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Abstract� In this paper we solve the following problem� �given a digital
circuit composed of gates whose real�valued delays are in an integer�
bounded interval� is there a way to discretize time while preserving the
qualitative behavior of the circuit�� This problem is described as open in
�BS���� When �preservation of qualitative behavior� is interpreted in a
strict sense� as having all original sequences of events with their original
ordering we obtain the following two results�
�� For acyclic �combinatorial� circuits whose inputs change only once�
the answer is positive� there is a constant �� depending on the maximal
number of possible events in the circuit� such that if we restrict all events
to take place at multiples of �� we still preserve qualitative behaviors�
	� For cyclic circuits the answer is negative� a simple circuit with three
gates can demonstrate a qualitative behavior which cannot be captured
by any discretization�
Nevertheless we show that a weaker notion of preservation� similar to
that of �HMP�	�� allows in many cases to verify discretized circuits with
� � � such that the veri�cation results are valid in dense time�

� Introduction

The analysis of digital circuits� whose components exhibit uncertain delay pa�
rameters is a challenging task� A commonly�used model for specifying such sys�
tems is the bi�bounded delay model where the output of every gate passes through
a delay element characterized by some interval �l� u�� Roughly speaking� changes
at the input port of the delay element are propagated to its output port after
some time t taken from the interval �l� u��

y The results were obtained while the author was a visiting professor at Ensimag�
Inpg� Grenoble

z The results were obtained while the author was a visiting professor atUJF� Grenoble�
� In this paper� we treat digital circuits which we consider to be a well�behaving subset
of timed automata� While many of the results can be extended to arbitrary timed
automata� we prefer clarity of presentation over generality�



Adding quantitative timing information to a discrete transition system A
amounts to connecting A to a special system called Time� which is viewed as
a transition system with a special structure� namely� a linear order� such that
all transitions go �to the right�� The composition of A and Time consists of a
system where transitions of A and time passage transitions are interleaved�

Consider the example in 	gure 
� Initially we have a two�state automaton
which can decide at any time to take a single transition labeled by a� and a time
structure annotated with t transitions� Adding timing constraints to A consists
in� 
� annotating the a transition with a condition T � �
� �� on the state of Time
and 
� adding �idling� transitions to both in order to synchronize� each system
takes its real transitions when the other is idling� The product of the two is a
system which makes a at some time in �
� ���

� � 	 
 �
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Fig� �� An initialized product of a two�state one�transition automaton with Time�

Remark� This picture is intentionally over�simpli	ed� mainly because we do
not have two consecutive transitions and the reference time value is always ��
Otherwise we need to introduce an additional unbounded state variable of type
Time� memorizing the time of the last transition since the beginning� If we had
a product of several systems� we would have needed such a variable for each�

Note that we were not very speci	c about one important property of Time�
whether its order is dense or discrete� One can imagine �if not draw� an analogue
of 	gure 
 where the states of Time are labeled by all the real numbers� The
structure of the interaction between Time and A remains the same� In fact�
there is a slight misconception concerning the signi	cance of timed models such
as timed automata� Our view is that one should distinguish two aspects of timed
models� one is the interaction with a special process such as Time� whose state�
space admits order and metric� and the other is the use of continuous dense
Time�� The latter is not necessarily implied by the former� and the goal of the

� We owe some of this insight to �RT����



paper is to investigate what expressive power �in the sense of modeling� is lost
if we refrain from using dense time models� and stay within the familiar �to
computer scientists� that is� realm of discrete systems�

