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Abstract

The primary decomposition theorem due to Krohn and Rhodes ([KR65]), which
has been considered as one of the fundamental results in the theory of automata
and semigroups, states that every automaton is homomorphic to a cascaded de-
composition (wreath-product) of simpler automata of two kinds: reset automata
and permutation automata. If the automaton is non-counting (and correspond-
ingly its transformation semigroup is group-free) then it can be decomposed using
only reset components.

There exist various proofs and partial proofs for the primary decomposition
theorem e.g., [HS66, Ze67a, Ze67b, Gi68, MT69, La7l, We76, Ei76]. None of them
give explicit bounds on the size of the decomposition.! In this paper we give tight
exponential bounds on the size of the decomposition as a function of the size of
the original automaton. For the upper-bound we give an exponential algorithm
by modifying the implicit construction appearing in [Ei74]. Our algorithm is con-
structive enough to allow implementation [?7]. We apply the algorithm to give an
exponential upper-bound on transforming star-free regular (resp. w-regular) sets
expressed by counter-free automata (resp. w-automata) into past (resp. future)
temporal logic formulae. These upper bounds improve upon previously-known
non-elementary translations (MNP71, LPZ85, Zu86).

*Some of the results in this paper has been presented in: O. Maler, A. Pnueli, Tight Bounds on the
Complexity of Cascaded Decomposition of Automata, Proc. 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, 672-682, IEEE Press 1990.

1To quote the last paragraph in Ginzburg’s book ([Gi68]): “Finally, notice that the above theory
does not indicate how many particular basic building blocks are needed to construct a cascade product
covering of a given semiautomaton.”



Our decomposition construction is proved to be optimal by showing the exis-
tence of a family of automata such that the size of their minimal permutation-free
decomposition is exponential in the size of the automaton (by size we refer to the
total number of defined transitions).



1 Introduction

1.1 Overview and Historical Remarks

This papers has two main goals, the first one is to introduce the new results concerning
the complexity of the cascaded decomposition and its implication for the translation
between automata and temporal logic. The second goal is to reintroduce the Krohne-
Rhodes primary decomposition theorem [KR65] to contemporary computer science au-
dience, by providing a self-contained automata-theoretic and constructive proof.

There are many proofs of the Krohn-Rhodes primary decomposition theorem [KR65],
e.g., [MT69, La7l, WeT6], to mention a few. Among them, the proof of Zeiger ([Ze67a,
67b]) is more automata oriented (rather then semigroup oriented) and thus more use-
ful for our purposes. Zeiger’s proof has been corrected and presented more clearly by
Ginzburg in [Gi68], based on some constructs in [Yo63]. Ginzburg’s proof of the theo-
rem contains some non-deterministic stages concerning the choice of semi-partitions. In
addition, it does not discuss complexity issues explicitly. Another partial proof in this
spirit appears in [HS66].

The proof in [Gi68] inspired Eilenberg to give a slight generalization of the primary
decomposition called the holonomy decomposition ([Ei76], pp. 43-50). Eilenberg’s the-
orem is cleaner and determinizes the choice of semi-partitions. It has however some
deficiencies. It is a theorem on coverings of transformation semigroups, and as such
it pays no attentions to the labels of the generators of the semigroup (i.e., the input
alphabet, if we use automata-theoretic terminology). Consequently the outcome of the
decomposition is not given explicitly as a valid automaton over the original alphabet.
Another sociological problem associated with Eilenberg’s construction is the elegant, con-
cise and motivation-less algebraic style in which it is written, which makes it virtually
inaccessible to many contemporary theoretical computer scientists.

The paper is organized as follows: in section 1.2 we discuss the general concept of
automaton decomposition and give an intuitive introduction to the cascaded decompo-
sition and the Krohn-Rhodes theorem. In section 3 we give the minimal background on
automata and semigroups needed for the paper, define the cascaded decomposition and
state the Krohn-Rhodestheorem in automata-theoretic terms. In section 2 we discuss
the theoretical basis underlying the Zeiger-Ginzburg-Eilenberg family of proofs, namely
the relation between cascaded decompositions and some trees of semi-partitions of Q).
In section 3 we sketch a more algorithmic and automata-oriented version of Eilenberg’s
holonomy decomposition theorem, and analyze its complexity. In section 4 we establish
the worst-case optimality of this construction, by giving a family of automata for which
the minimal decompositions coincide with those produced by the algorithm. Section 5
we use our construction to improve some upper bounds on translating automata into
temporal logic. Finally we discuss some application to non-deterministic and stochastic
automata, and to everything else.

We hope that our relatively-ugly reconstruction, in addition to the new complexity
results and its applications, will bring some important results form algebraic machine



theory back to mainstream computer science.

1.2 Decomposition in General

The problem of decomposing complex systems into simpler components is one of the
fundamental problems in both science and engineering. The relationship between the
behavior of individual components and their global “emergent” behavior when intercon-
nected together is (either explicitly or implicitly) the subject matter of most disciplines
ranging from physics to the social sciences. The particular case of interacting finite-
state automata is the topic of computer science related sub-communities such as dis-
tributed computing, hardware realizations, semantics of parallelism, neural nets, cellular
automata, distributed Al and behavior-based robotics — to mention a few. We will be
concerned with the following problem:

The Problem: Given an automaton, decompose it into several simple components such
that their global behavior realizes the behavior of the original automaton.

In the sequel we will be more specific about the following details:

e The type the elementary simple components.
e The mode of interconnection.

e The sense in which one behavior is realized by the other.

In general when we take several automata with their corresponding input-transition-
output mechanisms and interconnect them, we get a compound object whose state-space
is (encoded as) the cartesian product of the states of its components. One of the major
characteristics of the decomposition is the degree of mutual influence of the components
(dimensions) on each other, that is, to what extent does the behavior of one automaton
depend on the state of another.? Technically this feature of the decomposition is captured
by the interconnection scheme that directs output channels of certain automata to the
input ports of others.

On one extreme of the spectrum of interconnection schemes lies the direct product in
which each component responds to the external input, independently of the other au-
tomata. Such products are used, for example, in proving the closure of regular sets under
Boolean operations. In the engineering terminology this is called parallel decomposition.
On the other extreme lies the unbounded feed-back decomposition in which every automa-
ton 1is sensitive to the behavior of others. Whenever a system can be decomposed into
parallel “orthogonal” components it is good news for designers and analyzers, because
each component can be treated independently.

More realistic models are based on intermediate degrees of inter-dependence. In cel-
lular automata, neural nets and systolic computers, the components are located in a

2The degree of exposure of the various components to external (to the whole system) stimuli is
another important feature usually ignored in the literature.
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metric space and every automaton is influenced directly only by components that reside
in some neighborhood around it. Such interconnection schemes look very reasonable
because they conform with our geometrical and physical intuitions concerning the prop-
agation of influence in space. Moreover, in hardware realizations of such models the
communication channels can be routed more easily.

Another form of limited inter-dependence is achieved by partitioning the components
into levels and letting components at level  influence components at level 5, j > ¢ but
not vice versa. This is the cascaded decomposition, the subject matter of the the rest of
this paper.® All this notions are demonstrated in figure 1.
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Figure 1: An automaton (a) and various decomposition schemes: parallel or direct prod-
uct (b), feed-back decomposition (c) and cascade product (d).

3In fact, this type of decomposition is the lowest level a;-hierarchy of decomposition types (see the
monograph [Ge86]) where an automaton at level & cannot influence an automaton of level smaller than

k— 1.



1.3 Automata

We assume familiarity of the reader with finite automata and regular sets at the level of
[HU79]. Our automaton model is a labeled state-transition graph:

Definition 1 (Automata) An automaton is triple A = (X,Q,6) where ¥ is a finite
set of symbols called the input alphabet, () is a finite set of states and 6 : ) x ¥ — () is
the transition function.

Several variations are possible at this stage: the transition function can be total or
partial —in the latter case it can be “totalized” by adding a sink state. It can be a relation
rather than a function, but we defer the discussion on non-determinism to section ??7. The
transition function can be extended naturally to sequences of input symbols, by letting
6(q,wo) = 6(6(q,w), o), and to sets of states by letting 6(Q’,0) = {6(¢,0) : ¢ € Q'}.

In its most “bare” version, the dynamics of the automaton, that is the transition func-
tion, is represented explicitly by a table in which every combination of an input symbol
and an internal state has an entry. This form of representation can be visualized by a
labeled directed graph whose nodes correspond to states and its edges to transitions (see
figure 2). Although such a representation is finite, it might be impractical in many situa-
tions where the state-space is large, and more succint representations are used whenever
possible. Programming languages or dataflow equations, to mention few examples, are
among the formalisms that enable succint representations of certain transition systems.

Figure 2: An automaton

An automaton can be made an acceptor by choosing an initial state ¢y € () and a set
of accepting states F' C (), and as such accept/recognize some regular language U C ¥
consisting of the set of all labels of trajectories from ¢o to state in F' (see textbooks). A
subclass of the regular sets is the class of star-free sets defined as:

Definition 2 (Star-Free Regular Sets) The class of star-free reqular sets over X is
the smallest class containing ¥* and the sets of the form {o} where o € ¥ U {A}, which
is closed under finitely many applications of concatenation and Boolean operations.

It turns out that star-free sets have additional characterizations which will be discussed
in the sequel.



Definition 3 (Automaton Homomorphisms) A surjective function ¢ : QQ — Q' is
an automaton homomorphism.* from A = (X,Q,68) to A’ = (X,Q’, &) if it satisfies for
every ¢ € Q, o € X

#(8(q,0)) = &'((q), )
In such a case we say that A’ is homomorphic to A and denote it by A" <, A. When
two automata are mutually homomorphic we say they are isomorphic.

