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Abstract� In this paper we show how the classical job
shop scheduling
problem can be modeled as a special class of acyclic timed automata�
Finding an optimal schedule corresponds� then� to �nding a shortest �in
terms of elapsed time path in the timed automaton� This representa

tion provides new techniques for solving the optimization problem and�
more importantly� it allows to model naturally more complex dynamic
resource allocation problems which are not captured so easily in tradi

tional models of operation research� We present several algorithms and
heuristics for �nding the shortest paths in timed automata and test their
implementation in the tool Kronos on numerous benchmark examples�

� Introduction

A signi�cant part of veri�cation consists in checking the existence of certain
paths in very large transition graphs� given as a product �composition� of simpler
graphs� Such paths correspond to bad behaviors of the system under considera	
tion� On the other hand� in many application domains �optimal control� Markov
decision processes� scheduling� we are interested in selecting� among the possi	
ble behaviors� one that optimizes some more sophisticated performance measure
�note that in 
classical� veri�cation we use a very simple performance measure
on behaviors� namely� they are either 
good� or 
bad��� Both veri�cation and
optimization su�er from the state	explosion problem� also known as 
the curse
of dimensionality�� and various methods and heuristics have been developed in
order to treat larger and larger problems� The main thrust of this work is to
explore the possibility of exporting some of the ideas developed within the veri	
�cation community� such as symbolic analysis of timed automata� to the domain
of optimal scheduling� where most of the e�ort was directed toward a constrained
optimization approach�

The observation underlying this paper is that classical scheduling and re	
source allocation problems can be modeled very naturally using timed automata
whose runs correspond to feasible schedules� In this case� �nding a time	optimal
schedule amounts to �nding the shortest path �in terms of elapsed time� in
the automaton� This problem can be solved by some modi�cations in veri�ca	
tion tools for timed automata� Posing the problem in automata	theoretic terms
might open the way to an alternative class of heuristics for intractable scheduling
problems� coming from the experience of the veri�cation community in verifying



large systems� and this might lead in the future to better algorithms for cer	
tain classes of scheduling problems� Even if they do not contribute to improving
the performance� automata	based models have a clear semantic advantage over
optimization	based models as they can model problems of scheduling under un	
certainty �in arrival time and duration of tasks� and suggest solutions in terms
of dynamic schedulers that observe the evolution of the plant�

Most of this work is devoted to establishing the link between the classical
job	shop scheduling problem and timed automata and adapting the reachability
algorithm of the tool Kronos to �nd shortest paths in timed automata� This is not
a completely straightforward adaptation of standard graph	searching algorithms
due to the density of the transition graph� We explore the performance limits
of current timed automata technology� and although they cannot yet cope with
the state	of	the	art in optimization� the results are rather encouraging�

The rest of the paper is organized as follows� In section  we give a short
introduction to the job	shop scheduling problem� In section � we recall the def	
inition of timed automata and show how to transform a job	shop speci�cation
into an acyclic timed automaton whose runs correspond to feasible schedules�
In section � we describe several algorithms for solving the shortest	path prob	
lem for such timed automata �either exactly or approximately� and report the
performance results of their implementation in Kronos on numerous benchmark
examples�

� Job�Shop Scheduling

The Job	shop scheduling problem is a generic resource allocation problem in
which common resources �
machines�� are required at various time points �and
for given durations� by di�erent tasks� The goal is to �nd a way to allocate
the resources such that all the tasks terminate as soon as possible �or 
minimal
makespan� in the scheduling jargon�� We consider throughout the paper a �xed
set M of resources� Intuitively� a step is a pair �m� d� where m �M and d � N �
indicating the required utilization of resource m for time duration d� A job
speci�cation is a �nite sequence

J � �m�� d��� �m�� d��� � � � � �mk� dk� ���

of steps� stating that in order the accomplish job J � one needs to use machinem�

for d� time� then use machine m� for d� time� etc� The formal de�nition below
tries to optimize the notations for the sequel�

De�nition � �Job�Shop Speci�cation�� Let M be a �nite set of resources
�machines�� A job speci�cation over a set M of resources is a triple J � �k� �� d�
where k � N is the number of steps in J � � � f���kg �M indicates which resource
is used at each step� and d � f���kg � N speci�es the length of each step� A job�
shop speci�cation is a set J � fJ�� � � � � Jng of jobs with J i � �ki� �i� di��

We make the following assumptions�



�� A job can wait an arbitrary amount of time between two steps�
� Once a job starts to use a machine� it cannot be preempted until the step

terminates�
�� Each machine is used exactly once by every job��

We denote R� by T � abuse J for f�� � � � � ng and let K � f�� � � � � kg�

De�nition � �Feasible Schedules�� Let J � fJ�� � � � � Jng be a job�shop spec�
i�cation� A feasible schedule for J is a relation S � J�K�T so that �i� j� t� � S

indicates that job J i is busy doing its jth step at time t and� hence� occupies ma�
chine �i�j�� A feasible schedule should satisfy the following conditions�

	� Ordering� if �i� j� t� � S and �i� j�� t�� � S then j � j� implies t � t� �steps of
the same job are executed in order��


� Covering and Non	Preemption� For every i � J and j � K� the set ft �
�i� j� t� � Sg is a non�empty set of the form �r� r � d� for some r � T and
d � di�j� �every step is executed continuously until completion���

�� Mutual Exclusion� For every i� i� � J � j� j� � K and t � T � if �i� j� t� � S and
�i�� j�� t� � S then �i�j� �� �i

�

�j�� �two steps of di�erent jobs which execute
at the same time do not use the same machine��

The length jSj of a schedule is the maximal t over all �i� j� t� � S� The optimal job�
shop scheduling problem is to �nd a schedule of a minimal length� This problem
is known to be NP	hard�

From the relational de�nition of schedules one can derive the following com	
monly used de�nitions�

�� The machine allocation function � � M � T � J stating which job occupies
a machine at any time� de�ned as ��m� t� � i if �i� j� t� � S and �i�j� � m�

� The task progress function � � J � T �M stating what machine is used by
a job is at a given time� de�ned as ��i� t� � m if �i� j� t� � S and �i�j� � m�

Note that these two functions are partial � a machine or a job might be idle at
certain times�
Example �� Consider M � fm��m�g and two jobs J� � �m�� ��� �m�� �� and
J� � �m�� ��� Two schedules S� and S� are depicted in Figure � in both machine
allocation and task progress forms� The length of S� is � and it is the optimal
schedule�

We conclude this section with an observation concerning optimal schedules
which will be used later� We say that a schedule S exhibits laziness at step j of
job i if immediately before starting that step there is an interval in which both
the job and the corresponding resource are idle� For example in the schedule S
of Figure � there is a laziness at �� ��� In the job	shop setting� where there are
no logical dependencies among the jobs� such idling is of no use� Note that a

� This last assumption simpli�es the presentation but still maintains the inherent
complexity�

� Note that we allow a job to occupy the machine after the step has terminated� This
helps in simplifying the timed automata but has no e�ect on the optimal solution�
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Fig� �� Two schedule S� and S� visualized as the machine allocation function � and
the task progress function ��

waiting period which is not adjacent to the beginning of the step� e�g� step ��� ��
of the same schedule� is not considered as laziness�

De�nition 	 �Lazy Schedules�� Let S be a schedule� let i be a job and j a
step with �i�j� � m which starts at time t� We say that S exhibits laziness at
�i� j� if there is a time r � t such that for every t� � �r� t�� ��i� t�� � � and for
every i� �� i� ��i�� t�� �� m� A schedule S is non�lazy if it exhibits no laziness�

Claim � �Non�Lazy Optimal Schedules� Every lazy schedule S can be trans�
formed into a non�lazy schedule �S with j �Sj � jSj� Hence every job�shop speci��
cation admits an optimal non�lazy schedule�

Sketch of Proof� The proof is by taking a lazy schedule S and transforming it
into a schedule S� were laziness occurs 
later�� A schedule de�nes a partial order
relation 	 on J �K which is generated by the ordering constraints of each job