Consider again 	gure 
 with a discrete time interpretation where every t
indicates 
 time unit� What does it really mean to move to a coarser time scale
of 
 time units� One interpretation is that odd Time states are removed and that
t represents 
 units� Alternatively� we can maintain the same intrinsic structure
of Time but erase all the a transitions from the odd time instants� restricting the
product system to take untimed transitions only at even times� In this example
the possibility of taking a at T � � is lost� If we restrict transitions to occur at
multiples of � we may miss the transition altogether� However� if the granularity
of time is at least as 	ne as the scale of the timing constraints� we are sure not
to miss any event in a single�clock �single variable� system� Suppose now that
we have two such systems running in parallel� one can make a in �
� �� and the
other can make b at ��� �� �	gure 
�� Here� the integer time�scale allows a and
b to occur either simultaneously �at �� or one after the other� By restricting
transitions to occur either at odd or even time instants� only one of the above
possibilities is allowed�
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Fig� �� Two one�transition timed automata in parallel�

The passage from dense to discrete time can be viewed in a similar spirit� We
can assume a generic dense model of Time� isomorphic to �R� � ��� and regard
every Time discretization as a restriction of the discrete transitions to occur at
a certain discrete subset of Time instants� Most of this paper is dedicated to the
investigation of the e�ects of such restrictions on the semantics of automaton
and circuit models� More concretely� if A is the timed automaton associated
with a circuit� LA is its corresponding set of behaviors �Boolean�valued signals�
and �LA� is its set of qualitative behaviors �Boolean�valued sequences� obtained



from LA by suppressing the quantitative timing information�� we ask under what
conditions there exists a discretized semantics L�A such that �L�A� � �LA�� Note
that the inclusion �L�A� � �LA� follows immediately from L�A � LA�

An important related question is under what conditions we have �L�A�L��� �
� i� �LA � L��� � � where L�� is the complement of the speci	cation for a
property we wish to establish for the automaton A� When this holds� veri	cation
results on the discrete and dense semantics coincide� This is very signi	cant
because discrete time models can bene	t from many techniques developed for
untimed veri	cation� For example� in �ABK����BMPY��� we have presented
an approach for discrete time veri	cation based on viewing clocks as bounded
integer variables� and representing sets of clock valuations using BDDs on the
bits of these values� In �BM��� a claim of the form �L�A � L��� � � has been
veri	ed for a discretized system of up to �� clocks� However� due to the strict
inclusion between the semantics� it was not at all evident that the veri	cation
results are valid for the dense time model� The results of the current paper show
that for the example treated in �BM���� this is indeed the case� i�e� �LA�L�� � ��
Similar investigations were carried out in �HMP�
� using a di�erent model and
a di�erent technique�

The rest of the paper is organized as follows� In section 
 we describe the
circuit and delay models that we use� In section � we show how the realizability of
a qualitative behavior is related to the emptiness of certain polyhedra �possibly
in	nite�dimensional�� These results are used to show that� essentially� acyclic
circuits �and automata� admit a discretization� while cyclic circuits �and timed
automata in general� do not� In section � we show that untimed properties can
essentially be veri	ed using discrete time models� Some short contemplations on
the potential implications of the results conclude the paper�

� Signals and Circuits

Let T � R� � B � f�� 
g and K � f
� � � � � kg�

De�nition � �Boolean Signals�� A Boolean signal is a left�continuous func�
tion � � T � B

k admitting a countable� increasing sequence �which is either
�nite or diverging� J ��� � t�� t�� � � � of transition points such that t� � � and �
is constant at every interval �tj � tj��� and discontinuous at every tj �

A signal � is ultimately�constant if J ��� is 	nite� We denote the set of all
Boolean signals by Sk� A Boolean function is a function f � B k � B for some
k � �� For any such function we de	ne its pointwise extension f � Sk � S in
the obvious way� namely � � f��� i� for every t � T � ��t� � f���t��� We call
this an instantaneous signal function� At the level of modeling in which we are
interested� a gate is usually viewed as a composition of an instantaneous function
and a delay element which holds the output of the function for some time before
transmitting it outside� There are several realistic properties of delays which
must be accounted for in the model�
� And of order type � � if you want to be pedantic�




� Positive lower�bound� there is a minimal amount of time that has to elapse
between the change of the input and the change in the output��


� Uncertainty� the exact delay is usually unknown and can only be estimated
to be within an interval�

�� Inertia� small �uctuations in the input are ignored by the delay element�
and only changes that persist for a minimal duration are propagated to the
output�

These considerations are re�ected in the following de	nition�

De�nition � �Non�Deterministic Inertial Delay�� Let l and u be two non�
negative numbers such that l � u� The non�deterministic inertial delay associated
with l� u is a function ��l�u� � B 	 S � 
S de�ned as� � � ��l�u��b� �� i�

	� ��t� � b for every t � ��� l�
�Initialization��


� For every t � l� t � J ��� 
 �t� � J ��� � �t� u� t� l� such that ��t� � ��t��
and �t�� t� � J ��� � ��
�Every change in � must be preceded by a persistent change in � which
happened at least l time units before��

�� For every t � J ���� �t� t� u� � J ��� 
� � � �t� l� t� u� � J ��� 
� ��
�Every u�persistent change in � must be re�ected in ���

Essentially this means that changes in � that persist less than l are ignored
�	ltered�� those that persist between l and u time can be either 	ltered or prop�
agated to �� and those that persist for u or more time must be propagated to ��
The distance between a change in � and its corresponding change in � must be
the interval �l� u�� These notions are illustrated in 	gure ��
Remark� This model is only one among possible alternative models for the
delay phenomenon� One could assume� for example� that changes should persist
for at least l� time units� but propagated after l�� l� � l� time� On the other
hand� the requirement that an input change persists until its propagation to
the output may be relaxed� Incorporating such delay models can be done in the
timed automaton framework by adding additional states to the basic automaton�
The choice among models depends on the trade�o� between model complexity
and the faithfulness to the physical reality� Also� we use the closed interval �l� u�
in the discussion� but the results in the following sections treat intervals which
can be open at one or two ends�

Non�deterministic delays pose problems for traditional simulation methods
as the next �event� in the simulation can take place anywhere within an interval�
In the sequel� in order not to drag with us too much notation� we will omit the
reference to the initial value from the delay equations and use equations of the
form � � ��l�u�����

De�nition 	 �Circuit�� A k�variable digital circuit is a tuple N � �X�F�D�
where X � fx�� � � � � xkg is a set of variables� F � ff�� � � � � fkg is a set of Boolean

� Some models relax this condition and allow unboundedly small �but positive� delays�
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Fig� �� The signal s� is a result of �ltering away changes in s� which do not persist for
	 time units� s� is an ideal delay of s�� shifted by 	� while s� is the inertial �	� 	��delay
of s�� Finally fs�� s�� s�� s�g � �����	�s���

functions of the form fi � B
k � B and D � f�l�� u��� � � � � �lk� uk�g is a set of

positive pairs of integers such that li � ui� An observable behavior of the circuit
is any B

k �valued signal x � hx�� � � � � xki satisfying the system of simultaneous
inclusions�

x� � ��l��u���f��x�� � � � � xk��

� � �

xk � ��lk�uk ��fk�x�� � � � � xk��

�
�

A circuit appears in 	gure ���a�� The correspondence between a circuit and
the system of inclusions �
� is straightforward and we will refer to the latter as
the description of the circuit� Needless to say� the system of inclusions �
� need
not have a unique solution� The set of solutions is called the semantics of the
circuit and is denoted by LN �

For certain purposes it is useful to introduce an auxiliary set of variables
Y � fy�� � � � � ykg and consider the signal y � hy�� � � � � yki such that for every
i � K�

yi � fi�x�� � � � � xk��

Every yi represents the �hidden� value of xi� that is� the value that xi is about
to obtain given that fi�x�� � � � � xk� remains stable for a su�ciently long period�
The signal y is called the hidden behavior associated with x�
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Fig� �� �a� A 
�variable circuit� �b� An acyclic circuit �delays omitted� with 
 primary
inputs�

In �MP��� it has been shown how to translate every equation of the form xi �
��li�ui��fi�x�� � � � � xk�� into a timed automaton with two Boolean variables �four
states� and one clock �see 	gure ��� The composition of these k automata yields
an automaton A with 
k states	 and k clocks� whose semantics LA is exactly
LN � This translation has been used for applying timed automata veri	cation
techniques �D���AD���HNSY���ACD��� and tools �DOTY��� to various circuits�
e�g� �MY���BMPY���TB���BM����

The model captured by the system of inclusions �
� is very general in the sense
that it assumes that all the Boolean functions are k�ary� and� in principle� every
change in one variable can trigger a change in any other variable� In practice�
gates have a limited fan�in and each fi refers only to a small subset of the
variables� Moreover there is some order in which information �ows which can be
captured by the wiring topology of the circuit �or the syntactic structure of F ��
For example� if the only equation in which xi appears on the left�hand side is
of the form xi � ��d�����xi�� xi is an input signal whose rising and falling are
separated by at least d time units� Similarly xi is an unconstrained input signal
if it does not appear in the left�hand side of any equation�

In the analysis of synchronous circuits with a central clock� it is often assumed
that the circuit is acyclic� i�e� there is no cycle in the circuit layout� Such a circuit
appears in 	gure ���b�� The signals entering at the top are called the primary
inputs of the circuit� A primary input which may change at most once at the
beginning of the execution can be modeled by a timed automaton of the type
appearing in 	gure ���b�� We leave it to the reader to verify that a product of
such input automata with the automata corresponding to the equations of an
acyclic circuit is an acyclic automaton �no cycles in the transition graph�� and
hence the number of transitions in any run is 	nite and bounded�

� After composition� the values of the y�components are uniquely determined by the
x�components and hence only 	k out of the �k global states are possible�
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Fig� �� �a� The automaton for the equation xi � ��li�ui	�fi�x�� � � � � xk��� The states
of the automaton correspond to the values of �xi� yi�� �b� An acyclic automaton for a
primary input�

� Qualitative Behaviors and their Realizability

In this section we introduce the notion of a qualitative behavior� a result of
stripping away the quantitative properties of a signal and considering only the
ordering relation among events�

Let x be an observable behavior of a given circuit and let y be the corre�
sponding hidden behavior� We de	ne three function EX � EY and E � J �x�� 
K

as follows�
EX�j� � fi � xi�tj � 
� xi�tj���g
EY �j� � fi � yi�tj � 
� yi�tj���g
E�j� � EX�j� � EY �j�

In other words� EX�j� is the set of all indices of the x�variables that change at
time tj � If i � EX�j� �resp� i � EY �j�� we say that tj is an xi�event �resp� a
yi�event�� If i � E�j� we say that tj is an i�event� Note that EY �j� 
� � only if
EX�j� 
� ��

Two behaviors x and x� are equivalent� denoted by x � x�� if their correspond�
ing functions EX and E �X are identical� A qualitative behavior is an equivalence
class of �� denoted by �x�� and it can be viewed as a string �without repetition�
taken from �B k �� � �B k ��� which records the values of x at J �x�� We extend
this notion to sets of signals� i�e� �L� � f�x� � x � Lg� The number of events in a
signal x is de	ned as�

Z�x� �
X

j�J 
x�

jEX�j�j�



Let N � �X�F�D� be a circuit� A signal can be generated by N if it satis	es
two types of constraints� The 	rst type is logical and does not depend on the
delay parameters�


� For every i� yi � fi�x�� � � � � xk�� where fi � F �

� Every yi�event is followed by an i�event� This means that every triggering of

a variable is either aborted or concluded successfully�
�� Every xi�event is preceded by a yi event �without any xi�event between

them�� observable changes must be triggered 	rst�

On the basis of these conditions we can rule out qualitative behaviors which
are not realizable regardless of quantitative timing� For the rest of signals we
de	ne a partial function F � K 	 J �x� � J �x�� which associates with every
i � f
� � � � � kg and j� such that tj is a yi�event� a number m � j such that tm is
the time of the next i�event� Formally�

F�i� j� � m i� i � EY �j� � i � E�m� �
�m� � �j � 
�m� 
� i 
� E�m���

Note that F is a qualitative characteristics of a signal and is identical for every
x� � �x�� Moreover� the size of F �viewed as a relation� is at most Z�x�� The tem�
poral distance between tm and tj must satisfy the timing constraints associated
with xi�

Claim � �Characteristic Inequalities�� A signal x can be generated by a
circuit N � �X�F�D� i� it satis�es the logical constraints as well as the following
set of inequalities over J �x� �where �li� ui� � D��


 Ordering Constraints�
for every j � jJ �x�j

� � tj�� � tj �
�


 Timing Constraints�
for every m � F�i� j� such that i 
� EX�m� �abortion�

tm � tj � ui ���

for every m � F�i� j� such that i � EX�m� �completion�

li � tm � tj � ui ���

We denote the set of solutions of the system of inequalities �
�� ���� and ���
associated with �x� by PN ��x��� We use the term t�polyhedra to denote subsets
of Tn � R

n
� which can be written as intersections of half�spaces of the form

tm � tj � c where c is an integer and � is either � or �� By de	nition� t�
polyhedra are convex�

Corollary �� A qualitative behavior �x� is realizable by a circuit N i� its asso�
ciated t�polyhedron PN ��x�� is non�empty�



Let T� denote the set fm	 � m � Ng� An n�dimensional non�empty polyhe�
dron P is 	�discretizable if it has a non�empty intersection with the 	�grid Tn

� �
The problem of behavior�preserving discretization is reduced to a linear�algebraic
problem�

Corollary �� A qualitative behavior �x� realizable by a circuit N is preserved by
a 	�discretization of Time i� PN ��x�� is 	�discretizable�

We distinguish three types of t�polyhedra� open �all inequalities are strict��
closed �all inequalities are non�strict�� and mixed� Note that a non�empty open
t�polyhedron is full�dimensional while a closed or mixed one might have degen�
eracies�

Lemma �� Every non�empty t�polyhedron P � R
n
� contains�

	� a point of Nn � when P is closed


� a point �t�� � � � � tn� with all fractional parts of coordinates htii di�erent from

�� when P is open

�� a point� when P is mixed�

Proof�


� First notice that if l � x � y � u then l � bxc � byc � u when l� u � N�
Suppose �t�� � � � � tn� � P � It is immediate that �bt�c� � � � � btnc� � P � N

n �

� An open t�polyhedron P is full�dimensional and convex� If we remove from

P all the hyper�planes ti � c for i � 
� � � � � n and c � N� the resulting set
is still an open non�empty set� Let �t�� � � � � tn� be a point in this set� By
construction it satis	es the statement of the lemma�

�� By de	nition of non�emptiness� ut

Now we de	ne an equivalence relation on R
n
� � which is commonly�used in the

theory of timed automata �D���AD���� Two points �t�� � � � � tn� and �s�� � � � � sn�
are equivalent if and only if the integer parts of their coordinates coincide �i�e�
btic � bsic� and the order between the fractional parts of their coordinates is
the same �i�e� htii � htji i� hsii � hsji�� The main property of this relation is
that equivalent points satisfy exactly the same set of inequalities� and hence� a
t�polyhedron containing a point should contain all its equivalence class�

Lemma �� In R
n
�

	� Any point with all fractional parts of coordinates htji di�erent from � has an
equivalent point on any 	�grid with 	 � 

n�


� Any point has an equivalent point on any 	�grid with 	 � 

M � 

n�
M � N�

Proof� Let �t�� � � � � tn� be a point and let

bj � maxfm	 � m	 � btjcg�



Without loss of generality suppose that ht�i � � � � � htni� Let

pj � jfhtii � � � htii � htjigj�

that is� for each j � f
� � � � � ng� pj counts the number of di�erent htii�s such that
� � htii � htji� Note� in particular� that p� � � if t� � � and p� � 
 otherwise�
Also observe that the ordering among the pj �s is the same as among the htji�s
and that every pj is smaller than n� Then� by letting

sj � bj � pj	

we obtain �s�� � � � � sn� which is a point on the 	�grid equivalent to �t�� � � � � tn��
ut