Intuitively A" <, A means that anything that can be expressed or described using A’
can be expressed using A, and that A gives finer characterizations of phenomena than
does A’. Homomorphism is a partial-order relation and the canonical acceptor for a
regular set U is the minimal element in the infinite lattice of all the automata accepting
U, while the infinite tree acceptor is the maximal element.® Homomorphism is a special
case of relational homomorphism defined below:

Definition 4 (Relational Homomorphisms) A function ¢ : Q — 29" such that Q' =
Useq w(q) is a relational homomorphism from A = (X,Q,6) to A" = (X,Q",¢") if it
satisfies

p(6(q,0)) S 8'(¢(q), o)

1.4 Semigroups

The theory of automata is strongly related to the algebraic theory of semigroups that
deals with sets having an associative (but not necessarily invertible) binary operation
defined on them. Two typical examples of semigroup are sequences of symbols under
the concatenation operation, and transformations under the functional composition op-
eration. Since a full exposition of semigroup theory will decrease the fraction of original
work in this thesis below the limits of good taste, only a summary of the relevant notions

will be given. The interested reader may consult [Gi68], [Ei76], [Pi86], [Ar69] or [La??].

Definition 5 (Semigroups, Monoids and Groups) A Semigroup is a tuple (S, -) where
S is a set and - is a binary associative operation (“multiplication”) from S x S to S.
For s,t € S we write st for their product. A Monoid (M,-,1) is a semigroup containing
an identity element 1 such that m1 = 1lm = m for every m € M. A group (G,-,1) is

a monoid such that for every g € G there exists an element g=' € G (an inverse) such
that gg=! = 1.

Definition 6 (Subsemigroups, Generators) A subsemigroup T of S is a subset T C
S that is closed under product, that is, T* CT. A subgroup of S is a subsemigroup which
is a group. Let A be a subset of S. The smallest subsemigroup containing A is denoted
by AT and it consists of all the elements of S that are a result of finitely many products
of elements of A. Any subset A C S such that At = S is called a generating set of S.

*More precisely we define a state-homomorphism — we could extend the definition to include mappings
between different input alphabets, output alphabets etc.
SExcluding, of course, automata with unreachable states.



Examples for semigroups are the natural numbers under addition or under multi-
plication, Boolean algebras under A or V, matrices under multiplications, and binary
relations under composition. A finite semigroup can be described by its multiplication
table. Every semigroup has a generating set (which might be S itself).

Definition 7 (Semigroup Homomorphisms) A surjective function ¢ : S — 5" is a
semigroup homomorphism from (S,-) to (57, %) if it satisfies ©(s1 - $2) = @(s1) * ©(s2).
In such a case we say that S" is homomorphic to S and denote it by S" <, S. Semi-
group homomorphic is transitive. Two mutually homomorphic semigroups are said to
be isomorphic.

As in automata, homomorphism of semigroups corresponds the the intuitive notions
of refinement /abstraction relations among structures.

Let TR(Q) be the set of all total functions (transformations) of the form s : Q — @
for a finite set ). One can see that T R(Q)) is a monoid under the operation of functional
composition defined as s-t(q) = t(s(q)) for every ¢ € Q. If the underlying set () has n
elements then T'R(Q) has n" elements. The identity function on @, I, is the identity
element of TR(Q). A transformation as can be represented as an n-tuple (¢, ..., q,)
where ¢;; = s(q;).

Remark: There is some notational conflict between algebraic, functional, and automata-
theoretic conventions. Algebraically, the “action” of s on ¢, is denoted by ¢s and the
associativity of composition is expressed as ¢s - s’ = ¢(s-s’). On the other hand, the
automata-theoretic notation 6(g, s) is preferable when we have to refer to several transi-
tion functions. We will try not to confuse the reader.

Definition 8 (Transformation Semigroups) A transformation semigroup is X =
(Q,S) where @ the underlying set and S is a subsemigroup of TR(Q), i.e., a set of
transformations on ) closed under composition. Clearly if () is finite, so is S.

The importance of transformation semigroups comes from Cayley’s theorem:

Theorem 1 (Cayley) FEvery semigroup (monoid) is isomorphic to a transformation
semigroup (monoid).

On the other hand every automaton gives rise to a natural transformation semigroup
generated by the transformations induced by the letters of the input alphabets. It can be
shown that if two automata are homomorphic so are their corresponding transformation
SeEMLGroups.

Definition 9 (Rank) Let Q) be a set of n elements, and let s € Q — @ be a transfor-
mation. The rank of s is defined as |Q)s|, where Qs = {qs: q € Q}.
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Figure 3: A permutations (left) and a reset (right) illustrated as transition graphs (up)
and as transformations (down).

Permutations and resets (see figure 3) represent two extremes in the spectrum of
transformations on ). Among the n" such transformations, the n! permutations are
those in which the domain and the range coincide and the rank is n. In resets, on the
other hand, the rank is minimal, i.e., 1.

In an automaton, after the occurrence a reset the current state is determined precisely
regardless of the previous one. On the other hand after applying a permutation we are
no wiser then before if the previous state is unknown. From another point of view, a
permutation is a reverse-deterministic, that is, by being at one state and knowing the
last input event one can determine the previous state, contrary to resets in which the
degree of reverse-non-determinism is maximal.

Permutations and resets are closed under composition or more precisely, if we denote
a reset by r and a permutation by p we get the “multiplication table” of figure 4. Resets
can be obtained by composing two non-reset transformations, e.g., (122) - (223) = (222),
because composition can decrease the rank. On the other hand, because composition can-
not increase the rank, permutation on () cannot be composed from non-permutations on
(). However a permutation on a subset Q C ) can be composed from non-permutations
as can be seen from fact 2.

Fact 2 A transformation s permutes a subset Q C Q iff s = s181,...,8, for some
m > 1 and there exists a sequence of subsets {Q;}izo.m such that Qo = Q,, = @ and the
restriction of every s; to (); is an injection to ();y1.
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Figure 4: Composition of permutations and resets

There are various ways to classify finite semigroups and their corresponding regular
sets (see [Pin?7]). An important sub-class of the semigroups is defined as follows:

Definition 10 (Group-Free Semigroups) A semigroup S is aperiodic if there exists
a number k such that s* = "1 for every element s € S. A semigroup is group-free if
it has no non-trivial subgroups. An automaton is counter-free if there is no word w that
permutes a non-trivial subset of ().

It is not difficult to see that a semigroup is aperiodic iff it is group-free, and that an
automaton is counter-free iff its semigroup of transformations is group-free. The following
theorem relates aperiodic semigroups to star-free sets and consequently, to propositional
temporal logic.

Theorem 3 (Schiitzenberger) A regular set U is star-free if and only if its syntactic
semigroup is aperiodic (and its minimal automaton is counter-free).

1.5 The Krohn-Rhodes Primary Decomposition Theorem

The definition of the cascade product of two or more automata is given below:

Definition 11 (Cascade Product) Let By = (¥, (Q1,61) and By = (Q1 x X, Q2, 62) be
two automata. Their cascade product BioBy = (X, Q, ) is defined by letting Q = Q1 X Q3
and 8({q1,q2),0) = (61(q1,0),82(q2, (¢1,0))). The cascade product of more than two
automata, By o By, ... 0 By is defined as (... ((Byo Bz) o Bs...)oBy.

Remark: Note that the “communication links” between By and B, given implicitly via
the definition of the input alphabet of By. A neater definition using transducers will be
given in chapter ?7?.

Definition 12 (Permutation-Reset Automata) An automaton A = (¥,Q,6) is A
permutation-reset automaton if for every letter o € X, o is either a permutation or reset
with respect to the set of states on which it is defined.

We will sometime consider partial transition functions, that is, 6(¢,0) need not be
defined for every ¢ € ). In this case o is said to induce a partial permutation if 6(q,0) #
6(¢', o) for every ¢q,¢" on which ¢ is defined, or a partial reset whenever 6(¢,0) = ¢ for

10



every such ¢ such that 6(¢, o) is defined. In both cases it is straightforward to extend
o to become either a complete permutation (by letting 6(¢,0) = ¢ for ever ¢ € ) such
that 6(q, o) is undefined), or a complete reset (by letting 6(¢, ) = ¢ for every ¢).

The Krohn-Rhodes theorem states that the infinite class of permutation-reset au-
tomata is homomorphically complete for the cascade product, i.e., every automaton (up
to inverse homomorphism) can be decomposed into a cascade of elements from this class.
This celebrated theorem can be formulated as:

Theorem 4 (Krohn-Rhodes (Automata)) For cvery automaton A there exists a
cascaded decomposition C = ByoByo---0By such that A < C, each B; is a permutation-
reset automaton, and any permutation group in some B; is homomorphic to a subgroup
of the transformation semigroup of A (this implies that if A is non-counting then all the
permutations in {B;} are trivial, i.e., identities).

It is this theorem that we are going to prove in detail within the following sections, as
well as complexity bounds. Originally this theorem was expressed in terms of semigroups
where X7 o X, is interpreted as the wreath product of X7 and X;. Since we mention this
version only in the passing, we will spare the reader from the wreath product definition.

Theorem 5 (Krohn-Rhodes (Semigroups)) FEvery transformation semigroup X =
(@, 5) admits a decomposition X < Xy o...0 Xy where each X; is either the monoid U,
(the transformation monoid of the two-state reset-identity automaton) or X; is a simple
group such that X; < X. Consequently if X is group-free (aperiodic) then all the X; are
isomorphic to U,.

Concerning the binary reset automaton and its monoid Us, it is worth mentioning
that every n-state reset can be decomposed into a direct product of log n binary resets,
so that all the results and complexity bounds to be mentioned in the sequel which are
based on arbitrary resets apply to binary resets as well.

2 The Theoretical Basis of the Cascaded Decomposition

In this section we show the intimate relationship between cascaded decompositions of
an automaton and certain semi-partitions of its set of states. This correspondence plays
an important role both in the algorithm and in the lower-bound. In order to discuss it,
let us first give more explicit definitions of the cascaded decomposition and of related
structures.

In the sequel we will make a distinction between three “degrees” of decomposition.
The first “plain” decomposition given below satisfies the homomorphism condition — no
restrictions are imposed on the building blocks.