�i� j� 	 �i� j � ��

and by the choices made in the case of con�icts

�i� j� 	 �i�� j��

if �i�j� � �i
�

�j�� and �i� j� precedes �i�� j�� in S� The laziness elimination pro	
cedure picks a lazy step �i� j� which is minimal with respect to 	 and shifts
its start time backward to t�� to yield a new schedule S�� such that jS�j � jSj�
Moreover� the partial order associated with S� is identical to the one induced by
S� The laziness at �i� j� is thus eliminated� and this might create new manifes	
tations of laziness at later steps which are eliminated in the subsequent stages



of the procedure �see illustration in Figure �� Let L�S� � J � K be the set
of steps that are not preceded by laziness� namely L�S� � f�i� j� � 
�i�� j�� �
�i� j� there is no laziness in �i�� j��g� Clearly the laziness removal procedure in	
creases L�S� and terminates due to �niteness�
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Fig� �� Removing laziness from a schedule S� �rst we eliminate laziness at ��� � and
create new ones at ��� � and ��� � in S�� and those are further removed until a non
lazy
schedule �S is obtained� The dashed line indicates the frontier between L�S and the
rest of the steps�

� Timed Automata

Timed automata �AD��� are automata augmented with continuous clock vari	
ables whose values grow uniformly at every state� Clocks can be reset to zero
at certain transitions and tests on their values can be used as pre	conditions
for transitions� Hence they are ideal for describing concurrent time	dependent
behaviors�

De�nition 
 �Timed Automaton�� A timed automaton is a tuple A �
�Q�C� s� f��� where Q is a �nite set of states� C is a �nite set of clocks� and
� is a transition relation consisting of elements of the form �q� 	� 
� q�� where q
and q� are states� 
 � C and 	 �the transition guard� is a boolean combination of
formulae of the form �c � I� for some clock c and some integer�bounded interval
I� States s and f are the initial and �nal states� respectively�

A clock valuation is a function v � C � R� � f�g� or equivalently a jCj	
dimensional vector over R� � We denote the set of all clock valuations by H� A
con�guration of the automaton is hence a pair �q�v� � Q � H consisting of a
discrete state �sometimes called 
location�� and a clock valuation� Every subset

 � C induces a reset function Reset� � H � H de�ned for every clock valuation
v and every clock variable c � C as

Reset� v�c� �

�
� if c � 


v�c� if c �� 




That is� Reset� resets to zero all the clocks in 
 and leaves the other clocks
unchanged� We use � to denote the unit vector ��� � � � � �� and � for the zero
vector�

A step of the automaton is one of the following�

� A discrete step� �q�v�
�
� �q��v��� where there exists � � �q� 	� 
� q�� � ��

such that v satis�es 	 and v� � Reset��v��

� A time step� �q�v�
t
� �q�v� t��� t � R� �

A run of the automaton starting from a con�guration �q��v�� is a �nite sequence
of steps

� � �q��v��
t�� �q��v��

t�� � � �
tn� �qn�vn��

The logical length of such a run is n and its metric length is j�j � t��t�� � � ��tn�
Note that discrete transitions take no time�

A lazy run is a run containing a fragment

�q�v�
t
� �q�v� t�

�
� �q��v��

where the transition taken at �q�v� t� is enabled already at �q�v� t�� for some
t� � t� In a non	lazy run whenever a transition is taken from a state� it is taken
at the earliest possible time� Clearly� from any given con�guration there are only
�nitely many non	lazy continuations and hence for every k there are only �nitely
many non	lazy runs with k steps�

Next we construct for every job J � �k� �� d� a timed automaton with one
clock such that for every step j such that ��j� � m there will be two states� a
state m which indicates that the job is waiting to start the step and a state m
indicating that the job is executing the step� Upon entering m the clock is reset
to zero� and the automaton can leave the state only after time d�j� has elapsed�
Let M � fm � m � Mg and let � � K � M be an auxiliary function such
that ��j� � m whenever ��j� � m� Note that the clock c is inactive at state m
because it is reset to zero without being tested upon leaving m�

De�nition  �Timed Automaton for a Job�� Let J � �k� �� d� be job� Its
associated timed automaton is A � �Q� fcg� �� s� f� with Q � P � P � ffg
where P � f����� � � � ��k�g� and P � f����� � � � � ��n�g� The transition relation
� consists of the following tuples

