

�

�

C � 1;T �

On

Off Rising
C � 1

S �

S �; fCg

X�

S T

X�

S �;T �

Figure 2. A transistor and its associated timed
automaton.

C

T�

T�

T	T

C

C

T�

T�

T

X

VDD

GND

B

A

P

OUT

T�

Figure 3. The circuit.

�

�

�

P �; fCPg

CP � 20;P �; fCPg

CP � 8;P �; fCPg

Pstart

P1

CP � 20 CP � 8
P0

Figure 4. The automata for the input signal P.

4

�

�

�

CA � 16;A�
P �; fCAg

Astart

A0

CA � 6

A�; fCAg A1

CA � 16

Figure 5. The automata for the input signal A.

�

�

�

CB � 10;B �
A�; fCBg

Bstart

B0

CB � 3�3 CB � 10

B1

CB � 3�3;B �; fCBg

Figure 6. The automata for the input signal B.

�

�

�
Cstart

P �; fCCg

C0 C1

CC � 3
CC � 24�9

CC � 23�5;C�

CC � 1;C �

Figure 7. The automata for the input signal C.

As a first step we compose the automata of P , A, B, and

C with T1, T2, T3, and T4. This gives us an automaton with

193 states, 529 transitions and 8 clocks. We then define a

formula X as

�T1 � On� ���T2 � On� ��T3 � On� � �T4 � On���

and apply a special utility that adds the event labels X � and

X � to all the transitions of the product that change the value

of X. Then we compose the automaton with the remaining

transistors T5, T6, T7 and T8, and obtain the whole circuit as

a timed automaton with 769 states, 2683 transitions and 12

clocks.

The property that we want to verify is the absence of

short-cuts, namely current flowing from VDD to GND for

all the possible executions starting at the initial state. This

is expressed in the formula

���T1 � On� �T2 � On� ��T3 � On�� �T4 � On���

���T5 � On� �T6 � On� ��T3 � On� � �T7 � On���

We call KRONOS to evaluate this formula against the sys-

tem and the result is false. In this case we obtain an evalua-

tion file containing a generalized counter-example (appendix

2), which indicates classes of timed event sequences that in-

validate the formula. From this output one can extract a

concrete counter example and deduce which change of pa-

rameters will guarantee the satisfaction of the formula. For

5

example, in this case a bad sequence of events is:

�P �� 0�� �T5 �� 1�0�� �C �� 1�5�� �T4 �� 2�5��

�T8 �� 2�5�� �A�� 5�0�� �T2 �� 6�0��

�B �� 8�3�� �T3 �� 9�3�� �B �� 18�3��

�T3 �� 18�3�� �P �� 20�0�� �T1 �� 21�0�

If, on the other hand, we change the system such that P

must wait more than 21 time units before falling, we can

make sure that A � and T2 � occur before T1 � and, indeed,

when we verify this property with the modified system we

get a positive answer from KRONOS. The verification CPU

time (on Sun SparcStation 20 with 64MB of memory) was

5 seconds when the property was false and 27 seconds when

it was true.

References

[1] R. Alur, C. Courcoubetis, and D.L. Dill. Model check-

ing in dense real time. Information and Computation,

104(1):2–34, 1993.

[2] R. Alur and D.L. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183–235, 1994.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,

and L.J. Hwang, Symbolic Model-Checking: 1020

States and Beyond, Proc. LICS’90, Philadelphia, 1990.

[4] C. Daws, A. Olivero, and S. Yovine. Verifying

ET-LOTOS programs with KRONOS. In Proc.

FORTE’94, pages 227–242, Bern, Switzerland, Octo-

ber 1994.

[5] C. Daws and S. Yovine. Two examples of verification

of multirate timed automata with KRONOS. In Proc.

1995 IEEE RTSS’95, Pisa, Italy, December 1995. IEEE

Computer Society Press.

[6] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, The

tool KRONOS. In Workshop on Hybrid Systems and

Autonomous Control, DIMACS, New Jersey, October

1995.

[7] D. Dill, Timing Assumptions and Verification of

Finite-State Concurrent Systems, in J. Sifakis (Ed.),

Automatic Verification Methods for Finite State Sys-

tems, LNCS 407, Springer, 1989.

[8] E. Clarke and E.A. Emerson, Design and synthesis of

synchronization skeletons using branching-time tem-

poral logic, In Workshop on Login of Programs, LNCS

131, 1981.

[9] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine.

Symbolic model checking for real-time systems. In-

formation and Computation, 111(2):193–244, 1994.

[10] K.L. McMillan, Symbolic Model-Checking: an Ap-

proach to the State-Explosion problem, Kluwer, 1993.