11



2.1 Decompositions and Configurations

Definition 13 (Cascaded Decomposition) Let A = (X,Q),0) be an automaton. A
cascaded decomposition for A is a pair (C,¢) where C = (X, P,6) = ByoByo--- 0By is
a (possibly incomplete) automaton such that:®

1. Foralli, 1 <i <k, B;=(Q1 X - xXQi—1 X X,Q;,06;) where é; is possibly partial.

2. P=Q1 x...xQ and the global transition function is evaluated coordinate-wise
according to

5(<QI7 .- '7qk>70) = <51(q170)7 . ‘75k(qk7 <q17 s 7qk—170>)> (1)

3. Q1 X...xQr — Q is a homomorphism from C to A, that is, a surjective partial
function such that

p(0({qr, - qr), o)) = o(eqrs - -+, qr)), 0) (2)
This fact is denoted by A <, C.
It follows from the definition that 6((qi,...,qx), o) is defined iff 6:(qs, (g1, ..., qi_1,0)) is

defined for every 7. The size of A is the number of defined transitions. In a complete
automaton it is |@| - |X]. The size of C is the sum of the sizes of all the B,’s.

a,b
b
0,a 0,b
0,a
1’a 0 @
Lb 0,b
l,a 1,b

Figure 5: A cascade.

Example: In figure 5 one can see a cascade product whose global structure is depicted in
figure 6. By defining the homomorphism ¢ : {0,1} x {0,1} — {¢1,42,¢3} as ¢({0,1)) =
q1, ©((0,0)) = ¢((1,1)) = g2 and ¢((1,0)) = g5 we obtain the automaton in figure 7.

Definition 14 (Configurations) Let C = BioByo-- 0B be a a cascade product. An
i-configuration, 1 <1 <k, is an element (q1,...,¢) € P; = Q1 x ... x Q;. Similarily we
let C; =ByoByo---0B;, = (X, P, ).

5For convenience we assume that B is the trivial automaton over ¥ with Q; = {p*}. Sometimes B
is omitted from the figures.
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Figure 6: The global automaton realized by the cascade of figure 5.

b a
a

@ »b q2 > < q3
N

Figure 7: A homomorphic image of the cascade described in figures 5 and 6.

By definition C = (¥, P,6) = (¥, Py, 6x) = Cx. When p € P; and p' € Qip1%,..., xQ;
we use (p,p’) to denote the corresponding j-configuration. In such a case we say that
p is a prefiz of (p,p’) and that (p,p’) extends p. (This hierarchical prefixing should not
be confused with sequential concatenation). The set of all configuration has an obvious

tree structure, with p being an ancestor of (p,p’). Note that by definition for any ¢ < j
P]‘ :Pi X Qi-l-l X ... X Q]‘ ande :CiOBi+1O...OB]‘.

Given that (C,¢) is a decomposition for A = (X,Q, ) and that a k-configuration
p € Py can be viewed as a (not necessarily unique) encoding of some state in @, an -
configuration r € P; for some ¢ < k corresponds to the set of A-states which are encoded
by some extensions of r. This intuitive notion of correspondence between configurations
and subsets of () is formalized in the following definition:

Definition 15 (Mapping Configurations to Subsets) Let (C, ) be a decomposition
for A, C =ByoByo---0B,. We define a family of functions o; : Py — 29,1 <<k

using backward induction on @:

er(p) = { ©(p) when o(p) is defined

0 otherwise

eici(p) = U willp.ai)

9:€Q;

13



In other words, ¢;(p) is the set of all states of A that correspond to k-configurations that
are extensions of p. Clearly if p € P, and (p,p’) € P; for some j > ¢ then ;({(p,p')) C

©i(p). A configuration p € P; such that @;(p) # 0 is called non-empty and the set of
non-empty configurations is denoted by P.

Example: The configuration tree for the decomposition described in figures 5, 6 and 7
appears in figure 8.

Claim 6 FEvery ¢; is a relational homomorphism from C; to A, that is, il satisfies for
every p € F;

8(i(p), o) € @ildilp, o))

Proof: For : = k it follows from the fact that a homomorphism is a relational homo-
morphism. Suppose it is true for ¢ + 1, that is for every p € P;, r € ;11 we have

8(pin1((p,7)),0) € i (6 ((p7), 7))

To prove it for + we have

Spip),o) = oJpin({p,7)),0)
C US«%+1(52’+1(<}?,T>7U))

= U @i+1(<5i(p, 0')7 5i+1(r7 <p7 U>)>

2.2 TPSP Trees and Decomposition

The correspondence between configurations in the decomposition and subsets motivates
the introduction of the following definitions:

Definition 16 (Semi-Partitions and Partitions) Let () be a finite set. A semi-
partition on Q is a pair (M, ¢) where M is a finite set and ¢ : M — 29 is a total

Junction such that | ] ¢(m) = Q. A semi-partition (M, ¢) is non-redundant if for every
meM

m,m’ € M, ¢(m) L o(m').

Definition 17 (Transition-Preserving Semi-Partitions) Let A = (X,Q,6) be an
automaton. A transition-preserving semi-partition (TPSP) for A is a system (X, M, A, ¢)
where (X, M, A) is an automaton, (M, ¢) is a semi-partition of Q@ and A: M x ¥ — M
satisfies” for allm € M, o € 3:

o(d(m), o) S ¢(A(m, o)) (3)

“In other words, ¢ is a relational homomorphism from (X, M, A) to A.
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Figure 8: A configuration tree. The configuration encodings appear at the upper part of
each node while the subsets they are mapped to by ¢ at the bottom.

Example: In figure 9 one can see a TPSP for the automaton in figure 7.

Figure 9: A TPSP for the automaton in figure 7.

a,b

In order to link cascaded decomposition and TPSPs we need a hierarchical structure
on TPSPs that parallels the concept of configuration tree.

Definition 18 (TPSP Tree) Let A = (X,0Q,6) be an automaton. A TPSP tree is a
system T = (3, M, A, 7, ¢) such that:

1. M is a finite set of nodes, containing a distinguished node m* € M, called the root
of the tree.

2.7 (M —{m*}) = M is a total parenthood function such that for every m # m*,
there exists some 1 > 0 such that ©'(m) = m*. We will use 7=1(m) to denote the
“children” of m, and 7='(m) to denote descendants. This function can be used
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to partition M into levels according to the ancestral distance from m* by letting
M; = {m &€ M : m* = 7(m)}. The height of the tree, denoted by h, is the length

of the longest ancestral chain plus 1.

3. The tree ts uniform, that is, every node has some descendant whose distance from
the root is h.

4. ¢ M — 29 — 0 is a surjective labeling function, such that ¢(m*) = Q. For every
q € Q, there exists some m € My, such that ¢(m) = {q}, and for every m € M,

|6(m)| = 1.

5. For everym € M — My, (z="(m), (™)) is a non-redundant semi-partition of ¢(m)
where ¢ is the restriction of ¢ to 7~'(m). We also denote the restriction of ¢

to MZ by ¢Z

6. A: M x Y — M is a transition function which can be decomposed into a union of
level-preserving functions of the form A; : M; x X — M;.

7. A is ancestor-consistent: A(w(m), o) = x(A(m,0)).

8. For every i, (X, M;, A;, ¢;) is a TPSP for A.

It follows from these conditions that for every ¢ > 1, ¢;(m) C ¢;_1(w(m)) and that
the restriction of 7 to M; defines a homomorphism from M; to M;_;. Moreover ¢, is
a homomorphism from (X, My, A;) to A. A TPSP tree for the automaton in figure 7
appears in figure 10. The similarity between this TPSP tree and the configuration tree
is not a coincidence and we are going to prove that 1) Given a decomposition, its set of
non-empty configurations has a TPSP-tree structure, and 2) From a TPSP-tree 7 for
A one can construct a decomposition for A such that the associated tree of non-empty
configurations is isomorphic to 7.

Claim 7 (Decomposition = Tree) Fvery decomposition (C,¢) for A= (X,Q,0) with
C=DBioByo-- 0By implies a TPSP tree T = (X, M, A, 7, ) of height k.

Proof: By letting M = P, A; = &; and &; = ; for every i, 1 <i < k, and 7({p,q)) = p
the desired TPSP is constructed. a

In order to prove the other direction and construct a decomposition from a TPSP tree
we define a two functions that map nodes in the TPSP tree to states of the components
and to configuration in the decomposition.

Definition 19 (Mapping Nodes to States and Configurations I) Let T = (X, M, A, 7, ¢)
be a TPSP tree for A. For everyi > 0 we let Q; be a set such that |Q;| = max{|7~'(m)|}mem,_,,
and define a function 0; : M; — (; such that for every m € M,;_q, the restriction of 0;

to #=Y(m) is an injection. From this function we can define an injection ¢ : M — P,
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Figure 10: A TPSP tree for the automaton in figure 7.

that maps every node to a distinct configuration. As usual, ¢» can be decomposed into

Vi o M; — P, The definition of v; is by induction on @:
pi(m”) = 01(m”) = ¢~ (4)
bigi(m) = (Pi(m(m)), diga(m)) (5)

Let 0/ : Q; — 2Mi be the inverse of §;. One can see that the inverse of 1;, Pl P — M
admits the following definition:

Hllpay = { T @O0 TD TEADOTOOIE0

Claim 8 (Tree = Decomposition) From a TPSP tree T = (X, M,A,x,¢) for A of
height k, one can construct a cascaded decomposition (C,¢), C =By oByo---0 By such
that the sizes of T and C are equal.

Proof: We define ();, § and v as in definition 19. The transition function of B; is defined

8:(q. (p, o)) = { 92'(Az'(¢’ip,q>,a)) ftﬁbeifmi is defined .

In other words, the i-configuration (p,q) is translated into its corresponding node (if
any), on which o is applied according to the transition function of the TPSP tree, and
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the resulting node is translated back into a state in ¢);. It suffices to show an isomorphism
between the full decomposition C, = (¥, Px, 6) and the lowest level of the TPSP tree
(3, My, Ag), which is inverse-homomorphic to A by definition. The proof is by induction
on z, the base case is trivial. Suppose it is true for ¢, that is, for every m € M; and o € &
we have

bi(Ai(m, o)) = bi(thi(m), o) (8)
Y

and we want to prove that for every m’ € x~

%/%+1(Ai+1(m/a o)) = 5¢+1(@/}¢+1(m'), o) (9)

The left-hand side of (9) is transformed according to Definition 5 and the properties of
TPSP trees, while to the the right-hand side we apply the definition of a cascade to
obtain:

(i(Ai(m, 0)),0ip1(Aiga(m/, 0))) = (6:(i(m), 0), bix1(fia (m'), (bi(m), o)) (10)

The identity of the first coordinates follows from the premises while the equality of the

m) we have

second coordinate is just a rephrasing of (7) with p = ¢;(m) and ¢ = 8,41 (m/). a

Example: From the the TPSP tree of figure 10 one can obtain the decomposition of
figure 5.