���j�� true� fcg� ��j�� j � ���k
���j�� c � d�j�� �� ��j � ��� j � ���k  �
���k�� c � d�k�� �� f�

The initial state is �����

The corresponding automata for the two jobs in Example � are depicted in
Figure ��

For every automaton A we de�ne a ranking function g � Q� R� � R� such
that g�q� v� gives a lower	bound on the time remaining until f is reached from
the con�guration �q� v��
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Fig� �� The automata corresponding to the two jobs J� � �m�� �� �m�� � and J� �
�m�� ��

In order to obtain the timed automaton representing the whole job	shop
speci�cation we need to compose the automata for the individual tasks� The
composition is rather standard� the only particular feature is the enforcement of
mutual exclusion constraints by forbidding global states in which two or more
automata are in a state corresponding to the same resource m� An n	tuple
q � �q�� � � � � qn� � �M �M � ffg�n is said to be conicting if it contains two
components qa and qb such that qa � qb � m �M �

De�nition � �Mutual Exclusion Composition�� Let J � fJ�� � � � � Jng be
a job�shop speci�cation and let Ai � �Qi� Ci� �i� si� f i� be the automaton cor�
responding to each J i� Their mutual exclusion composition is the automaton
A � �Q�C��� s� f� such that Q is the restriction of Q��� � � Qn to non�conicting
states� C � C� � � � � � Cn� s � �s�� � � � � sn�� f � �f�� � � � � fn� and the transition
relation � contains all the tuples of the form

��q�� � � � � qa� � � � � qn�� 	� 
� �q�� � � � � pa� � � � � qn��



such that �qa� 	� 
� pa� � �a for some a and the global states �q�� � � � � qa� � � � � qn�
and �q�� � � � � pa� � � � � qn� are non�conicting�

The result of applying this composition to the two automata of Figure � appears
in Figure ��

A run of A is complete if it starts at �s��� and the last step is a transition
to f � From every complete run � one can derive in an obvious way a schedule
relation S� such that �i� j� t� � S� if at time t the ith component of the automaton
is at state ��j�� The length of S� coincides with the metric length of ��

Claim � �Runs and Schedules� Let A be the automaton generated for the
job�shop speci�cation J according to De�nitions 	 and 
� Then�

	� For every complete run � of A� its associated schedule S� is a feasible schedule
for J �


� For every feasible schedule S for J there is a run � of A such that S� � S�
Moreover� if S is non�lazy so is ��

Note that non	laziness of the run does not imply non	laziness of the schedule�

Corollary � �Job�Shop Scheduling and Timed Automata�� The op�
timal job�shop scheduling problem can be reduced to the problem of �nding the
shortest non�lazy path in a timed automaton�

The two schedules appearing in Figure � correspond to the following two
runs �we use notation � to indicate inactive clocks��

S� �

�m�� m������
�
�� �m�� m�� ����

	
�� �m��m�� 	���

�
�� �m��m������

�
�� �m��m�� ����

�
�� �m��m�� �� ��

�
�� �m��m�� �� ��

�
�� �m�� f� ����

�
�� �m�� f� 
���

�
�� �f� f�����

S� �

�m�� m������
�
�� �m�� m���� ��

�
�� �m�� m���� ��

�
�� �m�� f�����

�
�� �m�� f� ����

	
�� �m�� f� 	���

�
�� �m�� f�����

�
�� �m�� f� ����



�� �m�� f� 
���

�
�� �f� f�����

Some words are in order to describe the structure of the job	shop timed au	
tomaton� First� it is an acyclic automaton and its state	space admits a natural
partial	order� It can be partitioned into levels according to the number of dis	
crete transitions from s to the state� All transitions indicate either a component
moving from an active to an inactive state �these are guarded by conditions of
the form ci � d�� or a component moving into an active state �these are labeled
by resets ci �� ��� There are no staying conditions �invariants� and the automa	
ton can stay forever in any given state� Recall that in a timed automaton� the
transition graph might be misleading� because two or more transitions entering
the same discrete state� e�g� transitions to �m�� f� in Figure �� might enter it
with di�erent clock valuations� and hence lead to di�erent continuations� Con	
sequently� algorithms for veri�cation and quantitative analysis might need to
explore all the nodes in the unfolding of the automaton into a tree� Two tran	
sitions outgoing from the same state might represent a choice of the scheduler�
for example� the two transitions outgoing from the initial state represent the
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Fig� �� The global timed automaton for the two jobs�

decision to whom to give �rst the resource m�� On the other hand some dupli	
cation of paths are just artifacts due to interleaving� for example� the two paths
outgoing from �m��m�� to �m��m�� are practically equivalent�

Another useful observation is that from every job	shop speci�cation J one
can construct its reverse problem J � where the order of every individual job is
reversed� Every feasible schedule for J � can be transformed easily into a feasible
schedule for J having the same length� Doing a forward search on the automaton
for J � is thus equivalent to doing a backward search on the automaton for J �

� Shortest Paths in Timed Automata

In this section we describe how the symbolic forward reachability algorithm
of Kronos is adapted to �nd a shortest path in a job	shop timed automaton�
Although Corollary � allows us to use enumerative methods in the case of deter	
ministic job	shop problems� we start with algorithms that do not take advantage
of non	laziness� both for the completeness of the presentation and as a prepa	
ration for more complex scheduling problems where non	laziness results do not
hold� Standard shortest	path algorithms operate on discrete graphs with numer	



ical weights assigned to their edges� The transition graphs of timed automata
are non	countable and hence not amenable to enumerative algorithms��

We recall some commonly	used de�nitions concerning timed automata� A
zone is a subset of H consisting of points satisfying a conjunction of inequalities
of the form ci  cj � d or ci � d� A symbolic state is a pair �q� Z� where q is a
discrete state and Z is a zone� It denotes the set of con�gurations f�q� z� � z � Zg�
Symbolic states are closed under the following operations�

� The time successor of �q� Z� is the set of con�gurations which are reachable
from �q� Z� by letting time progress�

Postt�q� Z� � f�q� z� r�� � z � Z� r � �g�

We say that �q� Z� is time�closed if �q� Z� � Postt�q� Z��
� The ��transition successor of �q� Z� is the set of con�gurations reachable

from �q� Z� by taking the transition � � �q� 	� 
� q�� � ��

Post��q� Z� � f�q��Reset��z�� � z � Z � 	g�

� The ��successor of a time	closed symbolic state �q� Z� is the set of con�gu	
rations reachable by a �	transition followed by passage of time�

Succ��q� Z� � Postt�Post��q� Z���

Needless to say� the result is time	closed�
� The successors of �q� Z� is the set of all its �	successors�

Succ�q� Z� �
�
���

�Succ��q� Z���

To compute all the reachable con�gurations of the job	shop automaton we use
a variant of the standard forward reachability algorithm for timed automata�
specialized for acyclic graphs� The algorithm starts with the initial state in a
waiting list and terminates with a list containing all reachable symbolic states�
Inserting successors at the end of the waiting list yields a breadth	�rst search
algorithm�

Algorithm � �Forward Reachability for Acyclic Timed Automata�
Waiting��fPostt�s���g�
while Waiting �� �� do
Pick �q� Z� � Waiting�
For every �q�� Z �� � Succ�q� Z��
Insert �q�� Z �� into Waiting�

Remove �q� Z� from Waiting
end

� One can� of course� discretize time into unit steps but this will cause an enormous
increase in the state
space of the automaton�



This algorithm solves the reachability problem for timed automata� a problem
which is trivial for job	shop automata because all complete runs lead to f � Its
adaptation for �nding shortest paths is rather straightforward� All we do is to
use a clock	space H� which is the clock	space of A augmented with an additional
clock cn�� which is never reset to zero� For any symbolic state �q� Z� reachable
in the modi�ed automaton A�� if �v�� � � � � vn� vn��� � Z then �q� �v�� � � � � vn�� is
reachable in A within any time t � vn��� Consequently� the length of the shortest
run from the initial state to q via the �qualitative� path which generated �q� Z�
is