Remark� The proof is similar to that of �GPV��� where the authors prove that
every timed automaton is discretizable� Their sense of discretization� however�
distorts the passage of time�

Corollary 	 �Discretization of Finite�dimensional t�Polyhedra�� Every
t�polyhedron P � R

n is 	�discretizable where

	� 	 is of the form 

M where M � N �when P is closed�� In particular P is

�discretizable�


� 	 � 

n �when P is open��
�� 	 � 

n and is of the form 

M � M � N �when P is mixed��

These estimates are exact�

It is a straightforward exercise to demonstrate t�polyhedra which are not 	�
discretizable for 	 not satisfying the above conditions�

Claim � �Discretization of In�nite�dimensional t�Polyhedra��
For in�nite�dimensional t�polyhedra the following holds�

	� There exist open and mixed t�polyhedra which are not 	�discretizable for any
	 � ��


� A closed t�polyhedron is 	�discretizable if 	 is of the form 

M � where M � N�
In particular it is 
�discretizable�

Proof�


� �We give the proof for mixed polyhedra�� Consider the in	nite�dimensional
t�polyhedron P de	ned by the following system of equations�


 � t� � 


 � s� � �

 � r� � �

 � tj�� � tj � 


 � sj�� � sj � �

 � rj�� � rj � �

���

and



t�j�� � s�j�� � r�j�� � t�j � r�j � s�j � t�j��

for j � N� This polyhedron is non�empty and it contains� for example� the
point

tj � 
j

sj � 
j � 
� 
�j � �����j

rj � 
j � 
� 
�j � �����j �

However it is not 	�discretizable for any 	� Suppose the contrary� It follows
from the inequalities ��� that the distance between tj and sj �or rj� never
decreases�

sj�� � tj�� � sj � tj � rj�� � tj�� � rj � tj

An induction proves that in any 	�realization this distance� in fact� increases
linearly�

s�j�� � t�j�� � �
j � 
�	

r�j�� � t�j�� � 
j	

r�j � t�j � 
j	

s�j � t�j � �
j � 
�	

which contradicts the ordering inequality s�j � t�j�� � t�j � 
 when j is
large enough �namely when �
j � 
�	 � 
��


� Similarly to the 	nite�dimensional case� Suppose �t�� � � � � tj � � � �� � P � It is
immediate that �bt�c� � � � � btjc� � � �� � P �N� � Hence P is 
�discretizable and
consequently 

M �discretizable� ut

The results concerning closed t�polyhedra might tempt one to think that by
�closing� all timing constraints it is possible to 
�discretize all circuits �i�e� that
for these circuits the dense�time and discrete�time semantics coincide�� Unfor�
tunately this is not the case� the characteristic t�polyhedron of a qualitative
behavior is de	ned by two sets of inequalities� While the timing constraints can
be made closed by an �in	nitesimal� modi	cation of the circuit model� the or�
dering constraints t� � t� � t�� � � � are open by nature� the resulting polyhedron
is mixed and a discretization of 	 � 

M � 

n is necessary for the acyclic case�
For cyclic circuits� the negative result of claim 
 applies�

By relaxing the ordering constraints into t� � t� � t� � � � we obtain a weaker
notion of behavior preservation� For every qualitative behavior �x�� realizable
by a dense time circuit� there is a qualitative behavior �x��� realizable in dis�
crete time� such that some events that occur at di�erent time instants in x� take
place at the same time instant in x�� This is the notion of preservation used in
�HMP�
� who employ a �timed trace� model where �a� t���b� t�� � �a� t���b� t��
but �a� t���b� t�� 
� �b� t��� �a� t��� To demonstrate the weak preservation phe�
nomenon consider the circuit described by

x� � ��������x�� x� � ��������x�� x� � ��������x��



The qualitative behavior �
BB�
�
�
�
�

�
CCA

�
BB�
�
�
�
�

�
CCA

�
BB�
�
�
�
�

�
CCA

�
BB�
�
�
�
�

�
CCA

can be realized by t�� t� and t� satisfying


 � t� � t� � t� � 
�

Clearly� this t�polyhedron does not contain an integer point� Only by relaxing
the ordering relation between the events into