2.3 Injection-Reset TPSP Trees and Permutation-Reset Decompositions

So far we have shown the correspondence between arbitrary cascaded decompositions
and TPSP trees. Our next step is to see what additional constraints are imposed on
the configuration (and hence TPSP) trees when the building blocks are restricted to be
permutation-reset automata.

Definition 20 (Injection-Reset TPSP Tree) An injection-reset TPSP tree is a
TPSP tree T = (X, M,A,7,¢) satisfying the following constraints on A: For every
m € M;, © < h, and for every o € X either

o Aipi(my, ) # Agpa(ma, o) for every my,my € W_l(m);
or

o Aiyi(my,0) = Arpi(ma, o) for every my,my € 71 (m)

In other words if m’ = A;(m, o) then o induces either an injection from #~'(m) to
77H(m/) or a reset from 77! (m) to some single r’ € 77! (m’)

Claim 9 (P-R-Decomposition = I-R-Tree) FEvery decomposition (C,¢) for A =
(X,Q,0) withC = ByoByo--- 0By such that {B;}1<i<k are permutation-reset automata,
implies an injection-reset TPSP tree of height k.
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Proof: We show how the structure of the building blocks affects the structure of the
configuration tree. Consider some p € P; such that &;(p,o) = p'. Suppose (p,s) induces
a reset in B,y1, that is é;11(q1, (p, o)) = bit1(q2, (p, o)) for every ¢1,¢2 € Qi1 on which a
(p, o)-labeled transition is defined. Consequently 6,41({p,¢:1), ) = (', 6i11(qu, (p, o)) =

6iy1({p; @2),0) and o is indeed a reset on Piy. If (p,o) is a permutation in B;;; then
Sit1(q1, (P, o)) # dit1(gz, (p, o)) for every i, g2 € Qi41 and consequently di41((p, ¢1), 0) #

6i+1({p, q2),0) and o induces an injection from {p} x Q.11 to {p'} X Qiy1. By virtue of
claim 7 these properties of the configuration tree are reflected in the TPSP tree. -

Claim 10 (I-R-Tree = P-R-Decomposition) From an injection-reset TPSP tree T =
(X, M, A, 7, ¢) of height k—1, one can construct a cascaded decomposition C = ByoByo
-++ 0 By made of permutation-reset automata such that |T| = |C|.

Proof: The proof is by the same construction in the proof of claim 8. What remains
to show is that for every ¢, p € Pi_q, 0 € X, (p,0) is indeed a reset or a permutation
in B;. From (7) it follows that for every ¢i,q2 € @Q; 6i(q1,(p,0)) = 6i(qq, (p,0)) iff
A" ({p,qr)), o)) = AW ((p,g2)),0)) and since T is an injection-reset TPSP tree, the

result follows. a

The automaton in figure 11 admits an injection-reset TPSP as in figure 12, which
yields the permutation-reset decomposition of figure 13. The construction so far (def-
inition 19 and the proof of claim 8) involves what we call “injection folding”, that is,
injections between “cousins” in the TPSP tree are transformed into permutations in the
cascade, due to the encoding of different nodes by the same states in the cascade.

OENO

a a

Figure 11: An automaton.

Next we show that every () there exists a generic tree of subsets that can be made
an injection-reset TPSP tree for any automaton whose set of states is (), and lead to
generic permutation-reset decomposition.

Claim 11 (The Generic TPSP Tree) For every automaton A= (X, Q, ) with |Q| =
n, it is possible to construct an injection-reset TPSP tree T = (X, M, A, 7, ¢) of height
n and size O(2").
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Figure 12: An injection-reset TPSP tree for the automaton in figure 11.

Proof: The construction goes as follows: The root is m* and ¢(m*) = (). For every
m € M with é(m) = {q1,...,q} we define 77 (m) = {my,...,m;} and let ¢,11(m;) =
éi(m)—{q;}. The transition function is defined recursively: First we let A;(m*, o) = m*
for every o € ¥. Then, for every m such that A;(m, o) = m’ we calculate the transition
function of its children according to the following two cases:

L. If|6(o(m), 0)| = |¢(m)] then o induces a bijection between ¢(m) to ¢(m’) and con-
sequently between the sets associated with their children. So for every r € 77!(m)
we let A;yi(r,0) = v/ where v’ € 77(m/) is the node satisfying 6(¢;41(r),0) =

a
) )
0,a 1,a 0,a 1,a
Figure 13: A permutation-reset decomposition for the automaton in figure 11 constructed
by injection folding from the injection-reset TPSP tree of figure 12.
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Giyr (7).

2. Otherwise, if |6(é(m), )| < |¢(m)| then there exists some v’ € 77! (m’) such that
§(¢(m), o) C ¢(r') and for every r € #~1(m) 8(é(r),a) C ¢(r'). Hence we can let
o be a reset on 7' (m) by defining A;y1(m,a) = m’. a

An automaton and its corresponding generic TPSP tree are depicted in figures 14 and

15.

Corollary 12 FEvery n-state automaton admits a decomposition into a cascade of n
permutation-reset automata having an exponential total size.

- a
a,b
O
b

Figure 14: An automaton.

There are two problems related to this construction. First, it is a brute-force construc-
tion always leading to an exponential tree (and decomposition) regardless of the specific
transition structure of A. The first part of the algorithm to be presented in section 3
gets rid of the “obviously redundant” nodes and levels. In spite of these improvements,
we will also show that in the worst case the construction has to be exponential anyway.

The second problem with injection-reset TPSPs in general is that some “superficial”
permutations may be created by the folding process, without corresponding permutations
in A. The example in figures 16, 17 and 18 shows how this phenomenon might occur
regardless of the choice of .

2.4 Bijection-Reset TPSP Trees and Holonomy Decompositions

Now we are ready to impose further restrictions on the TPSP trees and on the decom-
position and ensure that the decomposition reflects the sub-groups of A. Before doing
so let us give more explicit definitions of these sub-groups.

Definition 21 (Permutation Subgroups) Let X = (Q, S) be the transformation semi-
group associated with an automaton A = (¥,Q,6). The permutation subgroup Hps =

). G5) associated with some G - consists of all the permutations of the form
9 Q p
g: Q — Q, where g is the restriction of some s € S to Q
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Figure 15: The generic injection-reset T PSP tree for the automaton in figure 14.

Definition 22 (Holonomy Decomposition) A holonomy decomposition for A is a
permutation-reset decomposition such that for every i, B; satsifies the additional condi-
tion: Its state-space ); and its input alphabet X; can be partitioned into Q;1,...,Qu and
Y, ..., 20 such that X5 ts defined exactly over ()i, and the permutation group on Q;;
(generated by the permutations in ¥;;) denoted by H;; = (Qij,Gij) is homomorphic to
some permutation subgroup of A.

In particular, if A is a non-counting automaton then its holonomy decomposition
consists only of reset-identity automata. It is an easy excercise to show that a holonomy
decomposition (introduced by Eilenberg) implies the original Krohn-Rhodes decompo-
sition where every component in the cascade is either a permutation automaton or a
reset-identity automaton.

The following definitions are needed in order to put some constraints on the TPSP
tree.

Definition 23 (Subset Equivalence) Let A = (¥, (), 5) be a (complete) automaton.
Two subsets Ql, Qz C @ are equivalent if there exvist w,w’ € ¥* such that:

N

1. 6(Q1,w) = Q2 and §(Qz. ') = Qy
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b

SRS

a,b
Figure 16: A counter-free automaton.

2. ww' and w'w induce identities on Ql and QQ respectively.
This fact is denoted by Ql v QQ or simply Ql ~ Qz.

Remark: If for some Ql,Qg C () and w,w’ € ¥* only condition 1 is satisfied, there

exist some u, u’ such that Ql ~ QQ This is due to the fact that ww’ is a permutation

on @y and w'w is a permutation on Qs, so for some I, (ww')! and (w'w)! are identities,

and by letting v = w and v’ = w'(ww')'~! we have O, 9 Q,.

Definition 24 (Node Equivalence) Two nodes m,m' € M; in a TPSP tree T =
(X, M, A, 7, ¢) are equivalent if there exist w,w’ € ¥* such that:

1. A(m,w) =m' and A(m/,w’") =m.
2. 77 (m)| = |== ()]

3. é(m) "X o(m') (in the sense of subset equivalence).
This fact is also denoted by m "~ m’ or simply m ~ m/.

Definition 25 (Bijection-Reset TPSP Tree) A bijection-reset TPSP tree is an injection-
reset TPSP tree T = (X, M, A, 7, ¢) such that for every m,m’ € M;, o € ¥, such that

A(m,a) = m/, if o induces an injection® from =='(m) to 7= (m') then m X m' for
some w € X,

With every node in a TPSP tree we associate a permutation group as follows:

8In the case when |7=1(m)| = 1, we view ¢ as a partial reset, not as an injection, so that m ~ m’
need not hold.
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Figure 17: An injection-reset TPSP tree for the automaton in figure 16.

Definition 26 (Holonomy Groups) Let T = (X, M, A, x,¢) be a TPSP tree, and
let m € M be a node. The holonomy group of m s the permutation group H, =
(77 (m),G.) consisting of all the permutations of the form g : 7~ '(m) — 7 Ym)
induced by some words in ¥*. Note that H,, can be the trivial group.