G�q� Z� � minfvn�� � �v�� � � � � vn� vn��� � Zg

and the length of the optimal schedule is

minfG�f� Z� � �f� Z� is reachable in A�g�

Hence� running Algorithm � on A� is guaranteed to �nd the minimal schedule�
The rest of the section is devoted to several improvements of this algorithm�

whose na��ve implementation will generate a symbolic state for almost every node
in the unfolding of the automaton� Experimental results appear in Table ��
Inclusion Test� This is a common method used in Kronos for reducing the
number of symbolic states in veri�cation� It is based on the fact that Z � Z �

implies Succ��q� Z� � Succ��q� Z �� for every � � �� Hence� whenever a new
symbolic state �q� Z� is generated� it is compared with any other �q� Z �� in the
waiting list� if Z � Z � then �q� Z� is not inserted and if Z � � Z� �q� Z �� is removed
from the list� Note that allowing the automaton to stay inde�nitely in any state
makes the explored zones 
upward	closed� with respect to absolute time and
increases signi�cantly the e�ectiveness of the inclusion test�
Domination Test� The inclusion test removes a symbolic state only if all its
successors are included in those of another symbolic state� Since we are interested
only in optimal runs� we can apply stronger reductions that do not preserve all
runs� but still preserve the optimal ones� As an illustrative example consider the
automaton of Figure � and the two zones reachable via the two paths to q� namely
Z� � c� � c� � c� � � and Z� � c� � c� � c� � �� where c� is the additional
clock which measures absolute time� These zones are incomparable with respect
to inclusion� however� for every t they share a 
maximal� point �t� t� t� which
corresponds to the respective non	lazy runs along each of the paths� Hence it is
su�cient to explore only one of the symbolic states �q� Z�� and �q� Z���

Let �q� �v� t�� and �q� �v�� t��� be two reachable con�gurations in Q�H�� We
say that �v� t� dominates �v�� t�� if t � t� and v � v�� Intuitively this means
that �q�v� was reached not later than �q�v�� and with larger clock values� which
implies that steps that are active at q started earlier along the run to �q�v� and
hence can terminate earlier� It can be shown that for every reachable symbolic
state �q� Z�� Z contains an optimal point �v�� t�� dominating every other point
in Z� This point� which is reachable via a non	lazy run� can be computed by
letting t� � G�q� Z� �earliest arrival time� and v� � �v�� � � � � � v

�

n� where for every
i�

v�i � maxfvi � �v�� � � � � vi� � � � � vn� t
�� � Zg�
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q
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Fig� �� Two paths that lead to q which are equivalent with respect to optimality�

We say that Z� dominates Z� if �v��� t
�

�� dominates �v��� t
�

��� We apply the domi	
nation test in the same manner as the inclusion test to obtain a further reduction
of the number of symbolic states explored�

Problem size Inclusion Domination Best
�rst

�j �ds �tree �s time �s time �s time

� �� ��� ��� � ��� � �� �
� ��� ����� ���� � ���� � ��� �
� ���� ������ ������ ��� ����� � ���� �
� ����� m�o� m�o� m�o� ������ �� ���� �
� ������ m�o� m�o� m�o� ������� ���� ����� �

Table �� The results for n jobs with � tasks� Columns �j� �ds and �tree show�
respectively� the number of jobs� the number of discrete states in the automaton and
the number of di�erent reachable symbolic states �which is close to the number of
nodes in the unfolding of the automaton into a tree� The rest of the table shows the
performance� in terms of the number of explored symbolic states and time �in seconds�
of algorithms employing� progressively� the inclusion test� the domination test� and the
best
�rst search �m�o� indicates memory over�ow�

Best��rst Search� The next improvement consists in using a more intelligent
search order than breadth	�rst� To this end we de�ne an evaluation function
E � Q � H� � R� for estimating the quality of con�gurations and symbolic
states�

E��q�� � � � � qn�� �v�� � � � � vn� t�� � t�maxfgi�qi� vi�g
n
i��

where gi is the previously	de�ned ranking function associated with each automa	
ton Ai� Note that maxfgig gives the most optimistic estimation of the remaining
time� assuming that no job will have to wait� The extension of this function to
zones is E�q� Z� � E�q� �v�� t���� It is not hard to see that E�q� Z� gives a lower
bound on the length of every complete run which passes through �q� Z��

The modi�ed algorithm now orders the waiting list of symbolic states ac	
cording to their evaluation �and applies the inclusion and domination tests upon
insertion to the list��



Algorithm � �Best��rst Forward Reachability�
Waiting��fPostt�s���g�
Best���
�q� Z��� �rst in Waiting�
while Best  E�q� Z�
do
For every �q�� Z �� � Succ�q� Z��
if q� � f then
Best��minfBest�E�q�� Z ��g

else
Insert �q�� Z �� into Waiting�

Remove �q� Z� from Waiting
�q� Z��� �rst in Waiting�

end

This algorithm is guaranteed to produce the optimal path because it stops the
exploration only when it is clear that the unexplored states cannot lead to sched	
ules better than those found so far�

We have implemented these techniques into Kronos and tested them �rst on
a family of problems consisting of n jobs� n � � � � � � �� each with � steps�� We
also make use of Kronos� capability to handle zones of varying dimensionality�
were only active clocks are considered�DY���� The results� obtained on a Pentium
P�� ��� MHz under Linux� with memory restricted to ��MB� are depicted in
Table �� One can see that the number of symbolic states explored by the best	�rst
algorithm is smaller than the number of discrete states in the timed automaton�
Nevertheless the combinatorial nature of the problem cannot be avoided�

Points instead of Zones� Following Corollary �� an optimal run can be found
among the non	lazy runs and the search can be restricted to explore only such
runs� This search can be performed without using zones� but rather using single
points in the clock space �which are exactly the dominating points of the reach	
able zones�� This reduces signi�cantly memory usage �O�n� per symbolic state
instead of O�n��� and simpli�es the operations� e�g� passage of time becomes a
simple vector addition� etc�

Sub�Optimal Solutions� In order to treat larger problems we abandon the
guarantee for optimality and use a heuristic algorithm which can quickly generate
sub	optimal solutions� The algorithm is a mixture of breadth	�rst and best	�rst
search with a �xed number w of explored nodes at any level of the automaton� For
every level we take the w best �according to E� symbolic states� generate their
successors but explore only the best w among them� and so on� The number w is
the main parameter of this technique� and although the number of explored states
grows monotonically with w� the quality of the solution does not � sometimes
the solution found with a smaller w is better than the one found with a larger
one�

� The problems can be found in www�verimag�imag�fr��maler�jobshop



In order to test this heuristics we took �� problems among the most notorious
job	shop scheduling problems�� Note that these are pathological problems with
a large variability in step durations� constructed to demonstrate the hardness of
job	shop scheduling� For each of these problems we have applied our algorithms
for di�erent choices of w� both forward and backward� In Table  we compare
our best results on these problems with the best results reported in Table ��
of the recent survey �JM���� where the results of the �� best	known methods
were compared� In order to appreciate the di�culty� we also compare our results
with the best results among ���� randomly	generated solutions for each of the
problems�

problem Kronos Rand Opt

name �j �m time length deviation length deviation length

FT�� �� �� �� ��� ���� � ���� ����� � ���
LA�� �� � � ��� ���� � ���� ����� � ���
LA�� �� �� �� ��� ���� � ���� ����� � ���
LA�� �� �� ��� ���� ���� � ���� ������ � ����
LA�� �� �� ��� ��� ���� � ���� ������ � ���
LA�� �� �� ��� ���� ���� � ���� ������ � ���
LA�� �� �� � ���� ���� � ���� ������ � ����
LA�� �� �� ��� ���� ����� � ���� ������ � ����
LA�� �� �� �� ���� ���� � ���� ������ � ����
LA�� �� �� �� ���� ���� � ���� ������ � ����

Table �� The results for �� hard problems using the bounded width heuristic� The
�rst three columns give the problem name� no� of jobs and no� of machines �and steps�
Our results �time in seconds� the length of the best schedule found and its deviation
from the optimum appear next� followed by the best out of ���� randomly
generated
solutions and by the best known result for each problem�

� Related Work

This work can be viewed in the context of extending veri�cation methodology
in two orthogonal directions� from veri�cation to synthesis and from qualitative
to quantitative evaluation of behaviors� In veri�cation we check the existence of
certain paths in a given automaton� while in synthesis we have an automaton
in which not all design choices have been made and we can remove transitions
�and hence make the necessary choices� so that a property is satis�ed� If we add
a quantitative dimension �in this case� the duration of the path�� veri�cation is
transformed to the evaluation of the worst performance measure over all paths�
and synthesis into the restriction of the automaton to one or more optimal paths�

	 The problems are taken from ftp���mscmga�ms�ic�ac�uk�pub�jobshop��txt



The idea of applying synthesis to timed automata was �rst explored in
�WH��� An algorithm for safety controller synthesis for timed automata� based
on operation on zones was �rst reported in �MPS��� and later in �AMP����
where an example of a simple scheduler was given� and in �AMPS���� This al	
gorithm is a generalization of the veri�cation algorithm for timed automata
�HNSY���ACD��� used in Kronos �Y� �BDM����� In these and other works on
treating scheduling problems as synthesis problems for timed automata� such
as �AGP���� the emphasis was on yes!no properties� such as the existence of a
feasible schedule� in the presence of an uncontrolled adversary�

A transition toward quantitative evaluation criteria was made already in
�CY��� where timed automata were used to compute bounds on delays in real	
time systems and in �CCM���� where variants of shortest	path problems were
solved on a timed model much weaker than timed automata� To our knowledge�
the �rst quantitative synthesis work on timed automata was �AM��� in which
the following problem has been solved� 
given a timed automaton with both
controlled and uncontrolled transitions� restrict the automaton in a way that
from each con�guration the worst	case time to reach a target state is minimal�� If
there is no adversary� this problem corresponds to �nding the shortest path� Due
to the presence of an adversary� the solution in �AM��� was based on backward	
computation �dynamic programming�� i�e� an iterative computation of a function
h � Q � H � R� such that h�q�v� indicates the minimal time for reaching the
target state from �q�v�� The implementation of the forward algorithm used in
the current paper can be viewed as iterating with a function h such that h�q�v�
indicates the minimal time to reach �q�v� from the initial state� The reachable
states in the augmented clock	space are nothing but a relational representation
of this function�

Around the same time� in the framework of the VHS �Veri�cation of Hybrid
systems� project� a simpli�ed model of a steel plant was presented as a case	study
�BS���� The model had more features than the job	shop scheduling problem
such as upper	bounds on the time between steps� transportation problems� etc�
A� Fehnker proposed a timed automaton model of this plant from which feasible
schedules could be extracted �F���� This work inspired us to �nd a systematic
connection between classical scheduling problems and timed automata �M����
upon which this paper is based� Another work in this direction was concerned
with another VHS case	study� a cyclic experimental batch plant at Dortmund
for which an optimal dynamic scheduler was derived in �NY����

The idea of using heuristic search is useful not only for shortest	path prob	
lems but for veri�cation of timed automata �and veri�cation in general� where
some evaluation function can guide the search toward the target goal� These
possibilities were investigated recently in �BFH���a� on several classes of exam	
ples� including job	shop scheduling problems� where various search procedures
and heuristics were explored and compared�

In �NTY��� it was shown that in order to �nd shortest paths in a timed
automaton� it is su�cient to look at acyclic sequences of symbolic states �a
fact that we do not need due to the acyclicity of job	shop automata� and an



algorithms based on forward reachability was introduced� A recent generalization
of the shortest path problem was investigated by �BFH���b� and �ATP���� In
this model there is a di�erent price for staying in any state and the total cost
associated with the run progresses in di�erent slopes along the path� It has been
proved� using di�erent techniques� that the problem of �nding the path with the
minimal cost is computable�

� Conclusion

We have suggested a novel application of timed automata� namely for solving
job	shop scheduling problems� We believe that the insight gained from this point
of view will contribute both to scheduling and to the study of timed automata�
We have demonstrated that the performance of automata	based methods is not
inferior to other methods developed within the last three decades� There are
still many potential improvements to be explored such as the application of
partial	order methods� more symbolic representation of the discrete states� new
heuristics� etc� The most interesting challenge is to adapt these techniques for
more complex scheduling situation such as those involving uncertainty or logical
dependencies among tasks�
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