[11] O. Maler and A. Pnueli, Timing Analysis of Asyn-

chronous Circuits using Timed Automata, in P.E. Ca-

murati, H. Eveking (Eds.), Proc. CHARME’95, 189-

205, LNCS 987, Springer, 1995.

6

Appendix 1

This is the source code for defining the input signal A and

its transistorT2. Note that all constant are multiplied by ten.

/* this is the generator of the input
signal A. It can rise between 0 and 6
time units after start (i.e. after P
goes up) and it falls 16 units later */

#states 3
#trans 3
#clocks 1
CA

state: 0
prop: A_start /* before P starts */
invar: true
trans:
true => P_UP; reset{CA}; goto 1

state: 1
prop: A_0
invar: CA <= 60
trans:
true => A_UP; reset{CA}; goto 2

state: 2
prop: A_1
invar: CA<=160
trans:
CA=160 => A_DOWN; reset{}; goto 0

/* The Transistor T1 enabled by A
It rises 1 time unit after A_UP and
falls immediately after A_DOWN */

#states 3
#trans 3
#clocks 1
C2

state: 0
prop: T2_0
invar: true
trans:
true => A_UP; reset{C2}; goto 1

state: 1
prop: T2_rising
invar: C2<=10
trans:
C2=10 => T2_UP; reset{C2}; goto 2

state: 2
prop: T2_1
invar: true
trans:

true => A_DOWN; reset{}; goto 0

This is the source code for the property we wish to verify:

init impl ab (
(not (T1_1 and T2_1 and (T3_1 or T4_1)))
and
(not (T5_1 and T6_1 and (T8_1 or T7_1)))

)

Appendix 2

This is the beginning and the end of the counter-example

information provided by KRONOS when a the verification

of a property fails. It is a sequence of generalized states

and transitions. A generalized state consists of a location

and a set of constraints on the system clocks, including

an additional variable T representing the global time. A

generalized transition is an event that can take place when

certain conditions on the clock are satisfied. From these

constraints one can deduce a family of system runs (one of

which is described in the body of the paper) which invalidate

the property.

[0, CP=0 and C1=0 and CA=0 and C2=0 and CB=0
and C3=0 and CC=0 and C4=0 and C5=0 and C6=0
and C7=0 and C8=0 and T=0]

CP=0 => P_UP X_DOWN ;
RESET{ CP CA CC C5 } ;
goto 1

[1, C5<=10 and CP=C1 and CP=CA and CP=C2 and
CP=CB and CP=C3 and CP=CC and CP=C4 and
CP=C5 and CP=C6 and CP=C7 and CP=C8 and CP=T
and 0<=T<=10]

CP<=200 and CA<=60 and CC<=30 and C5=10
=> T5_UP ;

RESET{ C5 } ;
goto 4

[4, 10<=CP and CC<=30 and CP=C1 and CP=CA
and CP=C2 and CP=CB and CP=C3 and CP=CC and
CP=C4 and CP=C5+10 and CP=C6 and CP=C7 and
CP=C8 and CP=T and 10<=T<=30]

CP<=200 and CA<=60 and 10<=CC and CC<=30
=> C_UP ;

RESET{ C4 C8 } ;
goto 14

[...

7

some states and transitions deleted
...]

[442, CP<=200 and 133<=CA and CA<=160 and
CP=C1 and CP<=CA+60 and CP=CC and CP<=C4+40
and C4+20<=CP and CP=C5+10 and CP=C6 and
CP=C7 and CA=C2+10 and CA=CB+133 and
CA=C3+43 and CA<=C4 and C4=C8 and and CP=T
and 153<=T<=200]

CP=200 and CA<=160 and CC<=249
=> P_DOWN ;

RESET{ CP C1 } ;
goto 474

[474, C1<=10 and CA<=160 and CP=C1 and
CP+140<=CA and CP+200=CC and CP+160<=C4
and C4<=CP+180 and CP+190=C5 and CP+200=C6
and CP+200=C7 and CA=C2+10 and CA=CB+133
and CA=C3+43 and CA<=C8 and C4=C8 and
T=200]

CP<=80 and C1=10 and CA<=160 and CC<=249
=> T1_UP ;

RESET{} ;
goto 516

[516, 10<=CP and CA<=160 and CP=C1 and
CP+140<=CA and CP+200=CC and CP+160<=C4 and
C4<=CP+180 and CP+190=C5 and CP+200=C6 and
CP+200=C7 and CA=C2+10 and CA=CB+133 and
CA=C3+43 and CA+10<=C8 and C4=C8 and
T=CP+200 and 210<=T]

8