Claim 13 (Holonomy Group < Permutation Subgroup) Let 7 = (X, M, A, r, ¢)
be a bijection-reset TPSP tree for A= (X,Q,0). For everym € M, H,, is homomorphic
to H(b(m)

Proof: We define a mapping p : Gy — G as follows: for every s : ¢(m) — o(m) €
Gy(my we associate p(s) : 7' (m) — 7 '(m) such that for every m’ € 77! (m)

A(m', p(s)) = ¢~ (6(¢(m'),5)) N~ (m) (11)

In other words, s is now applied? on the subset ¢(m’) C ¢(m). This mapping is
well-defined due to the following reasons: s is a bijection on ¢(m) and consequently on
#(m’) and thus there must be at least one m” € 77(m) such that m” = ¢=*(8(d(m’), s))
and due to non-redundancy it is unique. To show that p is a homomorphism we need to
show that for every m’ € 77 (m), A(A(m/, u(s)), p(s) = A(m/, u(s - s')):

®As a compromise between the algebraic notation m - s and the functional notation s(m), we use a
transition function notation A(m, s) which is a tolerable abuse of language.
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Figure 18: A permutation-reset decomposition including a non-trivial counter for the
automaton in figure 16 constructed by injection folding from the injection-reset TPSP
tree of figure 17.

Claim 14 (Holonomy Decomposition = B-R-Tree) Fvery holonomy decomposition
C=BioByo---0B, <, A= (%,Q,0) implies a bijection-reset TPSP tree of height k.

Proof: As in the proof of claims 7 and 9, we look at the configuration tree generated by
the decomposition and see that it is indeed a bijection-reset TPSP tree. Let p,p’ € P,
be such that A(p,0) = p’ and o is an injection from {p} X Q;41 to {p'} x Qi11. This
implies that (p,o) is a permutation on ;41 and since C is a holonomy decomposition
we have a w such that o and w induce mutually-inverse bijections between ¢;_1(p) and
@i_1(p'), and consequently p X’ p' and the configuration tree is indeed a bijection-reset

TPSP tree. a

In order to prove that such a tree implies a holonomy decomposition we need to
introduce a modified encoding procedure. Unlike the previous construction, #~!(m) and
771 (m/) are encoded using the same set of states Q;; C @Q; only if m ~ m’. Moreover, the
mapping of #~1(m) into Q;; is not arbitrary, but depends on the mappings of 7#7*(m’)
for every m ~ m’.

Definition 27 (Mapping Nodes to States and Configurations II) For every, let
M;_1; € M;_q be an ~-class, and let ™ € M;_; ; be an arbitrary node. We define the sel

25



Qi to be 71 (m) and call the nodes in 7= (1) representatives. For every m € M;_y ;,

let wp,, v, € ¥* be words such that v "™ m. The function 0 U 7~ Hm) — Q;
meM;_1 ;

is defined for everym € M;_y;, r € 7~ (m) as:

0ii(r) = (A(r; vm)) (12)

Note that 1 < m, so uz = v; = A. The set of all cascade states at level 7 1s ); = U Qi
J

and 0; : M; — (); is defined as 0; = U@Z»’j.
J

This mapping can be extended naturally into ¢» : M — P as in equation 5:

pi(m) = (diza(w(m)), 0i(m)) (13)
The inverse mapping ¢’ : P — M satisfies

(. q)) = Alg, um) (14)

where m = ¢'(p). In other words, ¢ € @);; (which is just a representative from 7~!(m))
is decoded back to the original node according to the word that decodes its parent. The
mapping from nodes to states and configurations is illustrated in figure 19.

Um

M;_q;

Qi

Figure 19: Mapping nodes in M; to states in ();.

Claim 15 (B-R-Tree = Holonomy Decomposition) From a bijection-reset TPSP

tree T = (X, M,A,7,¢) of height k, one can construct a holonomy decomposition C =
BioByo---0By such that |T|=|C|.

26



Proof: The construction is the same as in claims 8 and 10, but this time with ¢); and v,
as in definition 27. The fact that it is indeed a permutation-reset decomposition follows
from previous claims. In order to show that it is a holonomy decomposition we have to
show that for every @);;, H;; is homomorphic to some holonomy group of 7 and hence
to a subgroup of A.

Let us reproduce the definition of the transition function:

6i(q. (p, o)) = { Li( A(i((p,q)), o)) if ¥i((p,q)) is defined (15)

1L otherwise

Let &;(p, o) = p', ¥'(p) = m, '(p') = m' and let m be the parent of the relevant
representatives. The action of (p,a) on every r € 771 () is A(r, upmov,) =1 € 771 (M)
(see figure 20). Thus every permutation induced by any (p,o) on ();; corresponds a
permutation on 7 '(12). Moreover, for every two permutations (p;,oy) and (ps,03),

where 6;(p1,01) = pi, ¥'(p1) = ma, ¥'(ph) = mi, di(p2,02) = phy, ¥'(p2) = my and
Y'(py) = mj the action of their product (p1,01) - (p2, 02) corresponds to the permutation
induced by t, 010, 09v,,; . Hence every H;; is homomorphic to the holonomy group
Hy and by claim 13 to the permutation subgroup Hy(s). a

Um!

Qi

Figure 20: The action of (p, o) on ), ; is the same as the permutation induced by t,, 00,
on 7 ().

Corollary 16 1) [fthere exists a bijection-reset TPSP tree for A of size ¢ then A admits
a Krohn-Rhodes decomposition of size c. 2) The size of any Krohn-Rhodes decomposition
for A is at least the size of the minimal bijection-reset TPSP tree for A.
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In section 3 we will show how to construct an exponential bijection-reset TPSP tree
for any automaton, and thus reprove the primary decomposition theorem and give an
upper-bound. In section 4 we present a family of automata for which the minimal
bijection-reset TPSP tree is exponential, and thus give a tight lower-bound.

3 An Exponential Decomposition Algorithm

In this section we give an exponential algorithm that constructs from a given determin-
istic automaton, a bijection-reset TPSP tree, and according to the theory presented in
section 2, it virtually produces an exponential Krohn-Rhodes decomposition. This algo-
rithm is an automata-theoretic reformulation of the holonomy decomposition theorem of
Eilenberg, a reformulation that pays attention not only to the semigroups involved, but
also to the input sequences that generate them.

The algorithm will be described as a series of transformations (procedures) leading
from an automaton to a bijection-reset TPSP tree via several intermediate structures.
An outline of the main transformation is given below.

1. Construct a tree subset automaton from the original automaton (from A to TSA).
The tree subset automaton is an automaton whose states correspond to some sub-
sets of () arranged in a tree where parenthood conforms with inclusion.

2. Compute the height of the nodes and “balance” the TSA so that it can be parti-
tioned into levels (from TSA to BTSA).

3. Redirect the transitions so that all the transitions outgoing from a node in some

level lead to nodes in the same level (from BTSA to TPSP).

3.1 Tree Subset Automata

Definition 28 (Tree Subset Automata) : Let A = (X,Q,06) be an automaton. The
tree subset automaton (TSA) associated with A is T = (X, M, A, x,¢) where:

1. M s a finite set of nodes containing a distinguished node m* € M, called the root
of the tree.

2.7 : M —{m*} = M is the parenthood function, such that for every m £ m*, there
exists some 1 > 0 such that 7*(m) = m*. The set of ancestors of m is denoted by
T (m).

3. ¢ : M — 29 is a labeling function whose range consists of all the singletons {q} € Q
and all the sets 6(Q,w) for every w € ¥*. In particular ¢(m*) = Q) and for every

m, ¢(m) C é(w(m)).
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4. A M x ¥ — M is the transition function such that for every m € M, o € X,
A(A(m, o)) = 6(é(m), o). Since A is deterministic, this implies |A(m,o)| < |m|.
The transition function is ancestor-consistent: for everym € M —{m*} and o € ¥
there is some j > 0 such that 7/ (A(m, o)) = A(r(m), o).

5. For every m € M such that |¢(m)| > 1, (x7'(m),d) is a non-redundant semi-
partition.

From A to TSA: The TSA is constructed inductively. Initially M = {m} and ¢(m) =
(). For every node m and o € S, if there already exists a node m’ € M such that
(m') = §(¢(m), o) and A(x(m), o) = 7/(m’) for some j > 0, then we let A(m, o) = m/.
Otherwise we add a node m’ to M, let ¢(m') = 6(p(m), o), let A(m, o) = m' and update
the parenthood function as follows: we define m(m') = r where r is a node satisfying
7 (r) = A(x(m), o) for the largest j. If there is a node 7’ such that = (r') = r we change
it to 7(r') = m’. When the process is over we search the tree top-down and for every
non-singleton m and every ¢ € ¢(m)— | J é(r) we add a node m’ with ¢(m’) = {¢}
rer—1(m

and w(m’) = m. The transitions outgoing fr(()rri those singletons are calculated according
to the same procedure.

An example automaton is depicted in figure 21 and its corresponding TSA in figure 22.

The size of a TSA is at most »_ ¢! = O(n!) = O(2"!°8") were n is the size of the original
=1
automaton.

Figure 21: The original automaton.

3.2 Partial Order, Height and Balanced TSAs

The next step toward transforming the TSA into a TPSP tree involves the rearrangement
of the nodes into levels, and then duplicating some nodes in order to make every level
a semi-partition. To this end, we define a partial order on the nodes, which is, roughly
speaking, the composition of A-reachability and ancestorhood, and then define a height
function based on this order.
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Figure 22: The TSA for the automaton in figure 21. The names of the nodes are omitted,
and the numbers indicate the subsets they are mapped to by ¢. All the transition
outgoing from singletons are omitted except those leaving ¢~'({3}) that are included in
order to illustrate inherited destination.

Definition 29 (Order) Let 7 = (X, M, A, 7, ¢) be a TSA. We define on M the follow-
ing preorder relation: m’ < m if A(m,w) € 7*(m’) for some w € ¥*. We write m ~ m/
when both m < m’ and m' < m hold, and m < m' when it holds only in one direction.

Clearly m =< m/ implies |¢(m)| < |¢p(m')], and m ~ m’ implies |p(m)| = |o(m')].
The relation ~ is an equivalence relation and its equivalence classes are the maximally
strongly-connected components (MSCCs) of the TSA. It can be easily verified that this
definition of ~ coincides with definition 24 in chapter 2.