 � t� � t� � t� � 


we can 
�discretize and obtain a behavior such as

�
BB�
�
�
�
�

�
CCA

�
BB�
�
�
�
�

�
CCA �

Theorem � �Main Result��

	� Every acyclic circuit can be 	�discretized with 	 � 

M � 

n� where n is the
maximum of Z�x� over all qualitative behaviors which are logically realizable
by the circuit�


� There are cyclic circuits which are not discretizable at all�
�� All circuits with closed delay intervals can be 
�discretized with weak preser�

vation of behaviors�

Proof�


� An immediate consequence of corollary ��

� Consider the circuit described by

x� � ��������x�� x� � ��������x�� x� � ��������x��

and the qualitative behavior
�
�
�
�
�
�
�

�
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�
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�

�
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�
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�
�

�
A
�
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�
�

�
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�
�
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�
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�
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�
�
�

�
A
�
A
�

�

The characteristic polyhedron of this behavior is exactly the one de	ned
by the inequalities ���� if we take tj � rj and sj to denote the jth transition
times of x�� x� and x� respectively� The result follows from claim 
�
�

�� This is essentially the result of �HMP�
� and it follows from claim 
�
� ut

� Preservation of Properties

In this section we use rather informally the term closed for speaking of circuits
or timed automata whose timing conditions are closed� and for the languages of
signals generated by such automata� For a non�closed automaton A we use �A to
denote its closure� i�e� the automaton obtained by replacing all open inequalities
by closed ones� Similarly we denote the closure of a sets of signals L by �L with
the obvious property L � �L� From claim 
 we can conclude�



Corollary � �Emptiness of Closed Circuits and Automata�� Let A be
a closed automaton� and let A� be the 
�discretization of A� Then L�A � � i�
LA � ��

This positive result is perhaps more signi	cant from a practical point of view
of veri	cation than the negative result of theorem 
� Suppose that a desired
property of an automaton A is speci	ed by a formula � denoting a language L�
whose negation is L��� If both LA and L�� are closed� one can do veri	cation
on their 
�discretization�s L�A and L��� because L�A �L

�
�� � � i� LA �L�� � ��

In the case that LA and L�� are not closed� one can discretize their closures �LA
and �L�� into �L�A and �L��� and perform veri	cation on those� The results are

valid since �L�A �
�L��� � � implies LA � L� � ��

Note that we have not treated the question of transforming L� into L�� due
to the problematics of complementation for timed automata� However� in the
special case where L� is untimed �for every �x�� either �x� � L� or �x��L� � ���
L�� is untimed as well and the characteristic polyhedron of every qualitative
behavior is either empty or universal and can be 
�discretized�

Corollary � �Untimed Properties of Automata�� Untimed properties of
closed circuits�automata can be veri�ed using the discrete time semantics� Un�
timed properties of non�closed automata can be veri�ed using the discrete se�
mantics with the risk of creating false negatives�

In �BM��� a low�level asynchronous realization of a FIFO bu�er was veri	ed
using a discrete time model� Since the speci	cation of the desired behavior is the
untimed language of compatible reads and writes from the bu�er� the veri	ca�
tion results carry over to dense time� We are currently investigating which other
classes of properties can be veri	ed safely using discrete time� Some suggestions
appeared already in �HMP�
��

� Discussion

The main contribution of this paper is in shedding some more light on the
relation between discrete and dense time models� and in solving an open problem
concerning the discretization of circuits� We believe that the circuit model and
the geometric analysis techniques introduced in this paper will be useful both for
hardware timing veri	cation and for advancing the theory of timed automata�
In particular it currently seems that for most reasonable practical purposes�
discrete time veri	cation will do the job�
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