The first definition of a height function just specifies the minimal requirements from
such a function (compatibility with < and the absence of unnecessary “gaps”).

Definition 30 (Height Function: Requirements) A height function for a TSAT =
(X, M, A, 7, ¢) is a function h : M — IN, satisfying:

1. h(m) =1 if ¢(m) is a singleton and m has no children.

2. m ~m' implies h(m) = h(m').

3. m < m' implies h(m) < h(m’).

4. For every i, 1 <1< h(m*), h=*(z) # 0.
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Definition 31 (Smallest Height Function) The smallest height function for a TSA
T is defined for every m € M as h(m) = | where [ is the length of the longest chain of
the form my < ... < m; < m’ where m’ is any node satisfying m ~ m’. The height of a

TSA is h(m*).

The TSA of figure 22 arranged according to h appears in figure 23

Computing the Height: The algorithm works by sueccesively creating subsets of M,
Lq,... L, where L; corresponds to all nodes of height ¢. Initially L; = {m : |¢(m)| = 1}
After having computed L;, we let L;y1 = {x(m): m € L;}. Then for every m € L;4; if

there is some m’ such that m’ & | J L;, m o m’ and either x(m’) = m or A(m,0) = m/
j=1
then we remove m from L;;;. This process is iterated until no updating takes place and

L;yq stabilizes. The complexity of this computation is bounded by the height of the tree
which is bounded by its size.

h=3
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Figure 23: The TSA of figure 22 rearranged according to the smallest height function.

The tree may contain some height gaps along the parenthood chains, i.e., h(7(m)) —
h(m) > 1. We want to “balance” the tree by adding copies of m between itself and its
ancestor, such that that every node of height j will have all its children with height equal
to g — 1.

Definition 32 (Balanced TSA) A TSA T = (X, M, A, 7, ¢) is balanced (with respect
to a height function h) if for every m € M — {m}, h(x(m)) = h(m) + 1.

Balancing a TSA: The construction is rather simple. The TSA is traversed bottom-up.
Whenever a jump is detected, that is, a node m with 7(m) = m’ and h(m') — h(m) > 1,

we insert a new node r to M, and let ¢(r) = ¢(m), 7(m) =r and «(r) = m’. For every
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o € X welet A(r,0) = A(m, o). We can partition M into levels My, My, ..., My(ne41
by letting M; = {m € M : h(m) = h(m*) — ¢+ 1}. The balanced TSA for our ongoing
example appears in figure 24. Since no state needs to be duplicated more than h(m*)

times, the size of the balanced TSA (BTSA) is polynomial in the size of the TSA.

4.5
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Figure 24: A BTSA for the TSA in figure 23. The names of the nodes appear in the

lower parts.

3.3 Constructing Bijection-Reset TPSP Trees

A BTSA already satisfies conditions 1-5 in the definition of a TPSP tree (definition
18). The last step needed is to modify the transition-function such that it will be level-
preserving, and satisfy definition 25. The latter means for every level M; is a TPSP of A,
and for every m,m’ € M;, such that A(m,a) = m/, either o induces a reset from 77*(m)
to some r’ € #71(m’) or m ~ m’ and ¢ induces an injection from 7~!(m) to 7' (m’).
The following construction transforms a BTSA 7' = (¥, M, A’, 7, ¢) into a TPSP tree
T = (X, M,A,r,¢) by replacing A’ by an appropriate transition function A. For every
m € M; and j < ¢ we use w;(m) = 7x*(m) N M; to denote the ancestor of m in level j.

From BTSA to TPSP Tree: We scan the tree top-down, level by level. The transition
function is defined for every i, 1 <¢ < h(m*) 4+ 1, m € M; and o € X, as:

Ay(m, o) =m(A(m, o)) (16)

In other words the transitions are “lifted” until they become horizontal. The result of
applying this transformation to the BTSA of figure 24 appears in figure 25, and the
corresponding decomposition in figure 26.
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Figure 25: The bijection-reset TPSP tree constructed from the BTSA of figure 24.

Claim 17 Let T = (X, M, A, 7, ¢) be the result of the above transformation. For every
i, (Z,MZ’,&, qﬁz) s a TPSP f07“ ./4

Proof: It remains to show that A is transition preserving, that is,
o(g(m), o) € ¢(Ai(m, o)) (17)
By substituting the definition of A we get
o(¢(m), o) C ¢(mi(A'(m,0))) (18)
Since every TSA satisfies
$(A'(m, o)) = 6(¢(m), o) (19)
the transition-preservation condition now becomes

$(A'(m, o)) C ¢(mi(Al(m,0))) (20)

which is true because for every m, ¢(m) C ¢(w;(m)). 4

Claim 18 For every m,m’ € M,_y, such that A(m,o) = m/, either o induces a reset
from ©=Y(m) to some r' € 71 (m’) or m ~ m’ and o induces an injection from w=(m)
to 7= (m’). Hence, T is a bijection-reset TPSP tree for A.
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3,7.b

1,4,a

1,4,a2,6,b @) 2,6,a
1 1,4,b

1,4,b 2,6,b

1,5,a1,5b

Figure 26: The cascade product for the automaton of figure 21, constucted from the
TPSP tree in figure fig:tpsp. Note that (2,6,a) is a modulo-2 counter and that (1,4, a)
is a modulo-3 counter.

Proof: Let m belong to M;_;. For every r € 7#=(m), we have A(r,a) = m,(A'(r,0)).
We consider two cases according to the relation between m and A’(m, o) in the BTSA:
1) Suppose A'(m,o0) < m. This implies that in the BTSA there must be a node cor-
responding to A’'(m,a) at M; for some j > i. Consequently, for every r € #7(m), a
node corresponding to A(r, o) cannot exist before M;11. Thus m;(A’(r,0)) is the same
for every r € #7!(m) and o is a reset. 2) Suppose A’'(m, o) = m’ ~ m and consequently
§(¢(m), o) = ¢(m'). In this case o induces an injection (in the TSA) from 7~ !(m) to
77 (m/) such that for every r € 771 (m) there exists v’ € #71(m’) satisfying A'(r,o) =1’
and h(r) = h(r'). Every rearrangement of 77*(m) according to h will have its counterpart
in #7!(m’) so that o will remain an injection. a

Corollary 19 There exvist an exponential algorithm that constructs for any automaton
an exponential bijection-reset TPSP tree.

Corollary 20 (Upper Bound) There exist an exponential algorithm that decomposes
any automaton into an exponential holonomy cascaded decomposition.

4 An Exponential Lower-Bound for the Cascaded Decompo-
sition

In this section we prove our main original result concerning the complexity of cascaded
decomposition of automata. Throughout this chapter we consider holonomy decomposi-
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tions satisfying definition 22. We also use the definitions of configurations (definition 14)
and of their mappings into subsets via ¢; (definition 15).

We assume in this section that the original automaton A is counter-free and strongly-
connected. Some of the claims in the sequel are valid in more general setting, but
the family of automata used for proving the lower-bound satisfies these properties. A
holonomy decomposition for such automata consists of reset-identity components.

The proof is essentially a proof of a lower-bound on the size of the minimal configura-
tion tree for a certain family of automata. Alternatively we could develop it in terms of
the minimal bijection-reset TPSP tree for this family but we preferred the configuration
tree terminology because its relation to the decomposition is more direct. This choice
makes this section almost self-contained.

4.1 Auxiliary Properties

The following claim sets lower bounds on ¢;(p) based on incoming transitions.

Claim 21 (Necessary Configurations) (1) If p € F; is a configuration such that
6(p,w) = p’ for some w € X* then 6(pi(p),w) C @i(p'). (2) Let p € P; be a configuration
such that 6(p,o) = p'. If the letter (p,o) induces a reset in B;11 whose destination is

some r' € Qiy1, then 6(pi(p), o) C iy (p',1").

Proof: Both claims follow immediately from the homomorphism from C to A and the
definition of ;. -

The next claim relates permutations in B; with bijections in C;

Claim 22 (Permutations and Bijections) (1) If (p,c) induces a permutation’® on
Qi1 in Biyy then o is an injection on {p} x Qix1 in Ciyr. (2) If in addition 6(p,o) = p
in C; then o is a bijection on {p} X Qiy1 in Cip1. (3) If in addition (p,o) induces a trivial
permutation (identity) on Qiy1 in Biy1 then o is an identity on {p} X Qiy1 in Cizq.

Proof: (1) Since there are no r,r’ € ();41 that are mapped by (p,o) to the same state,
there are no (p,r), (p,r’) € Piy1 that are mapped to the same configuration by . Claims
(2) and (3) are direct corollaries of (1). a

4.2 Redundancy Elimination

In order to simplify the proof we introduce three reduction principles that enable us to
eliminate obvious redundancies from a decomposition without affecting its properties. All
the three principles are of the form: Given a decomposition (C, @) such that A <, C, there
exists a “less redundant” decomposition (C', ") such that A <, C' < C and |C'| <|C|.

1%We mean a partial permutation on a subset of ;11 on which (p, o) is defined.
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Definition 33 (Core) Let C; be a partial decomposition. A subset P! C P; is called a
core of C; if |J ¢i(p) = Q and P/ is closed under transitions, i.e., §;(P/,X) C P/. A
pEPi/

minimal core is a core such that none of its subsets is a core.

The following reduction principle states that one can restrict a decomposition to a
core and discard the rest, since the configurations that extend the core “cover” all the
states in ().

Claim 23 (Reduction Principle I) Let C = C; 0 Biy1 0... 0 By be a decomposition
such that A <, C for some . There exists a decomposition C' = Cjo B! jo...0 B and
@' such that A <, C' <C and C! is a restriction of C; to a core P!. Moreover for all 7,
1 < 3 <k we have B; < B; and B; is also a reset-identity automaton.

Proof: Let P/ be a core of C;. For all j >4, p € P and (p,r) € P; we let ¢({p,r)) =
wi((p,r)) if p € P/ and ¢((p,r)) = 0 otherwise. Every B! will consist of a re-
striction of B; to the alphabet P/ x Q41 x ... x Q;—1 x ¥. What we have to show
is that ¢’ = ¢} is a homomorphism (transition-preserving and surjective) and that
Bi,y,..., By are reset-identities. Since P’ = P} is also a core, the range of ¢ is (). Now

6(e((ps Gi1s-- > qr)),0) = @(0((p, Gig1s-- -, qr), o)) implies 8(o((p, qix1,---,qr))),0) =

@' (6({p; Gi41,- - - qr), 7)) because either both sides are empty for p & P/, or ' coincides
with ¢ (recall that 6(p,o) € P! because P! is closed under transitions). Finally, every
B’ is a reset-identity automaton because every B; is, and the removal of transitions does

not affect this property. a

According to claim 21, 8(p;(p),w) C wi(p') for every w such that §(p,w) = p’. The
following reduction principle complements this claim by stating that ¢;(p) can be reduced
to the minimal subset implied by claim 21.

Claim 24 (Reduction Principle II) LetC = Byo...0By be a decomposition such that
A <, C. There exists a decomposition C' = B o...o B} and ¢’ such that A <, C' <C
and for every 1, 1 < <k, and every p € P;,

ei(p) = U §(£i(p), o) (21)

{p’EPi',crEE:gi (p',0)=p}

where P! is the configuration space of C!. Moreover for every 7, 1+ < j < k we have
B! < Bj; and B is also a reset-identity automaton.

Proof: Suppose condition (21) is not satisfied by ;. This means that there exists some
(g1,-..,qr) € P which is not reachable in C such that ¢({¢1,...,qx)) = ¢. So we let
o ({q1,--.,qr)) = 0 and for every j,i < j < k recalculate @ upward. As a result
(g1, q5)) = ¢;({q1,---,4;)) — {g}. Then we eliminate all the transitions of the
form ((q;, (q1,...,qj-1,0))) from &; whenever ¢’({(¢1,...,¢;)) = 0. Asin claim 23, ¢’ is
still a homomorphism and the components remain reset-identities. a

Note that by applying this procedure repeatedly to all the elements of P;, Py is reduced
to strongly-connected components.
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Claim 25 (Reduction Principle III) Let C = Byo...B;oBiy1...By >, A be a
decomposition such that C; is isomorphic to C;y1. Then there exists another decomposition
C'=Bio...B;oBiyy...Br >, A. (In other words, B;41 is eliminated).

Proof: Obviously if ;08,11 is isomorphic to C; then B, is a trivial one-state automaton
whose corresponding coordinate adds no information. -

4.3 Bounded-Counters

Now we introduce the family of automata for which we prove the lower-bound.

Definition 34 (Bounded-Counters) Forn >0 and i,j <n we let

i+ = min(i+j,n) 22)
i—j = max(i—j1)
An n-bounded-counter' is an automaton A" = (¥,Q,6) where ¥ = {a,b}, Q =
{q1,---,q,} and

5(%‘,@) = qul

5(ijb) = qj-rll—l

(23)

The automaton A is depicted in figure 27 as an example.

(lol Tel Twl Twp)

a a

Figure 27: The automaton A,

Definition 35 (Consecutive Subsets) Let () = {q1,...,¢.} be the set of states of
a bounded-counter A™. A consecutive subset of Q is a set {q;, qiy1r-- - qrt, § < Kk,
denoted by Q)[;.r). We define two functions on the set of consecutive subsets of ), for
J<k:
LQun) = Qpa-y
. . 24
R(Qu.n) = Qpywix (24)

Obviously the consecutive subsets are closed under applications of L and R.

Claim 26 The family A" is counter-free for every n.

Tn other places this automaton has been called the bounded buffer or the elevator automaton.
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Proof: This will be done by showing that in any member of A®™ if §(¢;,w) = ¢; and
6(¢q;,w) = qx then either ¢ < j < kor i > 5 > k hold. This is true for w € {a,b}
and by induction on the length of w, it is true for every w. Now if some w permutes
{Gy> Giyy - -+ ¢, } then we must have elther 1<y < ...<4, <iy0rt >iy>...>
;n > 11 which can be satisfied only if all the indices are 1dentlcal and the permutation is
trivial. a

The next claim implies the existence of necessary configurations in decompositions
of bounded-counters.

Claim 27 Let p € P; be a configuration in a decomposition for a bounded-counter. If
pi(p) # 0 and 6:(p, a) = 6i(p,b) = p then ¢i(p) = Q.

Proof: Suppose ¢; € ¢i(p) for some j, 1 < j < n. Then Qpu.;j_11 € é(pi(p),a) and
Qi+t C 8(i(p), b). Since both 6(pi(p),a) € wi(p) and 6(wi(p), b) C wi(p) must hold,
we have S«Qz(p) = Q[l..]—l U {QJ} U Q [f4+1..n] Q ol

4.4 Proof of the Lower-Bound

Claim 28 (The Lower Bound) For cvery n € IN, the smallest reset-identity decom-
position (C,p) such that A" <, C is C = ByoBjoByo---0B,_1, satisfying for every
1, 0< < n—1:

1. Q;=1{0,1} and consequently P; = {0,1}*. (We let {0,1}° = p*).

2. po(p™) = @, and for every p € P, ¢ina((p,0)) = L(wi(p)) and pina((p,1)) =
R(pi(p)). This implies that the range of ¢; is the set of consecutive subsets of
size n — 1.

3. (071 a) and (171, ) are resets in B; to 0 and 1 respectively. In terms of configura-
tions this means that &;(0°,a) = 0" and &;(1%,b) = 1°. The rest of the letters induce
identities.

4. For every p,p € P; there exist w € ¥* and I, —i < 1 < i such that 6;(p,w) = p/,
and for every q; € vi(p), 6(qj,w) = qj41 € @i(p'). In other words, there exists an
order-preserving bijection between ¢;(p) and ¢;(p’).

Proof: The proof is by induction on ¢:

e Base case (1 = 1): Let C be a decomposition and By the first non-trivial automaton.
There are four possibilities concerning the transformations induced by a and b:

1. Both a and b are identities.
2. One of {a, b} is a reset and the other is an identity.

38



3. Both a and b are resets to the same state.

4. Both a and b are resets to different states.

The first three possibilities imply the existence of at least one configuration p € P,
such that ¢1(p) # 0 and &1(p,a) = &1(p, b) = p. According to claim 27, 1(p) = Q.
Since {p} is a core, by using claim 23 we can reduce C into a smaller decomposition
where By is restricted to {p}. But now B; is isomorphic to By and according to
claim 25, it can be removed from the decomposition. This can be repeated until By
satisfies possibility 4. We denote the destinations of @ and b by 0 and 1 respectively.
According to claim 24 we may assume ¢(0) = Qp..,—1] and = (1) = Q.. Since
{0,1} is a core, we can discard the rest of the states and remain with By as the
two-state reset automaton. Since 6(¢1(0),b) = ¢1(1) and 8(¢1(1),a) = ¢1(0), By
is strongly-connected by bijections and By satisfies the inductive hypothesis.

o Inductive Case: Suppose it is true for C;. We consider two cases concerning C;11:

1. If (0%, a) is an identity in B,;; then we have for every ¢ € Q;41, 6i41((0%, ¢),a) =
(0%, ¢). In particular their is some ¢ € ;41 such that ¢,_; € ¢;41((0',¢)) and
consequently ¢;41({0%,¢) = ¢i(0") = Qp.n—g- By the inductive hypothesis,
for every p' € P, there exist bijections from ¢;(0°) to o;(p’) and vice versa,
hence there exists some ¢’ € Q41 such that ¢,41(p',¢') = @i(p'). Thus Piyq
contains a core isomorphic to P; and B;11 can be discarded.

2. If (0%, a) is a reset in B, then, according to claims 21 and 24, there exists a
configuration (0%, q) € Py such that ¢;41((0%,¢)) = §(w:(0%),a) = L(p;(0%)).
Any word that induces a bijection between two subsets ()’ and )" induces
a bijection between L(Q') and L(Q"), so for every p € P; there exists a
configuration (p,0) € P11 such that ¢;41((p,0)) = L(vi(p)). Thus all the
configurations in P; x {0} are strongly-connected by bijections. In a sim-
ilar way, the reset (1°,b) implies the existence of the strongly connected
configurations P; x {1}. Finally the transitions é;41((0',1),a¢) = 0"*! and
6:41((17,0),b) = 1"t make all the configuration strongly-connected by bijec-
tions.

Thus, if C; satisfies the inductive hypothesis so does C;14

This concludes the proof. a

Corollary 29 (Lower Bound) There exists a family { A"}, e of automata such that
for every n, the size of A™ is 2n, and the smallest decomposition for A is C = By o By o
-+ 0 B,_1, having O(2") transitions.

The decomposition and the configurations for A are given in figures 28 and 29.
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0,0,a
O’O’a @ @ 1’1’b
1,1,b

Figure 28: The decomposition for A®. The letters that induce identities are omitted

4.5 Discussion

What is the relevance of this result? After all, the components of the cascade are very
simple and their transition functions can be expressed by very short boolean formulae.
The first answer to this is that the “rules of the game” of computational complexity
are obeyed, that is, the same complexity measure (number of transitions) is used for the
input and for the exponentially blown-up output. Bounded-counters admit a very simple
representation (logarithmic at most) if bounded addition and subtraction are taken as
a basis. In some sense, bounded-counters are “almost” counters, almost beyond the
reach of identity-reset decompositions and propositional temporal logic formulae. This
“explains” why they are hard to describe using these formalisms.

More importantly, our result implies that some states of A must be encoded by ex-
ponentially many different configurations. Considering the procedure of transforming
automata into past temporal logic formulae (chapter 5), a formula for describing the
words that lead to some ¢ € () is a disjunction of the respective formulae that express
the sequences leading to the various configurations in ¢ ~'(¢). This is not, of course, a
general exponential lower bound on the size of the temporal formula that expresses the
language accepted by an automaton, but it indicates an inherent complexity in bounded-
counters, due to the variety of different “classes” of input histories that could lead to
some state. Our conjecture is that an exponential lower-bound on the size of the minimal
temporal formula for bounded-counters can be established as well.

A final remark concerning the relation to other computational complexity issues: In
the Krohn-Rhodes decomposition, as we have seen in chapter 2, counters which are in-
duced by arbitrary words in the original automaton, are induced by the generating letters

40



Figure 29: The configuration tree for A®. The configuration “name” appears on top
while its @; on the bottom of every node. The a-transitions in the lowest level are omitted
for clarity.

in the cascade components. Thus, in order to check whether a cascaded decomposition
contains counters, it is sufficient to scan the transition table of the cascade — a polyno-
mial procedure. On the other hand, Stern has shown ([Ste85]) that to check whether an
automaton is counter-free is NP-hard. If we had a polynomial procedure for decomposi-
tion, we would have a polynomial algorithm for this problem and prove P=NP. Moreover,
according to [CH89], automaton counter-freedom is even PSPACE-hard, which further
decreases the a-priori likeliness of a polynomial decomposition.

5 Translating Automata to Temopral Logic

Logic is an alternative formalism that can be used for defining sequences and sets of
sequences. The underlying idea is that a logical formula can stand for the set of all
sequences that satisfy it. Propositional Temporal Logic is a modal logic that is naturally
suitable for this task. It has been introduced to the computer science literature in
([Pn77]) and ever since has played a major role in many specification and verification
systems (see the best-seller [MP91] for exciting details).
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As an application of the algorithm given in section 3 we show how to translate
a star-free regular set, represented by an accepting non-counting automaton, into a
formula in past temporal logic whose size is at most exponential in the size of the original
automaton. This result is extended naturally for translating an w-regular set, represented
by an accepting non-counting w-automaton, into a formula in future temporal logic. The
syntax and the semantics of the temporal logic used in this section are defined below.

5.1 Past Temporal Logic

We consider past temporal logic as a formalism for specifying properties of finite se-
quences.

Definition 36 (Past Temporal Formulae) Let ¥ be an alphabet. A past temporal
formula is defined inductively as:

1. o is a past temporal formula for every o € X.

2. If ® and ¥ are formulae, so are VW, =&, O ® (previously ®) and @SV (P since

The rest of the Boolean and temporal operators can be derived from Vv, =, -) and §.

The set of all such formulae is denoted T'LP(X).

Definition 37 (Models for Past Formulae) A model for a past temporal formula 11
is a word

W= 81,y 8m
where s; € X, forv=1,....m, and m > 0. We refer to m as the length of w and write

lw| =m.

Given a word w, we define the notion of a temporal formula holding at position j,
0<j <Jwl

Definition 38 (Satisfiability of Past Formulae) Let & and W be past formulae. Sat-
isfiability at position j, 1 < j < |w|, in a word w is defined by:

(w,j) Fo — j>0ands; =0
(w,7) @ = (w,j) F P
(0, )) EPVVY <= (w,j)EP or
(wvj) = v
(0,j)) EQ® <<= (v, j—-1E®
(0,)) E®SY <« forsomek,1 <k<j
(w, k) EVY and
for every 1,k <1<y
(w,i) @

42



Let w be a word of length m and @ a past formula. If (w,m) | ®, we say that w
end-satisfies ® and write
w4,

In other words, past formulae are satisfied “backwards” by finite words if they hold in
the last position of these words. A formula ® defines a set of sequences Lg C X* where

Lo ={weX¥ w4} (25)

The sets that are of the form Lg for some ® € TLP(Y) are exactly the star-free regular
subsets of X1 (see [LPZ85, Zud6, CPP89]).

Note the interesting similarity and difference between this formalism and star-free
regular expressions. The membership of w € X*in both Ly g and Ly - Lg is determined
by the existence of a factorization w = uv such that v € Lg, but in the former case every
prefir of v must be in Lg, while in the latter it is sufficient that v alone is in Lg.

5.2 Future Temporal Logic

Future temporal logic is considered as a formalism for describing infinite sequences.

Definition 39 (Future Temporal Formulae) A future temporal formula is defined
inductively as:

1. For every past temporal formula 11, OOIL (infinitely often 11) is a future temporal
formula.

2. If ® and ¥ are future formulae, so are ® V¥ and —P.

The rest of the Boolean and future temporal operators can be derived from Vv, — and

OO, The set of all such formulae is denoted by T'LF(X).

Definition 40 (Models for Future Formulae) A model for a future temporal for-
mula ® is an infinite word
Q = S59,51 ...

Given a € X%, we define the notion of a future temporal formula holding at position j,
where j is finite. We let a; ) denote s;,5;11 ... .

Definition 41 (Satisfiability of future Formulae) Let 11 be a past formula and ®,
U be future formulae. Satisfiability at position 7, 0 < j < w, in « is defined by:
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(a,7) E OO <= for infinitely many k,j < k
(agjp, k) 211

(a,7) F —® = (o)) F®
() EOVY = (o)) F® or
(a,7) F ¥

If (o,0) = @ we abbreviate it as o = ®. In other words, future formulae are satisfied
“forward” by infinite words if they hold in the first position of these words (which means
that some Boolean combination of past formulae are satisfied backwards by infinitely
many finite prefixes). A formula @ defines a set of sequences Ly C X where

Lo ={aeX¥:afF o} (26)

The sets that are of the form Lg for some ® € TLF(X) are exactly the star-free w-regular
subsets of ¥“ i.e., finite unions of sets of the form UV where U and V are star-free

subsets of ¥*, (see [LPZ85, Zu86, CPP89]).

We will also need the infinitary equivalent of an accepting automaton (see [Th??] for a
survey of the topic):

Definition 42 (Muller w-Automaton) Let a Muller w-automaton is A = (¥, Q, 6, qo, F)
where F C 29 — (. The set Ly C X% accepted by A is:

Li={ae¥¥: Inf(a)=F for some F € F} (27)
where

Inf(a)={q € Q:6(q,a[l..k]) = ¢ for infinitely many &}

5.3 Translating Automata into Past Temporal Logic

Given a counter-free automaton A = (X, Q), 6, qo, F') accepting some set L 4, we construct
a past temporal logic formula ® such that L4 = Lg. Initially we show how to construct
the appropriate formula for a reset automaton, and then extend it to a cascade.

Let A be a reset automaton and let ¥’ C ¥ be the subset of letters that induce resets
in A. For every state ¢ € (), we define the following past formulae:

in, = \/ o (28)

{c€X/:c enters ¢}

out, = \/ o (29)

{c€X .0 leaves q}
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Claim 30 The set L, of finite sequences that lead to q € Q — {qo} is exactly the set of
sequences satisfying the formula ®, defined as:

®, = (—out,) S(ing) (30)

Proof: If w = sq1,52,...,5,, satisfies ®, then for some j < m, s; satisfies in, and for
every j <1 < m, s; satisfies —out, and thus 6(qo, w) = ¢. Conversly, if w does not satisfy
®, then either no prefix of w enters ¢ or an exit from ¢ occurs after the last entry. For
the initial state go we have to cover the case where the sequence contains no letter of in,
but also no letter of out,. By definition, =¥ is satisfied only by the empty word, so the
formula ®,, defined as:

Dy = (mouty, ) S(ing V —X) (31)
is satisfied exactly by the set L, of (possibly empty) finite sequences that lead to ¢o. a

Corollary 31 FEvery regular subset of ¥, consisting of the sequences leading to some
state in a reset automaton, can be expressed by a TLP(X)-formula of size O(|X]).

In order to extend this construction to a cascade we need the following:

Claim 32 Let By = (X,Q1,61) be an automaton such that for every q € Q1 there exists
a corresponding T LP(X)-formula ®,, and let By = (Q1 X ¥, Qq, 02) be a reset automaton.
Then for every ¢' € QQq there exists a corresponding T'LP(X)-formula ®, satisfied exactly
by the sequences leading to ¢' when By is connected to By in the cascade product C =

Bl OBQ.

Proof: Since B, is a reset automaton, every ¢’ € (), is reachable exactly by the sequences

satisfying the TLP(Q; x X)-formula
\I}q/ = (ﬁoutq/) S(inq/) (32)

where iny and out, are finite disjunctions of formulae of the form (¢,o). Let £ be a
sequence in (@1 x ¥)* and let w € ¥* be its projection. By the definition of the cascade
product we have:

(£,9) F (g, 0) (w,7) o and (w,j —1) = @,

<
— (w,j) |:U/\®(I)q

Thus we can replace every occurence of (¢,0) in ¥, by (0 A (©O®,) and obtain the
TLP(Y)-formula ®,. a
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By a straightforward induction it can be shown that every state at level ¢ can be
expressed by a formula consisting of an z-nesting of the since-operator and that a con-
figuration p = (¢1,...,qx) can be expressed as a conjunction:

¢, =0, N...ND, (33)

Finally, any state ¢ of the original automaton can be expressed as a disjunction of the
formulae for its corresponding configurations in the cascade:

(i)q: \/ P, (34)

pEY~1(q)

The set accepted by the automaton is expressed by the following disjunction:

by = \/ (i)q (35)

qeF

From all this it follows that:

Corollary 33 FEvery star-free reqular set accepted by an automaton of size O(n) can be
expressed by a past temporal logic formula of size O(Q”log”).

A somewhat similar first-order characterization appears in [Me69]. Our result improves
upon previously known non-elementary translations ([Zu86]).

5.4 Translating w-Automata into Future Temporal Logic

Given a counter-free automaton A = (X, Q, 9, qo), the set of infinite sequences that visit
¢ infinitely often can be expressed by the future formula I'j) = OO®,, where @, is the
past formula corresponding to the finite sequences reaching ¢. Let F' be a subset of ().
The formula describing all the infinite sequences a such that Inf(a) = F is:

I'p= A\ 00O, A A\ OO0, (36)

qeF ¢'¢F

Finally if A = (%,Q, 6,0, F) is a Muller w-automaton, where F C 29 then L4 C 2¥
can be expressed by the formula

Ty=\ Tr (37)

Fer

Corollary 34 FEvery star-free w-reqular subset of X accepted by an w-automaton of size
O(n) can be expressed by a TLF(X) formula of size O(2"1°8").
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