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Abstract

The primary decomposition theorem due to Krohn and Rhodes ��KR����� which
has been considered as one of the fundamental results in the theory of automata
and semigroups� states that every automaton is homomorphic to a cascaded de	
composition �wreath	product� of simpler automata of two kinds
 reset automata
and permutation automata� If the automaton is non	counting �and correspond	
ingly its transformation semigroup is group	free� then it can be decomposed using
only reset components�

There exist various proofs and partial proofs for the primary decomposition
theorem e�g�� �HS��� Ze��a� Ze��b� Gi�
� MT��� La��� We��� Ei���� None of them
give explicit bounds on the size of the decomposition�� In this paper we give tight
exponential bounds on the size of the decomposition as a function of the size of
the original automaton� For the upper	bound we give an exponential algorithm
by modifying the implicit construction appearing in �Ei���� Our algorithm is con	
structive enough to allow implementation ����� We apply the algorithm to give an
exponential upper	bound on transforming star	free regular �resp� �	regular� sets
expressed by counter	free automata �resp� �	automata� into past �resp� future�
temporal logic formulae� These upper bounds improve upon previously	known
non	elementary translations �MNP��� LPZ
�� Zu
���

�Some of the results in this paper has been presented in� O� Maler� A� Pnueli� Tight Bounds on the
Complexity of Cascaded Decomposition of Automata� Proc� ��st Annual Symposium on Foundations of

Computer Science� St� Louis� Missouri� �����	�� IEEE Press 
����
�To quote the last paragraph in Ginzburg
s book ��Gi�	��� �Finally� notice that the above theory

does not indicate how many particular basic building blocks are needed to construct a cascade product

covering of a given semiautomaton��
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Our decomposition construction is proved to be optimal by showing the exis	
tence of a family of automata such that the size of their minimal permutation	free
decomposition is exponential in the size of the automaton �by size we refer to the
total number of de�ned transitions��
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� Introduction

��� Overview and Historical Remarks

This papers has two main goals� the �rst one is to introduce the new results concerning
the complexity of the cascaded decomposition and its implication for the translation
between automata and temporal logic� The second goal is to reintroduce the Krohne�
Rhodes primary decomposition theorem �KR�	
 to contemporary computer science au�
dience� by providing a self�contained automata�theoretic and constructive proof�

There are many proofs of the Krohn�Rhodes primary decomposition theorem �KR�	
�
e�g�� �MT��� La��� We��
� to mention a few� Among them� the proof of Zeiger 
�Ze��a�
��b
� is more automata oriented 
rather then semigroup oriented� and thus more use�
ful for our purposes� Zeiger�s proof has been corrected and presented more clearly by
Ginzburg in �Gi��
� based on some constructs in �Yo��
� Ginzburg�s proof of the theo�
rem contains some non�deterministic stages concerning the choice of semi�partitions� In
addition� it does not discuss complexity issues explicitly� Another partial proof in this
spirit appears in �HS��
�

The proof in �Gi��
 inspired Eilenberg to give a slight generalization of the primary
decomposition called the holonomy decomposition 
�Ei��
� pp� ���	��� Eilenberg�s the�
orem is cleaner and determinizes the choice of semi�partitions� It has however some
de�ciencies� It is a theorem on coverings of transformation semigroups� and as such
it pays no attentions to the labels of the generators of the semigroup 
i�e�� the input
alphabet� if we use automata�theoretic terminology�� Consequently the outcome of the
decomposition is not given explicitly as a valid automaton over the original alphabet�
Another sociological problem associated with Eilenberg�s construction is the elegant� con�
cise and motivation�less algebraic style in which it is written� which makes it virtually
inaccessible to many contemporary theoretical computer scientists�

The paper is organized as follows� in section ��� we discuss the general concept of
automaton decomposition and give an intuitive introduction to the cascaded decompo�
sition and the Krohn�Rhodes theorem� In section � we give the minimal background on
automata and semigroups needed for the paper� de�ne the cascaded decomposition and
state the Krohn�Rhodestheorem in automata�theoretic terms� In section � we discuss
the theoretical basis underlying the Zeiger�Ginzburg�Eilenberg family of proofs� namely
the relation between cascaded decompositions and some trees of semi�partitions of Q�
In section � we sketch a more algorithmic and automata�oriented version of Eilenberg�s
holonomy decomposition theorem� and analyze its complexity� In section � we establish
the worst�case optimality of this construction� by giving a family of automata for which
the minimal decompositions coincide with those produced by the algorithm� Section 	
we use our construction to improve some upper bounds on translating automata into
temporal logic� Finally we discuss some application to non�deterministic and stochastic
automata� and to everything else�

We hope that our relatively�ugly reconstruction� in addition to the new complexity
results and its applications� will bring some important results form algebraic machine
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theory back to mainstream computer science�

��� Decomposition in General

The problem of decomposing complex systems into simpler components is one of the
fundamental problems in both science and engineering� The relationship between the
behavior of individual components and their global �emergent� behavior when intercon�
nected together is 
either explicitly or implicitly� the subject matter of most disciplines
ranging from physics to the social sciences� The particular case of interacting �nite�
state automata is the topic of computer science related sub�communities such as dis�
tributed computing� hardware realizations� semantics of parallelism� neural nets� cellular
automata� distributed AI and behavior�based robotics � to mention a few� We will be
concerned with the following problem�

The Problem� Given an automaton� decompose it into several simple components such
that their global behavior realizes the behavior of the original automaton�

In the sequel we will be more speci�c about the following details�

� The type the elementary simple components�

� The mode of interconnection�

� The sense in which one behavior is realized by the other�

In general when we take several automata with their corresponding input�transition�
output mechanisms and interconnect them� we get a compound object whose state�space
is 
encoded as� the cartesian product of the states of its components� One of the major
characteristics of the decomposition is the degree of mutual in�uence of the components

dimensions� on each other� that is� to what extent does the behavior of one automaton
depend on the state of another�� Technically this feature of the decomposition is captured
by the interconnection scheme that directs output channels of certain automata to the
input ports of others�

On one extreme of the spectrum of interconnection schemes lies the direct product in
which each component responds to the external input� independently of the other au�
tomata� Such products are used� for example� in proving the closure of regular sets under
Boolean operations� In the engineering terminology this is called parallel decomposition�
On the other extreme lies the unbounded feed�back decomposition in which every automa�
ton is sensitive to the behavior of others� Whenever a system can be decomposed into
parallel �orthogonal� components it is good news for designers and analyzers� because
each component can be treated independently�

More realistic models are based on intermediate degrees of inter�dependence� In cel�
lular automata� neural nets and systolic computers� the components are located in a

�The degree of exposure of the various components to external �to the whole system� stimuli is
another important feature usually ignored in the literature�
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metric space and every automaton is in�uenced directly only by components that reside
in some neighborhood around it� Such interconnection schemes look very reasonable
because they conform with our geometrical and physical intuitions concerning the prop�
agation of in�uence in space� Moreover� in hardware realizations of such models the
communication channels can be routed more easily�

Another form of limited inter�dependence is achieved by partitioning the components
into levels and letting components at level i in�uence components at level j� j � i but
not vice versa� This is the cascaded decomposition� the subject matter of the the rest of
this paper�� All this notions are demonstrated in �gure ��

�a�

�c�

�b�

�d�

Figure �� An automaton �a� and various decomposition schemes� parallel or direct prod�
uct �b�� feed�back decomposition �c� and cascade product �d��

�In fact� this type of decomposition is the lowest level �i�hierarchy of decomposition types �see the
monograph �Ge	��� where an automaton at level k cannot in�uence an automaton of level smaller than
k � i�

	



��� Automata

We assume familiarity of the reader with �nite automata and regular sets at the level of
�HU��
� Our automaton model is a labeled state�transition graph�

De�nition � �Automata� An automaton is triple A � 
�� Q� �� where � is a �nite
set of symbols called the input alphabet� Q is a �nite set of states and � � Q� �� Q is
the transition function�

Several variations are possible at this stage� the transition function can be total or
partial � in the latter case it can be �totalized� by adding a sink state� It can be a relation
rather than a function� but we defer the discussion on non�determinism to section ��� The
transition function can be extended naturally to sequences of input symbols� by letting
�
q� w�� � �
�
q� w�� ��� and to sets of states by letting �
Q�� �� � f�
q� �� � q � Q�g�

In its most �bare� version� the dynamics of the automaton� that is the transition func�
tion� is represented explicitly by a table in which every combination of an input symbol
and an internal state has an entry� This form of representation can be visualized by a
labeled directed graph whose nodes correspond to states and its edges to transitions 
see
�gure ��� Although such a representation is �nite� it might be impractical in many situa�
tions where the state�space is large� and more succint representations are used whenever
possible� Programming languages or data�ow equations� to mention few examples� are
among the formalisms that enable succint representations of certain transition systems�

a � c

ab

c c

b

a � c

r

qp

Figure �� An automaton

An automaton can be made an acceptor by choosing an initial state q� � Q and a set
of accepting states F � Q� and as such accept�recognize some regular language U � ��

consisting of the set of all labels of trajectories from q� to state in F 
see textbooks�� A
subclass of the regular sets is the class of star�free sets de�ned as�

De�nition � �Star	Free Regular Sets� The class of star�free regular sets over � is
the smallest class containing �� and the sets of the form f�g where � � � � f�g� which
is closed under �nitely many applications of concatenation and Boolean operations�

It turns out that star�free sets have additional characterizations which will be discussed
in the sequel�
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De�nition � �Automaton Homomorphisms� A surjective function � � Q � Q� is
an automaton homomorphism�� from A � 
�� Q� �� to A� � 
�� Q�� ��� if it satis�es for
every q � Q� � � �

�
�
q� ��� � ��
�
q�� ��

In such a case we say that A� is homomorphic to A and denote it by A� �� A� When
two automata are mutually homomorphic we say they are isomorphic�

Intuitively A� �� A means that anything that can be expressed or described using A�

can be expressed using A� and that A gives �ner characterizations of phenomena than
does A�� Homomorphism is a partial�order relation and the canonical acceptor for a
regular set U is the minimal element in the in�nite lattice of all the automata accepting
U � while the in�nite tree acceptor is the maximal element�� Homomorphism is a special
case of relational homomorphism de�ned below�

De�nition 
 �Relational Homomorphisms� A function � � Q� �Q
�

such that Q� �S
q�Q�
q� is a relational homomorphism from A � 
�� Q� �� to A� � 
�� Q�� ��� if it

satis�es
�
�
q� ��� � ��
�
q�� ��

��
 Semigroups

The theory of automata is strongly related to the algebraic theory of semigroups that
deals with sets having an associative 
but not necessarily invertible� binary operation
de�ned on them� Two typical examples of semigroup are sequences of symbols under
the concatenation operation� and transformations under the functional composition op�
eration� Since a full exposition of semigroup theory will decrease the fraction of original
work in this thesis below the limits of good taste� only a summary of the relevant notions
will be given� The interested reader may consult �Gi��
� �Ei��
� �Pi��
� �Ar��
 or �La��
�

De�nition � �Semigroups� Monoids and Groups� A Semigroup is a tuple 
S� �� where
S is a set and � is a binary associative operation ��multiplication�	 from S � S to S�
For s� t � S we write st for their product� A Monoid 
M� �� �� is a semigroup containing
an identity element � such that m� � �m � m for every m � M � A group 
G� �� �� is
a monoid such that for every g � G there exists an element g�� � G �an inverse	 such
that gg�� � ��

De�nition 
 �Subsemigroups� Generators� A subsemigroup T of S is a subset T �
S that is closed under product� that is� T � � T � A subgroup of S is a subsemigroup which
is a group� Let A be a subset of S� The smallest subsemigroup containing A is denoted
by A� and it consists of all the elements of S that are a result of �nitely many products
of elements of A� Any subset A � S such that A� � S is called a generating set of S�

�More precisely we de�ne a state�homomorphism� we could extend the de�nition to include mappings
between di�erent input alphabets� output alphabets etc�

�Excluding� of course� automata with unreachable states�
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Examples for semigroups are the natural numbers under addition or under multi�
plication� Boolean algebras under 	 or 
� matrices under multiplications� and binary
relations under composition� A �nite semigroup can be described by its multiplication
table� Every semigroup has a generating set 
which might be S itself��

De�nition � �Semigroup Homomorphisms� A surjective function � � S � S� is a
semigroup homomorphism from 
S� �� to 
S�� �� if it satis�es �
s� � s�� � �
s�� � �
s���
In such a case we say that S� is homomorphic to S and denote it by S� �� S� Semi�
group homomorphic is transitive� Two mutually homomorphic semigroups are said to
be isomorphic�

As in automata� homomorphism of semigroups corresponds the the intuitive notions
of re�nement�abstraction relations among structures�

Let TR
Q� be the set of all total functions 
transformations� of the form s � Q� Q

for a �nite set Q� One can see that TR
Q� is a monoid under the operation of functional
composition de�ned as s � t
q� � t
s
q�� for every q � Q� If the underlying set Q has n
elements then TR
Q� has nn elements� The identity function on Q� IQ� is the identity
element of TR
Q�� A transformation as can be represented as an n�tuple 
qi�� � � � � qin�
where qij � s
qj��

Remark� There is some notational con�ict between algebraic� functional� and automata�
theoretic conventions� Algebraically� the �action� of s on q� is denoted by qs and the
associativity of composition is expressed as qs � s� � q
s � s��� On the other hand� the
automata�theoretic notation �
q� s� is preferable when we have to refer to several transi�
tion functions� We will try not to confuse the reader�

De�nition � �Transformation Semigroups� A transformation semigroup is X �

Q�S� where Q the underlying set and S is a subsemigroup of TR
Q�� i�e�� a set of
transformations on Q closed under composition� Clearly if Q is �nite� so is S�

The importance of transformation semigroups comes from Cayley�s theorem�

Theorem � �Cayley� Every semigroup �monoid	 is isomorphic to a transformation
semigroup �monoid	�

On the other hand every automaton gives rise to a natural transformation semigroup
generated by the transformations induced by the letters of the input alphabets� It can be
shown that if two automata are homomorphic so are their corresponding transformation
semigroups�

De�nition � �Rank� Let Q be a set of n elements� and let s � Q� Q be a transfor�
mation� The rank of s is de�ned as jQsj� where Qs � fqs � q � Qg�
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Figure �� A permutations �left� and a reset �right� illustrated as transition graphs �up�
and as transformations �down��

Permutations and resets 
see �gure �� represent two extremes in the spectrum of
transformations on Q� Among the nn such transformations� the n� permutations are
those in which the domain and the range coincide and the rank is n� In resets� on the
other hand� the rank is minimal� i�e�� ��

In an automaton� after the occurrence a reset the current state is determined precisely
regardless of the previous one� On the other hand after applying a permutation we are
no wiser then before if the previous state is unknown� From another point of view� a
permutation is a reverse�deterministic� that is� by being at one state and knowing the
last input event one can determine the previous state� contrary to resets in which the
degree of reverse�non�determinism is maximal�

Permutations and resets are closed under composition or more precisely� if we denote
a reset by r and a permutation by p we get the �multiplication table� of �gure �� Resets
can be obtained by composing two non�reset transformations� e�g�� 
���� � 
���� � 
�����
because composition can decrease the rank� On the other hand� because composition can�
not increase the rank� permutation on Q cannot be composed from non�permutations on
Q� However a permutation on a subset �Q � Q can be composed from non�permutations
as can be seen from fact ��

Fact � A transformation s permutes a subset �Q � Q i
 s � s�s�� � � � � sm for some
m � � and there exists a sequence of subsets fQigi����m such that Q� � Qm � �Q and the
restriction of every si to Qi is an injection to Qi���
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Figure �� Composition of permutations and resets

There are various ways to classify �nite semigroups and their corresponding regular
sets 
see �Pin��
�� An important sub�class of the semigroups is de�ned as follows�

De�nition �� �Group	Free Semigroups� A semigroup S is aperiodic if there exists
a number k such that sk � sk�� for every element s � S� A semigroup is group�free if
it has no non�trivial subgroups� An automaton is counter�free if there is no word w that
permutes a non�trivial subset of Q�

It is not di�cult to see that a semigroup is aperiodic i it is group�free� and that an
automaton is counter�free i its semigroup of transformations is group�free� The following
theorem relates aperiodic semigroups to star�free sets and consequently� to propositional
temporal logic�

Theorem � �Sch�utzenberger� A regular set U is star�free if and only if its syntactic
semigroup is aperiodic �and its minimal automaton is counter�free	�

��� The Krohn	Rhodes Primary Decomposition Theorem

The de�nition of the cascade product of two or more automata is given below�

De�nition �� �Cascade Product� Let B� � 
�� Q�� ��� and B� � 
Q� ��� Q�� ��� be
two automata� Their cascade product B�
B� � 
�� Q� !�� is de�ned by letting Q � Q��Q�

and !�
hq�� q�i� �� � 
��
q�� ��� ��
q�� hq�� �i��� The cascade product of more than two
automata� B� 
 B�� � � � 
 Bk is de�ned as 
� � � 

B� 
 B�� 
 B� � � �� 
 Bk�

Remark� Note that the �communication links� between B� and B� given implicitly via
the de�nition of the input alphabet of B�� A neater de�nition using transducers will be
given in chapter ���

De�nition �� �Permutation	Reset Automata� An automaton A � 
�� Q� �� is A
permutation�reset automaton if for every letter � � �� � is either a permutation or reset
with respect to the set of states on which it is de�ned�

We will sometime consider partial transition functions� that is� �
q� �� need not be
de�ned for every q � Q� In this case � is said to induce a partial permutation if �
q� �� ��
�
q�� �� for every q� q� on which � is de�ned� or a partial reset whenever �
q� �� � q� for
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every such q such that �
q� �� is de�ned� In both cases it is straightforward to extend
� to become either a complete permutation 
by letting �
q� �� � q for ever q � Q such
that �
q� �� is unde�ned�� or a complete reset 
by letting �
q� �� � q� for every q��

The Krohn�Rhodes theorem states that the in�nite class of permutation�reset au�
tomata is homomorphically complete for the cascade product� i�e�� every automaton 
up
to inverse homomorphism� can be decomposed into a cascade of elements from this class�
This celebrated theorem can be formulated as�

Theorem 
 �Krohn	Rhodes �Automata�� For every automaton A there exists a
cascaded decomposition C � B� 
B� 
 � � � 
 Bk such that A � C� each Bi is a permutation�
reset automaton� and any permutation group in some Bi is homomorphic to a subgroup
of the transformation semigroup of A 
this implies that if A is non�counting then all the
permutations in fBig are trivial� i�e�� identities��

It is this theorem that we are going to prove in detail within the following sections� as
well as complexity bounds� Originally this theorem was expressed in terms of semigroups
where X� 
X� is interpreted as the wreath product of X� and X�� Since we mention this
version only in the passing� we will spare the reader from the wreath product de�nition�

Theorem � �Krohn	Rhodes �Semigroups�� Every transformation semigroup X �

Q�S� admits a decomposition X � X� 
 � � � 
Xk where each Xi is either the monoid U�


the transformation monoid of the two�state reset�identity automaton� or Xi is a simple
group such that Xi � X� Consequently if X is group�free 
aperiodic� then all the Xi are
isomorphic to U��

Concerning the binary reset automaton and its monoid U�� it is worth mentioning
that every n�state reset can be decomposed into a direct product of log n binary resets�
so that all the results and complexity bounds to be mentioned in the sequel which are
based on arbitrary resets apply to binary resets as well�

� The Theoretical Basis of the Cascaded Decomposition

In this section we show the intimate relationship between cascaded decompositions of
an automaton and certain semi�partitions of its set of states� This correspondence plays
an important role both in the algorithm and in the lower�bound� In order to discuss it�
let us �rst give more explicit de�nitions of the cascaded decomposition and of related
structures�

In the sequel we will make a distinction between three �degrees� of decomposition�
The �rst �plain� decomposition given below satis�es the homomorphism condition � no
restrictions are imposed on the building blocks�
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��� Decompositions and Con�gurations

De�nition �� �Cascaded Decomposition� Let A � 
�� Q� �� be an automaton� A
cascaded decomposition for A is a pair 
C� �� where C � 
�� P� !�� � B� 
 B� 
 � � � 
 Bk is
a �possibly incomplete	 automaton such that�	

�� For all i� � � i � k� Bi � 
Q� � � � � �Qi�� � �� Qi� �i� where �i is possibly partial�


� P � Q� � � � ��Qk and the global transition function is evaluated coordinate�wise
according to

!�
hq�� � � � � qki� �� � h��
q�� ��� � � � � �k
qk� hq�� � � � � qk��� �i�i 
��

�� � � Q�� � � ��Qk � Q is a homomorphism from C to A� that is� a surjective partial
function such that

�
!�
hq�� � � � � qki� ��� � �
�
hq�� � � � � qki�� �� 
��

This fact is denoted by A �� C�

It follows from the de�nition that !�
hq�� � � � � qki� �� is de�ned i �i
qi� hq�� � � � � qi��� �i� is
de�ned for every i� The size of A is the number of de�ned transitions� In a complete
automaton it is jQj � j�j� The size of C is the sum of the sizes of all the Bi�s�

��

��

��a ��a

b

a

��b

��b

��a ��b

��a

��b

a�b

Figure 	� A cascade�

Example� In �gure 	 one can see a cascade product whose global structure is depicted in
�gure �� By de�ning the homomorphism � � f�� �g � f�� �g � fq�� q�� q�g as �
h�� �i� �
q�� �
h�� �i� � �
h�� �i� � q� and �
h�� �i� � q� we obtain the automaton in �gure ��

De�nition �
 �Con�gurations� Let C � B� 
B� 
 � � � 
 Bk be a a cascade product� An
i�con�guration� � � i � k� is an element hq�� � � � � qii � Pi � Q�� � � ��Qi� Similarily we
let Ci � B� 
 B� 
 � � � 
 Bi � 
�� Pi� !�i��

�For convenience we assume that B� is the trivial automaton over � with Q� � fp�g� Sometimes B�

is omitted from the �gures�
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Figure �� The global automaton realized by the cascade of �gure 	�

a�b

a

b

ab

q� q� q�

Figure �� A homomorphic image of the cascade described in �gures 	 and 
�

By de�nition C � 
�� P� !�� � 
�� Pk� !�k� � Ck� When p � Pi and p� � Qi���� � � � ��Qj

we use hp� p�i to denote the corresponding j�con�guration� In such a case we say that
p is a pre�x of hp� p�i and that hp� p�i extends p� 
This hierarchical pre�xing should not
be confused with sequential concatenation�� The set of all con�guration has an obvious
tree structure� with p being an ancestor of hp� p�i� Note that by de�nition for any i 	 j

Pj � Pi �Qi�� � � � ��Qj and Cj � Ci 
 Bi�� 
 � � � 
 Bj�

Given that 
C� �� is a decomposition for A � 
�� Q� �� and that a k�con�guration
p � Pk can be viewed as a 
not necessarily unique� encoding of some state in Q� an i�
con�guration r � Pi for some i 	 k corresponds to the set of A�states which are encoded
by some extensions of r� This intuitive notion of correspondence between con�gurations
and subsets of Q is formalized in the following de�nition�

De�nition �� �Mapping Con�gurations to Subsets� Let 
C� �� be a decomposition
for A� C � B� 
 B� 
 � � � 
 Bk� We de�ne a family of functions �i � Pi � �Q� � � i � k

using backward induction on i�

�k
p� �

�
�
p� when �
p� is de�ned
� otherwise

�i��
p� �
�

qi�Qi

�i
hp� qii�
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In other words� �i
p� is the set of all states of A that correspond to k�con�gurations that
are extensions of p� Clearly if p � Pi and hp� p�i � Pj for some j � i then �j
hp� p�i� �
�i
p�� A con�guration p � Pi such that �i
p� �� � is called non�empty and the set of
non�empty con�gurations is denoted by P�

Example� The con�guration tree for the decomposition described in �gures 	� � and �
appears in �gure ��

Claim 
 Every �i is a relational homomorphism from Ci to A� that is� it satis�es for
every p � Pi

�
�i
p�� �� � �i
!�i
p� ���

Proof� For i � k it follows from the fact that a homomorphism is a relational homo�
morphism� Suppose it is true for i" �� that is for every p � Pi� r � Qi�� we have

�
�i��
hp� r�i� �� � �i��
!�i��
hp� ri� ���

To prove it for i we have

�
�i
p�� �� � �

�
r

�i��
hp� ri�� ��

�
�
r

�i��
!�i��
hp� ri� ���

�
�
r

�i��
h!�i
p� ��� �i��
r� hp� �i�i

�
�
r

�i��
h!�i
p� ��� ri�

� �i
!�i
p� ���

��� TPSP Trees and Decomposition

The correspondence between con�gurations in the decomposition and subsets motivates
the introduction of the following de�nitions�

De�nition �
 �Semi	Partitions and Partitions� Let Q be a �nite set� A semi�
partition on Q is a pair 
M�
� where M is a �nite set and 
 � M � �Q is a total
function such that

�
m�M



m� � Q� A semi�partition 
M�
� is non�redundant if for every

m�m� �M � 

m� �� 

m���

De�nition �� �Transition	Preserving Semi	Partitions� Let A � 
�� Q� �� be an
automaton� A transition�preserving semi�partition �TPSP	 forA is a system 
��M�#� 
�
where 
��M�#� is an automaton� 
M�
� is a semi�partition of Q and # �M ���M

satis�es
 for all m �M � � � ��

�


m�� �� � 

#
m���� 
��

�In other words� � is a relational homomorphism from ���M��� to A�

��
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Q
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q�� q� q�� q�

Figure �� A con�guration tree� The con�guration encodings appear at the upper part of
each node while the subsets they are mapped to by � at the bottom�

Example� In �gure � one can see a TPSP for the automaton in �gure ��

q�� q�q�� q�

b

a

a�b

Figure �� A TPSP for the automaton in �gure ��

In order to link cascaded decomposition and TPSPs we need a hierarchical structure
on TPSPs that parallels the concept of con�guration tree�

De�nition �� �TPSP Tree� Let A � 
�� Q� �� be an automaton� A TPSP tree is a
system T � 
��M�#� �� 
� such that�

�� M is a �nite set of nodes� containing a distinguished node m� �M � called the root
of the tree�


� � � 
M � fm�g�� M is a total parenthood function such that for every m �� m��
there exists some i � � such that �i
m� � m�� We will use ���
m� to denote the
�children� of m� and ��i
m� to denote descendants� This function can be used

�	



to partition M into levels according to the ancestral distance from m� by letting
Mi � fm � M � m� � �i
m�g� The height of the tree� denoted by h� is the length
of the longest ancestral chain plus ��

�� The tree is uniform� that is� every node has some descendant whose distance from
the root is h�

�� 
 �M � �Q � � is a surjective labeling function� such that 

m�� � Q� For every
q � Q� there exists some m � Mh such that 

m� � fqg� and for every m � Mh�
j

m�j � ��

�� For every m �M �Mh� 
���
m�� 
�m�� is a non�redundant semi�partition of 

m�
where 
�m� is the restriction of 
 to ���
m�� We also denote the restriction of 

to Mi by 
i�

�� # �M ���M is a transition function which can be decomposed into a union of
level�preserving functions of the form #i �Mi � ��Mi�

�� # is ancestor�consistent� #
�
m�� �� � �
#
m�����

�� For every i� 
��Mi�#i� 
i� is a TPSP for A�

It follows from these conditions that for every i � �� 
i
m� � 
i��
�
m�� and that
the restriction of � to Mi de�nes a homomorphism from Mi to Mi��� Moreover 
h is
a homomorphism from 
��Mh�#h� to A� A TPSP tree for the automaton in �gure �
appears in �gure ��� The similarity between this TPSP tree and the con�guration tree
is not a coincidence and we are going to prove that �� Given a decomposition� its set of
non�empty con�gurations has a TPSP�tree structure� and �� From a TPSP�tree T for
A one can construct a decomposition for A such that the associated tree of non�empty
con�gurations is isomorphic to T �

Claim � �Decomposition� Tree� Every decomposition 
C� �� forA � 
�� Q� �� with
C � B� 
 B� 
 � � � 
 Bk implies a TPSP tree T � 
��M�#� �� 
� of height k�

Proof� By letting M � P� #i � !�i and 
i � �i for every i� � � i � k� and �
hp� qi� � p

the desired TPSP is constructed�

In order to prove the other direction and construct a decomposition from a TPSP tree
we de�ne a two functions that map nodes in the TPSP tree to states of the components
and to con�guration in the decomposition�

De�nition �� �Mapping Nodes to States and Con�gurations I� Let T � 
��M�#� �� 
�
be a TPSP tree for A� For every i � � we let Qi be a set such that jQij � maxfj���
m�jgm�Mi��

�
and de�ne a function �i � Mi � Qi such that for every m � Mi��� the restriction of �i
to ���
m� is an injection� From this function we can de�ne an injection 
 � M � P�

��



a

a

b

b

a

b

a�b

q�q�q�q�

Q

a�b

a

b

q�� q� q�� q�

Figure ��� A TPSP tree for the automaton in �gure ��

that maps every node to a distinct con�guration� As usual� 
 can be decomposed into

i �Mi � Pi� The de�nition of 
i is by induction on i�


�
m
�� � ��
m

�� � q� 
��


i��
m� � h
i
�
m��� �i��
m�i 
	�

Let ��i � Qi � �Mi be the inverse of �i� One can see that the inverse of 
i� 
�i � Pi �Mi

admits the following de�nition�


�i��
hp� qi� �

�
��i��
q� � ���

�i
p�� if ��i��
q� � �

��

�i
p�� �� �
� otherwise


��

Claim � �Tree � Decomposition� From a TPSP tree T � 
��M�#� �� 
� for A of
height k� one can construct a cascaded decomposition 
C� ��� C � B� 
 B� 
 � � � 
 Bk such
that the sizes of T and C are equal�

Proof� We de�ne Qi� � and 
 as in de�nition ��� The transition function of Bi is de�ned
as

�i
q� hp� �i� �

�
�i
#i

�hp� qi� ��� if 
�hp� qi is de�ned

� otherwise

��

In other words� the i�con�guration hp� qi is translated into its corresponding node 
if
any�� on which � is applied according to the transition function of the TPSP tree� and

��



the resulting node is translated back into a state in Qi� It su�ces to show an isomorphism
between the full decomposition Ck � 
�� Pk� !�k� and the lowest level of the TPSP tree

��Mk�#k�� which is inverse�homomorphic to A by de�nition� The proof is by induction
on i� the base case is trivial� Suppose it is true for i� that is� for everym �Mi and � � �
we have


i
#i
m���� � !�i

i
m�� �� 
��

and we want to prove that for every m� � ���
m� we have


i��
#i��
m
�� ��� � !�i��

i��
m

��� �� 
��

The left�hand side of 
�� is transformed according to De�nition 	 and the properties of
TPSP trees� while to the the right�hand side we apply the de�nition of a cascade to
obtain�

h
i
#i
m����� �i��
#i��
m
�� ���i � h!�i

i
m�� ��� �i��
�i��
m

��� h
i
m�� �i�i 
���

The identity of the �rst coordinates follows from the premises while the equality of the
second coordinate is just a rephrasing of 
�� with p � 
i
m� and q � �i��
m���

Example� From the the TPSP tree of �gure �� one can obtain the decomposition of
�gure 	�

��� Injection	Reset TPSP Trees and Permutation	Reset Decompositions

So far we have shown the correspondence between arbitrary cascaded decompositions
and TPSP trees� Our next step is to see what additional constraints are imposed on
the con�guration 
and hence TPSP� trees when the building blocks are restricted to be
permutation�reset automata�

De�nition �� �Injection	Reset TPSP Tree� An injection�reset TPSP tree is a
TPSP tree T � 
��M�#� �� 
� satisfying the following constraints on #� For every
m �Mi� i 	 h� and for every � � � either

� #i��
m�� �� �� #i��
m�� �� for every m��m� � ���
m��

or

� #i��
m�� �� � #i��
m�� �� for every m��m� � ���
m�

In other words if m� � #i
m��� then � induces either an injection from ���
m� to
���
m�� or a reset from ���
m� to some single r� � ���
m��

Claim � �P	R	Decomposition � I	R	Tree� Every decomposition 
C� �� for A �

�� Q� �� with C � B� 
 B� 
 � � � 
 Bk such that fBig��i�k are permutation�reset automata�
implies an injection�reset TPSP tree of height k�

��



Proof� We show how the structure of the building blocks a ects the structure of the
con�guration tree� Consider some p � Pi such that !�i
p� �� � p�� Suppose hp� �i induces
a reset in Bi��� that is �i��
q�� hp� �i� � �i��
q�� hp� �i� for every q�� q� � Qi�� on which a
hp� �i�labeled transition is de�ned� Consequently !�i��
hp� q�i� �� � hp�� �i��
q�� hp� �i�i �
!�i��
hp� q�i� �� and � is indeed a reset on Pi��� If hp� �i is a permutation in Bi�� then
�i��
q�� hp� �i� �� �i��
q�� hp� �i� for every q�� q� � Qi�� and consequently !�i��
hp� q�i� �� ��
!�i��
hp� q�i� �� and � induces an injection from fpg �Qi�� to fp�g �Qi��� By virtue of
claim � these properties of the con�guration tree are re�ected in the TPSP tree�

Claim �� �I	R	Tree � P	R	Decomposition� From an injection�reset TPSP tree T �

��M�#� �� 
� of height k� �� one can construct a cascaded decomposition C � B� 
B� 

� � � 
 Bk made of permutation�reset automata such that jT j � jCj�

Proof� The proof is by the same construction in the proof of claim �� What remains
to show is that for every i� p � Pi��� � � �� hp� �i is indeed a reset or a permutation
in Bi� From 
�� it follows that for every q�� q� � Qi �i
q�� hp� �i� � �i
q�� hp� �i� i 
#i

�
hp� q�i�� ��� � #i

�
hp� q�i�� ��� and since T is an injection�reset TPSP tree� the
result follows�

The automaton in �gure �� admits an injection�reset TPSP as in �gure ��� which
yields the permutation�reset decomposition of �gure ��� The construction so far 
def�
inition �� and the proof of claim �� involves what we call �injection folding�� that is�
injections between �cousins� in the TPSP tree are transformed into permutations in the
cascade� due to the encoding of di erent nodes by the same states in the cascade�

q�q�

q�q�

a

a a

a

Figure ��� An automaton�

Next we show that every Q there exists a generic tree of subsets that can be made
an injection�reset TPSP tree for any automaton whose set of states is Q� and lead to
generic permutation�reset decomposition�

Claim �� �The Generic TPSP Tree� For every automaton A � 
�� Q� �� with jQj �
n� it is possible to construct an injection�reset TPSP tree T � 
��M�#� �� 
� of height
n and size O
�n��

��



Q

a�b

aa

aa

q�q�q�q�

q�� q�q�� q� a

a

Figure ��� An injection�reset TPSP tree for the automaton in �gure ���

Proof� The construction goes as follows� The root is m� and 

m�� � Q� For every
m � M with 

m� � fq�� � � � � qlg we de�ne ���
m� � fm�� � � � �mlg and let 
i��
mj� �

i
m��fqjg� The transition function is de�ned recursively� First we let #�
m�� �� � m�

for every � � �� Then� for every m such that #i
m��� � m� we calculate the transition
function of its children according to the following two cases�

�� If j�


m�� ��j� j

m�j then � induces a bijection between 

m� to 

m�� and con�
sequently between the sets associated with their children� So for every r � ���
m�
we let #i��
r� �� � r� where r� � ���
m�� is the node satisfying �

i��
r�� �� �

��a ��a��a ��a

��

�� a

a

Figure ��� A permutation�reset decomposition for the automaton in �gure �� constructed
by injection folding from the injection�reset TPSP tree of �gure �
�

��




i��
r���

�� Otherwise� if j�


m�� ��j 	 j

m�j then there exists some r� � ���
m�� such that
�


m�� �� � 

r�� and for every r � ���
m� �


r�� �� � 

r��� Hence we can let
� be a reset on ���
m� by de�ning #i��
m��� � m��

An automaton and its corresponding generic TPSP tree are depicted in �gures �� and
�	�

Corollary �� Every n�state automaton admits a decomposition into a cascade of n
permutation�reset automata having an exponential total size�

���

b

a�b
a

b

a

Figure ��� An automaton�

There are two problems related to this construction� First� it is a brute�force construc�
tion always leading to an exponential tree 
and decomposition� regardless of the speci�c
transition structure of A� The �rst part of the algorithm to be presented in section �
gets rid of the �obviously redundant� nodes and levels� In spite of these improvements�
we will also show that in the worst case the construction has to be exponential anyway�

The second problem with injection�reset TPSPs in general is that some �super�cial�
permutations may be created by the folding process� without corresponding permutations
in A� The example in �gures ��� �� and �� shows how this phenomenon might occur
regardless of the choice of 
�

��
 Bijection	Reset TPSP Trees and Holonomy Decompositions

Now we are ready to impose further restrictions on the TPSP trees and on the decom�
position and ensure that the decomposition re�ects the sub�groups of A� Before doing
so let us give more explicit de�nitions of these sub�groups�

De�nition �� �Permutation Subgroups� LetX � 
Q�S� be the transformation semi�
group associated with an automaton A � 
�� Q� ��� The permutation subgroup H 
Q �


 �Q�G 
Q� associated with some �Q � Q consists of all the permutations of the form

g � �Q� �Q� where g is the restriction of some s � S to �Q�

��
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Figure �	� The generic injection�reset TPSP tree for the automaton in �gure ���

De�nition �� �Holonomy Decomposition� A holonomy decomposition for A is a
permutation�reset decomposition such that for every i� Bi satsi�es the additional condi�
tion� Its state�space Qi and its input alphabet �i can be partitioned into Qi�� � � � � Qil and
�i�� � � � ��il such that �ij is de�ned exactly over Qij� and the permutation group on Qij

�generated by the permutations in �ij	 denoted by Hij � 
Qij� Gij� is homomorphic to
some permutation subgroup of A�

In particular� if A is a non�counting automaton then its holonomy decomposition
consists only of reset�identity automata� It is an easy excercise to show that a holonomy
decomposition 
introduced by Eilenberg� implies the original Krohn�Rhodes decompo�
sition where every component in the cascade is either a permutation automaton or a
reset�identity automaton�

The following de�nitions are needed in order to put some constraints on the TPSP
tree�

De�nition �� �Subset Equivalence� Let A � 
�� Q� �� be a �complete	 automaton�
Two subsets �Q�� �Q� � Q are equivalent if there exist w�w� � �� such that�

�� �
 �Q�� w� � �Q� and �
 �Q�� w
�� � �Q�

��



a�ba�b

bb

q�q�

q�q�

a a

Figure ��� A counter�free automaton�


� ww� and w�w induce identities on �Q� and �Q� respectively�

This fact is denoted by �Q�
w�w�

� �Q� or simply �Q� � �Q��

Remark� If for some �Q�� �Q� � Q and w�w� � �� only condition � is satis�ed� there

exist some u� u� such that �Q�
u�u�

� �Q�� This is due to the fact that ww� is a permutation
on �Q� and w�w is a permutation on �Q�� so for some l� 
ww��l and 
w�w�l are identities�

and by letting u � w and u� � w�
ww��l�� we have �Q�
u�u�

� �Q��

De�nition �
 �Node Equivalence� Two nodes m�m� � Mi in a TPSP tree T �

��M�#� �� 
� are equivalent if there exist w�w� � �� such that�

�� #
m�w� � m� and #
m�� w�� � m�


� j���
m�j � j���
m��j

�� 

m�
w�w�

� 

m�� �in the sense of subset equivalence	�

This fact is also denoted by m
w�w�

� m� or simply m � m��

De�nition �� �Bijection	Reset TPSP Tree� A bijection�reset TPSP tree is an injection�
reset TPSP tree T � 
��M�#� �� 
� such that for every m�m� � Mi� � � �� such that

#
m��� � m�� if � induces an injection� from ���
m� to ���
m�� then m
��w
� m� for

some w � ���

With every node in a TPSP tree we associate a permutation group as follows�

	In the case when j����m�j � 
� we view � as a partial reset� not as an injection� so that m � m�

need not hold�

��
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Figure ��� An injection�reset TPSP tree for the automaton in �gure �
�

De�nition �
 �Holonomy Groups� Let T � 
��M�#� �� 
� be a TPSP tree� and
let m � M be a node� The holonomy group of m is the permutation group Hm �

���
m�� Gm� consisting of all the permutations of the form g � ���
m� � ���
m�
induced by some words in ��� Note that Hm can be the trivial group�

Claim �� �Holonomy Group � Permutation Subgroup� Let T � 
��M�#� �� 
�
be a bijection�reset TPSP tree for A � 
�� Q� ��� For every m �M � Hm is homomorphic
to H��m��

Proof� We de�ne a mapping � � G��m� � Gm as follows� for every s � 

m�� 

m� �
G��m� we associate �
s� � �

��
m�� ���
m� such that for every m� � ���
m�

#
m�� �
s�� � 
��
�


m��� s�� � ���
m� 
���

In other words� s is now applied� on the subset 

m�� � 

m�� This mapping is
well�de�ned due to the following reasons� s is a bijection on 

m� and consequently on


m�� and thus there must be at least one m�� � ���
m� such that m�� � 
��
�


m��� s��
and due to non�redundancy it is unique� To show that � is a homomorphism we need to
show that for every m� � ���
m�� #
#
m�� �
s��� �
s��� � #
m�� �
s � s����


As a compromise between the algebraic notation m � s and the functional notation s�m�� we use a
transition function notation ��m� s� which is a tolerable abuse of language�

��
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Figure ��� A permutation�reset decomposition including a non�trivial counter for the
automaton in �gure �
 constructed by injection folding from the injection�reset TPSP
tree of �gure ���

#
#
m�� �
s��� �
s��� �


��
�



��
�


m��� s�� � ���
m��� s��� � ���
m� �


��
�
�


m��� s��� s�� � ���
m� � 
��
�


m��� s � s�� � ���
m�

� #
m�� �
s � s���

Claim �
 �Holonomy Decomposition� B	R	Tree� Every holonomy decomposition
C � B� 
 B� 
 � � � 
 Bk �� A � 
�� Q� �� implies a bijection�reset TPSP tree of height k�

Proof� As in the proof of claims � and �� we look at the con�guration tree generated by
the decomposition and see that it is indeed a bijection�reset TPSP tree� Let p� p� � Pi
be such that #
p� �� � p� and � is an injection from fpg � Qi�� to fp�g � Qi��� This
implies that hp� �i is a permutation on Qi�� and since C is a holonomy decomposition
we have a w such that � and w induce mutually�inverse bijections between �i��
p� and

�i��
p��� and consequently p
��w
� p� and the con�guration tree is indeed a bijection�reset

TPSP tree�

In order to prove that such a tree implies a holonomy decomposition we need to
introduce a modi�ed encoding procedure� Unlike the previous construction� ���
m� and
���
m�� are encoded using the same set of states Qij � Qi only if m � m�� Moreover� the
mapping of ���
m� into Qij is not arbitrary� but depends on the mappings of ���
m��
for every m � m��

De�nition �� �Mapping Nodes to States and Con�gurations II� For every i� let
Mi���j �Mi�� be an ��class� and let �m �Mi���j be an arbitrary node� We de�ne the set

�	



Qi�j to be ���
 �m� and call the nodes in ���
 �m� representatives� For every m � Mi���j�

let um� vm � �� be words such that �m
um�vm� m� The function �i�j �

�
m�Mi���j

���
m�� Qi�j

is de�ned for every m �Mi���j� r � ���
m� as�

�i�j
r� � 
#
r� vm�� 
���

Note that �m
���
� �m� so u 
m � v 
m � �� The set of all cascade states at level i is Qi �

�
j

Qi�j�

and �i �Mi � Qi is de�ned as �i �
�
j

�i�j�

This mapping can be extended naturally into 
 �M � P as in equation 	�


i
m� � h
i��
�
m��� �i
m�i 
���

The inverse mapping 
� � P �M satis�es


�
hp� qi� � #
q� um� 
���

where m � 
�
p�� In other words� q � Qi�j 
which is just a representative from ���
 �m��
is decoded back to the original node according to the word that decodes its parent� The
mapping from nodes to states and con�gurations is illustrated in �gure ���

�mm

Mi���j

Qi�j

um

vm

vm

vmvm

umum

Figure ��� Mapping nodes in Mi to states in Qi�

Claim �� �B	R	Tree � Holonomy Decomposition� From a bijection�reset TPSP
tree T � 
��M�#� �� 
� of height k� one can construct a holonomy decomposition C �
B� 
 B� 
 � � � 
 Bk such that jT j � jCj�

��



Proof� The construction is the same as in claims � and ��� but this time with Qi and 
i

as in de�nition ��� The fact that it is indeed a permutation�reset decomposition follows
from previous claims� In order to show that it is a holonomy decomposition we have to
show that for every Qij� Hij is homomorphic to some holonomy group of T and hence
to a subgroup of A�

Let us reproduce the de�nition of the transition function�

�i
q� hp� �i� �

�

i
#

�i
hp� q�i� ��� if 
�i
hp� qi� is de�ned

� otherwise

�	�

Let !�i
p� �� � p�� 
�
p� � m� 
�
p�� � m� and let �m be the parent of the relevant
representatives� The action of hp� �i on every r � ���
 �m� is #
r� um�vm�� � r� � ���
 �m�

see �gure ���� Thus every permutation induced by any hp� �i on Qi�j corresponds a
permutation on ���
 �m�� Moreover� for every two permutations hp�� ��i and hp�� ��i�
where !�i
p�� ��� � p��� 


�
p�� � m�� 
�
p��� � m�
��

!�i
p�� ��� � p��� 

�
p�� � m� and


�
p��� � m�
� the action of their product hp�� ��i � hp�� ��i corresponds to the permutation

induced by um�
��vm�

�
um�

��vm�

�
� Hence every Hij is homomorphic to the holonomy group

H 
m and by claim �� to the permutation subgroup H�� 
m��

�m�

vm�

umum

um

� �

vm�
vm�

Qi�j

mm�

Figure ��� The action of hp� �i on Qi�j is the same as the permutation induced by um�vm�

on ���
 �m��

Corollary �
 �	 If there exists a bijection�reset TPSP tree for A of size c then A admits
a Krohn�Rhodes decomposition of size c� 
	 The size of any Krohn�Rhodes decomposition
for A is at least the size of the minimal bijection�reset TPSP tree for A�

��



In section � we will show how to construct an exponential bijection�reset TPSP tree
for any automaton� and thus reprove the primary decomposition theorem and give an
upper�bound� In section � we present a family of automata for which the minimal
bijection�reset TPSP tree is exponential� and thus give a tight lower�bound�

� An Exponential Decomposition Algorithm

In this section we give an exponential algorithm that constructs from a given determin�
istic automaton� a bijection�reset TPSP tree� and according to the theory presented in
section �� it virtually produces an exponential Krohn�Rhodes decomposition� This algo�
rithm is an automata�theoretic reformulation of the holonomy decomposition theorem of
Eilenberg� a reformulation that pays attention not only to the semigroups involved� but
also to the input sequences that generate them�

The algorithm will be described as a series of transformations 
procedures� leading
from an automaton to a bijection�reset TPSP tree via several intermediate structures�
An outline of the main transformation is given below�

�� Construct a tree subset automaton from the original automaton 
from A to TSA��
The tree subset automaton is an automaton whose states correspond to some sub�
sets of Q arranged in a tree where parenthood conforms with inclusion�

�� Compute the height of the nodes and �balance� the TSA so that it can be parti�
tioned into levels 
from TSA to BTSA��

�� Redirect the transitions so that all the transitions outgoing from a node in some
level lead to nodes in the same level 
from BTSA to TPSP��

��� Tree Subset Automata

De�nition �� �Tree Subset Automata� � Let A � 
�� Q� �� be an automaton� The
tree subset automaton �TSA	 associated with A is T � 
��M�#� �� 
� where�

�� M is a �nite set of nodes containing a distinguished node m� �M � called the root
of the tree�


� � �M � fm�g �M is the parenthood function� such that for every m �� m�� there
exists some i � � such that �i
m� � m�� The set of ancestors of m is denoted by
��
m��

�� 
 �M � �Q is a labeling function whose range consists of all the singletons fqg � Q

and all the sets �
Q�w� for every w � ��� In particular 

m�� � Q and for every
m� 

m� � 

�
m���

��



�� # � M � � � M is the transition function such that for every m � M � � � ��


#
m���� � �


m�� ��� Since A is deterministic� this implies j#
m���j � jmj�
The transition function is ancestor�consistent� for every m �M�fm�g and � � �
there is some j � � such that �j
#
m���� � #
�
m�� ���

�� For every m � M such that j

m�j � �� 
���
m�� 
� is a non�redundant semi�
partition�

From A to TSA� The TSA is constructed inductively� InitiallyM � f �mg and 

 �m� �
Q� For every node m and � � S� if there already exists a node m� � M such that


m�� � �


m�� �� and #
�
m�� �� � �j
m�� for some j � �� then we let #
m��� � m��
Otherwise we add a node m� toM � let 

m�� � �


m�� ��� let #
m��� � m� and update
the parenthood function as follows� we de�ne �
m�� � r where r is a node satisfying
�j
r� � #
�
m�� �� for the largest j� If there is a node r� such that �
r�� � r we change
it to �
r�� � m�� When the process is over we search the tree top�down and for every
non�singleton m and every q � 

m��

�
r�����m�



r� we add a node m� with 

m�� � fqg

and �
m�� � m� The transitions outgoing from those singletons are calculated according
to the same procedure�

An example automaton is depicted in �gure �� and its corresponding TSA in �gure ���

The size of a TSA is at most
nX
i��

i� � O
n�� � O
�n logn� were n is the size of the original

automaton�

b

a�b
b

b

b

b

a

a

aa

a

�

�

�

�

�

�

Figure ��� The original automaton�

��� Partial Order� Height and Balanced TSAs

The next step toward transforming the TSA into a TPSP tree involves the rearrangement
of the nodes into levels� and then duplicating some nodes in order to make every level
a semi�partition� To this end� we de�ne a partial order on the nodes� which is� roughly
speaking� the composition of #�reachability and ancestorhood� and then de�ne a height
function based on this order�

��
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� � � �

a

b

b

b
� � �
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�

a
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b

a

�������

Figure ��� The TSA for the automaton in �gure 
�� The names of the nodes are omitted�
and the numbers indicate the subsets they are mapped to by 
� All the transition
outgoing from singletons are omitted except those leaving 
��
f�g� that are included in
order to illustrate inherited destination�

De�nition �� �Order� Let T � 
��M�#� �� 
� be a TSA� We de�ne on M the follow�
ing preorder relation� m� � m if #
m�w� � ��
m�� for some w � ��� We write m � m�

when both m � m� and m� � m hold� and m � m� when it holds only in one direction�

Clearly m � m� implies j

m�j � j

m��j� and m � m� implies j

m�j � j

m��j�
The relation � is an equivalence relation and its equivalence classes are the maximally
strongly�connected components 
MSCCs� of the TSA� It can be easily veri�ed that this
de�nition of � coincides with de�nition �� in chapter ��

The �rst de�nition of a height function just speci�es the minimal requirements from
such a function 
compatibility with � and the absence of unnecessary �gaps���

De�nition �� �Height Function� Requirements� A height function for a TSA T �

��M�#� �� 
� is a function h �M � IN � satisfying�

�� h
m� � � if 

m� is a singleton and m has no children�


� m � m� implies h
m� � h
m���

�� m � m� implies h
m� 	 h
m���

�� For every i� � � i � h
m��� h��
i� �� ��

��



De�nition �� �Smallest Height Function� The smallest height function for a TSA
T is de�ned for every m � M as h
m� � l where l is the length of the longest chain of
the form m� � � � � � ml � m� where m� is any node satisfying m � m�� The height of a
TSA is h
m���

The TSA of �gure �� arranged according to h appears in �gure ��

Computing the Height� The algorithm works by sueccesively creating subsets of M �
L�� � � �Lh where Li corresponds to all nodes of height i� Initially L� � fm � j

m�j � �g
After having computed Li� we let Li�� � f�
m� � m � Lig� Then for every m � Li�� if

there is some m� such that m� ��
i�

j��

Lj � m �� m� and either �
m�� � m or #
m��� � m�

then we remove m from Li��� This process is iterated until no updating takes place and
Li�� stabilizes� The complexity of this computation is bounded by the height of the tree
which is bounded by its size�

�����

� � � �� � �

�����

b

b

�����������

�������

�

a

b

h��

h��

h��

h��
a

b

a

a

Figure ��� The TSA of �gure 

 rearranged according to the smallest height function�

The tree may contain some height gaps along the parenthood chains� i�e�� h
�
m���
h
m� � �� We want to �balance� the tree by adding copies of m between itself and its
ancestor� such that that every node of height j will have all its children with height equal
to j � ��

De�nition �� �Balanced TSA� A TSA T � 
��M�#� �� 
� is balanced �with respect
to a height function h	 if for every m �M � f �mg� h
�
m�� � h
m� " ��

Balancing a TSA� The construction is rather simple� The TSA is traversed bottom�up�
Whenever a jump is detected� that is� a node m with �
m� � m� and h
m��� h
m� � ��
we insert a new node r to M � and let 

r� � 

m�� �
m� � r and �
r� � m�� For every

��



� � � we let #
r� �� � #
m���� We can partition M into levels M��M�� � � � �Mh�m����

by letting Mi � fm � M � h
m� � h
m�� � i" �g� The balanced TSA for our ongoing
example appears in �gure ��� Since no state needs to be duplicated more than h
m��
times� the size of the balanced TSA 
BTSA� is polynomial in the size of the TSA�
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Figure ��� A BTSA for the TSA in �gure 
�� The names of the nodes appear in the
lower parts�

��� Constructing Bijection	Reset TPSP Trees

A BTSA already satis�es conditions ��	 in the de�nition of a TPSP tree 
de�nition
���� The last step needed is to modify the transition�function such that it will be level�
preserving� and satisfy de�nition �	� The latter means for every levelMi is a TPSP of A�
and for every m�m� �Mi� such that #
m��� � m�� either � induces a reset from ���
m�
to some r� � ���
m�� or m � m� and � induces an injection from ���
m� to ���
m���
The following construction transforms a BTSA T � � 
��M�#�� �� 
� into a TPSP tree
T � 
��M�#� �� 
� by replacing #� by an appropriate transition function #� For every
m �Mi and j 	 i we use �j
m� � ��
m� �Mj to denote the ancestor of m in level j�

From BTSA to TPSP Tree� We scan the tree top�down� level by level� The transition
function is de�ned for every i� � � i � h
m�� " �� m �Mi and � � �� as�

#i
m��� � �i
#
�
m���� 
���

In other words the transitions are �lifted� until they become horizontal� The result of
applying this transformation to the BTSA of �gure �� appears in �gure �	� and the
corresponding decomposition in �gure ���
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Figure �	� The bijection�reset TPSP tree constructed from the BTSA of �gure 
��

Claim �� Let T � 
��M�#� �� 
� be the result of the above transformation� For every
i� 
��Mi� �i� 
i� is a TPSP for A�

Proof� It remains to show that # is transition preserving� that is�

�


m�� �� � 

#i
m���� 
���

By substituting the de�nition of # we get

�


m�� �� � 

�i
#
�
m����� 
���

Since every TSA satis�es


#�
m���� � �


m�� �� 
���

the transition�preservation condition now becomes



#�
m���� � 

�i
#
�
m����� 
���

which is true because for every m� 

m� � 

�i
m���

Claim �� For every m�m� � Mi��� such that #
m��� � m�� either � induces a reset
from ���
m� to some r� � ���
m�� or m � m� and � induces an injection from ���
m�
to ���
m��� Hence� T is a bijection�reset TPSP tree for A�
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Figure ��� The cascade product for the automaton of �gure 
�� constucted from the
TPSP tree in �gure �g�tpsp� Note that h�� �� ai is a modulo�� counter and that h�� �� ai
is a modulo�� counter�

Proof� Let m belong to Mi��� For every r � ���
m�� we have #
r� �� � �i
#�
r� ����
We consider two cases according to the relation between m and #�
m��� in the BTSA�
�� Suppose #�
m��� � m� This implies that in the BTSA there must be a node cor�
responding to #�
m��� at Mj for some j � i� Consequently� for every r � ���
m�� a
node corresponding to #
r� �� cannot exist before Mi��� Thus �i
#�
r� ��� is the same
for every r � ���
m� and � is a reset� �� Suppose #�
m��� � m� � m and consequently
�


m�� �� � 

m��� In this case � induces an injection 
in the TSA� from ���
m� to
���
m�� such that for every r � ���
m� there exists r� � ���
m�� satisfying #�
r� �� � r�

and h
r� � h
r��� Every rearrangement of ���
m� according to h will have its counterpart
in ���
m�� so that � will remain an injection�

Corollary �� There exist an exponential algorithm that constructs for any automaton
an exponential bijection�reset TPSP tree�

Corollary �� �Upper Bound� There exist an exponential algorithm that decomposes
any automaton into an exponential holonomy cascaded decomposition�

� An Exponential Lower�Bound for the Cascaded Decompo�

sition

In this section we prove our main original result concerning the complexity of cascaded
decomposition of automata� Throughout this chapter we consider holonomy decomposi�

��



tions satisfying de�nition ��� We also use the de�nitions of con�gurations 
de�nition ���
and of their mappings into subsets via �i 
de�nition �	��

We assume in this section that the original automaton A is counter�free and strongly�
connected� Some of the claims in the sequel are valid in more general setting� but
the family of automata used for proving the lower�bound satis�es these properties� A
holonomy decomposition for such automata consists of reset�identity components�

The proof is essentially a proof of a lower�bound on the size of the minimal con�gura�
tion tree for a certain family of automata� Alternatively we could develop it in terms of
the minimal bijection�reset TPSP tree for this family but we preferred the con�guration
tree terminology because its relation to the decomposition is more direct� This choice
makes this section almost self�contained�


�� Auxiliary Properties

The following claim sets lower bounds on �i
p� based on incoming transitions�

Claim �� �Necessary Con�gurations� ��	 If p � Pi is a con�guration such that
!�
p�w� � p� for some w � �� then �
�i
p�� w� � �i
p��� �
	 Let p � Pi be a con�guration
such that !�
p� �� � p�� If the letter hp� �i induces a reset in Bi�� whose destination is
some r� � Qi��� then �
�i
p�� �� � �i��hp�� r�i�

Proof� Both claims follow immediately from the homomorphism from C to A and the
de�nition of �i�

The next claim relates permutations in Bi with bijections in Ci

Claim �� �Permutations and Bijections� ��	 If hp� �i induces a permutation�� on
Qi�� in Bi�� then � is an injection on fpg �Qi�� in Ci��� �
	 If in addition !�
p� �� � p

in Ci then � is a bijection on fpg�Qi�� in Ci��� ��	 If in addition hp� �i induces a trivial
permutation �identity	 on Qi�� in Bi�� then � is an identity on fpg �Qi�� in Ci���

Proof� 
�� Since there are no r� r� � Qi�� that are mapped by hp� �i to the same state�
there are no hp� ri� hp� r�i � Pi�� that are mapped to the same con�guration by �� Claims

�� and 
�� are direct corollaries of 
���


�� Redundancy Elimination

In order to simplify the proof we introduce three reduction principles that enable us to
eliminate obvious redundancies from a decomposition without a ecting its properties� All
the three principles are of the form� Given a decomposition 
C� �� such that A �� C� there
exists a �less redundant� decomposition 
C�� ��� such that A ��� C � � C and jC �j � jCj�

��We mean a partial permutation on a subset of Qi�� on which hp� �i is de�ned�

�	



De�nition �� �Core� Let Ci be a partial decomposition� A subset P �
i � Pi is called a

core of Ci if
�
p�P �

i

�i
p� � Q and P �
i is closed under transitions� i�e�� !�i
P �

i ��� � P �
i � A

minimal core is a core such that none of its subsets is a core�

The following reduction principle states that one can restrict a decomposition to a
core and discard the rest� since the con�gurations that extend the core �cover� all the
states in Q�

Claim �� �Reduction Principle I� Let C � Ci 
 Bi�� 
 � � � 
 Bk be a decomposition
such that A �� C for some �� There exists a decomposition C� � C �i 
 B

�
i�� 
 � � � 
 B

�
k and

�� such that A ��� C� � C and C�i is a restriction of Ci to a core P �
i � Moreover for all j�

i � j � k we have B�j � Bj and B�j is also a reset�identity automaton�

Proof� Let P �
i be a core of Ci� For all j � i� p � Pi and hp� ri � Pj we let ��j
hp� ri� �

�j
hp� ri� if p � P �
i and ��j
hp� ri� � � otherwise� Every B�j will consist of a re�

striction of Bj to the alphabet P �
i � Qi�� � � � � � Qj�� � �� What we have to show

is that �� � ��k is a homomorphism 
transition�preserving and surjective� and that
B�i��� � � � �B

�
k are reset�identities� Since P

� � P �
k is also a core� the range of �

� is Q� Now
�
�
hp� qi��� � � � � qki�� �� � �
!�
hp� qi��� � � � � qki� ��� implies �
�
hp� qi��� � � � � qki��� �� �
��
!�
hp� qi��� � � � � qki� ��� because either both sides are empty for p �� P �

i � or �
� coincides

with � 
recall that !�
p� �� � P �
i because P

�
i is closed under transitions�� Finally� every

B�j is a reset�identity automaton because every Bj is� and the removal of transitions does
not a ect this property�

According to claim ��� �
�i
p�� w� � �i
p�� for every w such that !�
p�w� � p�� The
following reduction principle complements this claim by stating that �i
p� can be reduced
to the minimal subset implied by claim ���

Claim �
 �Reduction Principle II� Let C � B�
� � �
Bk be a decomposition such that
A �� C� There exists a decomposition C� � B�� 
 � � � 
 B

�
k and �� such that A ��� C� � C

and for every i� � � i � k� and every p � Pi�

��i
p� �
�

fp��P �

i
�������i�p�����pg

�
��i
p
��� �� 
���

where P �
i is the con�guration space of C�i� Moreover for every j� i � j � k we have

B�j � Bj and B�j is also a reset�identity automaton�

Proof� Suppose condition 
��� is not satis�ed by �i� This means that there exists some
hq�� � � � � qki � Pk which is not reachable in C such that �
hq�� � � � � qki� � q� So we let
��k
hq�� � � � � qki� � � and for every j� i � j 	 k recalculate ��j upward� As a result
��j
hq�� � � � � qji� � �j
hq�� � � � � qji� � fqg� Then we eliminate all the transitions of the
form 
hqj� 
q�� � � � � qj��� �i�� from �j whenever ��j
hq�� � � � � qji� � �� As in claim ��� �� is
still a homomorphism and the components remain reset�identities�

Note that by applying this procedure repeatedly to all the elements of Pi� Pk is reduced
to strongly�connected components�

��



Claim �� �Reduction Principle III� Let C � B� 
 � � �Bi 
 Bi�� � � �Bk �� A be a
decomposition such that Ci is isomorphic to Ci��� Then there exists another decomposition
C� � B� 
 � � �Bi 
 Bi�� � � �Bk ��� A� 
In other words� Bi�� is eliminated��

Proof� Obviously if Ci
Bi�� is isomorphic to Ci then Bi�� is a trivial one�state automaton
whose corresponding coordinate adds no information�


�� Bounded	Counters

Now we introduce the family of automata for which we prove the lower�bound�

De�nition �
 �Bounded	Counters� For n � � and i� j � n we let

i
n

" j � min
i" j� n�

i
n

� j � max
i� j� ��

���

An n�bounded�counter�� is an automaton A�n� � 
�� Q� �� where � � fa� bg� Q �
fq�� � � � � qng and

�
qj� a� � q
j
n

��

�
qj� b� � q
j
n
��


���

The automaton A��� is depicted in �gure �� as an example�

bbbb

aaa a

q�q�q� q�

Figure ��� The automaton A����

De�nition �� �Consecutive Subsets� Let Q � fq�� � � � � qng be the set of states of
a bounded�counter A�n�� A consecutive subset of Q is a set fqj� qj��� � � � � qkg� j � k�
denoted by Q�j��k�� We de�ne two functions on the set of consecutive subsets of Q� for
j 	 k�

L
Q�j��k�� � Q�j��k���

R
Q�j��k�� � Q�j����k�

���

Obviously the consecutive subsets are closed under applications of L and R�

Claim �
 The family A�n� is counter�free for every n�

��In other places this automaton has been called the bounded bu�er or the elevator automaton�

��



Proof� This will be done by showing that in any member of A�n�� if �
qi� w� � qj and
�
qj� w� � qk then either i � j � k or i � j � k hold� This is true for w � fa� bg
and by induction on the length of w� it is true for every w� Now if some w permutes
fqi�� qi�� � � � � qimg then we must have either i� � i� � � � � � im � i� or i� � i� � � � � �
im � i� which can be satis�ed only if all the indices are identical and the permutation is
trivial�

The next claim implies the existence of necessary con�gurations in decompositions
of bounded�counters�

Claim �� Let p � Pi be a con�guration in a decomposition for a bounded�counter� If
�i
p� �� � and !�i
p� a� � !�i
p� b� � p then �i
p� � Q�

Proof� Suppose qj � �i
p� for some j� � � j � n� Then Q����j��� � �
�i
p�� a� and
Q�j����n� � �
�i
p�� b�� Since both �
�i
p�� a� � �i
p� and �
�i
p�� b� � �i
p� must hold�
we have �i
p� � Q����j��� � fqjg � Q�j����n� � Q�


�
 Proof of the Lower	Bound

Claim �� �The Lower Bound� For every n � IN � the smallest reset�identity decom�
position 
C� �� such that A�n� �� C is C � B� 
 B� 
 B� 
 � � � 
 Bn��� satisfying for every
i� � � i � n� ��

�� Qi � f�� �g and consequently Pi � f�� �gi� 
We let f�� �g� � p���


� ��
p�� � Q� and for every p � Pi� �i��
hp� �i� � L
�i
p�� and �i��
hp� �i� �
R
�i
p��� This implies that the range of �i is the set of consecutive subsets of
size n � i�

�� h�i��� ai and h�i��� bi are resets in Bi to � and � respectively� In terms of con�gura�
tions this means that !�i
�i� a� � �i and !�i
�i� b� � �i� The rest of the letters induce
identities�

�� For every p� p� � Pi there exist w � �� and l� �i � l � i such that !�i
p�w� � p��
and for every qj � �i
p�� �
qj� w� � qj�l � �i
p��� In other words� there exists an
order�preserving bijection between �i
p� and �i
p���

Proof� The proof is by induction on i�

� Base case 
i � ��� Let C be a decomposition and B� the �rst non�trivial automaton�
There are four possibilities concerning the transformations induced by a and b�

�� Both a and b are identities�

�� One of fa� bg is a reset and the other is an identity�

��



�� Both a and b are resets to the same state�

�� Both a and b are resets to di erent states�

The �rst three possibilities imply the existence of at least one con�guration p � P�

such that ��
p� �� � and !��
p� a� � !��
p� b� � p� According to claim ��� ��
p� � Q�
Since fpg is a core� by using claim �� we can reduce C into a smaller decomposition
where B� is restricted to fpg� But now B� is isomorphic to B� and according to
claim �	� it can be removed from the decomposition� This can be repeated until B�

satis�es possibility �� We denote the destinations of a and b by � and � respectively�
According to claim �� we may assume �
�� � Q����n��� and � �
�� � Q����n�� Since
f�� �g is a core� we can discard the rest of the states and remain with B� as the
two�state reset automaton� Since �
��
��� b� � ��
�� and �
��
��� a� � ��
��� B�

is strongly�connected by bijections and B� satis�es the inductive hypothesis�

� Inductive Case� Suppose it is true for Ci� We consider two cases concerning Ci���

�� If h�i� ai is an identity in Bi�� then we have for every q � Qi��� !�i��
h�i� qi� a� �
h�i� qi� In particular their is some q � Qi�� such that qn�i � 
i��
h�i� qi� and
consequently �i��
h�i� qi � �i
�i� � Q����n�i�� By the inductive hypothesis�
for every p� � Pi� there exist bijections from �i
�i� to �i
p�� and vice versa�
hence there exists some q� � Qi�� such that �i��hp�� q�i � �i
p��� Thus Pi��

contains a core isomorphic to Pi and Bi�� can be discarded�

�� If h�i� ai is a reset in Bi�� then� according to claims �� and ��� there exists a
con�guration h�i� qi � Pi�� such that �i��
h�i� qi� � �
�i
�i�� a� � L
�i
�i���
Any word that induces a bijection between two subsets Q� and Q�� induces
a bijection between L
Q�� and L
Q���� so for every p � Pi there exists a
con�guration hp� �i � Pi�� such that �i��
hp� �i� � L
�i
p��� Thus all the
con�gurations in Pi � f�g are strongly�connected by bijections� In a sim�
ilar way� the reset h�i� bi implies the existence of the strongly connected
con�gurations Pi � f�g� Finally the transitions !�i��
h�i� �i� a� � �i�� and
!�i��
h�i� �i� b� � �i�� make all the con�guration strongly�connected by bijec�
tions�

Thus� if Ci satis�es the inductive hypothesis so does Ci��

This concludes the proof�

Corollary �� �Lower Bound� There exists a family fA�n�gn�IN of automata such that
for every n� the size of A�n� is �n� and the smallest decomposition for A is C � B� 
B� 

� � � 
 Bn��� having O
�n� transitions�

The decomposition and the con�gurations for A��� are given in �gures �� and ���

��
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Figure ��� The decomposition for A���� The letters that induce identities are omitted


�� Discussion

What is the relevance of this result� After all� the components of the cascade are very
simple and their transition functions can be expressed by very short boolean formulae�
The �rst answer to this is that the �rules of the game� of computational complexity
are obeyed� that is� the same complexity measure 
number of transitions� is used for the
input and for the exponentially blown�up output� Bounded�counters admit a very simple
representation 
logarithmic at most� if bounded addition and subtraction are taken as
a basis� In some sense� bounded�counters are �almost� counters� almost beyond the
reach of identity�reset decompositions and propositional temporal logic formulae� This
�explains� why they are hard to describe using these formalisms�

More importantly� our result implies that some states of A must be encoded by ex�
ponentially many di
erent con�gurations� Considering the procedure of transforming
automata into past temporal logic formulae 
chapter 	�� a formula for describing the
words that lead to some q � Q is a disjunction of the respective formulae that express
the sequences leading to the various con�gurations in ���
q�� This is not� of course� a
general exponential lower bound on the size of the temporal formula that expresses the
language accepted by an automaton� but it indicates an inherent complexity in bounded�
counters� due to the variety of di erent �classes� of input histories that could lead to
some state� Our conjecture is that an exponential lower�bound on the size of the minimal
temporal formula for bounded�counters can be established as well�

A �nal remark concerning the relation to other computational complexity issues� In
the Krohn�Rhodes decomposition� as we have seen in chapter �� counters which are in�
duced by arbitrary words in the original automaton� are induced by the generating letters

��
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Figure ��� The con�guration tree for A���� The con�guration �name� appears on top
while its �i on the bottom of every node� The a�transitions in the lowest level are omitted
for clarity�

in the cascade components� Thus� in order to check whether a cascaded decomposition
contains counters� it is su�cient to scan the transition table of the cascade � a polyno�
mial procedure� On the other hand� Stern has shown 
�Ste�	
� that to check whether an
automaton is counter�free is NP�hard� If we had a polynomial procedure for decomposi�
tion� we would have a polynomial algorithm for this problem and prove P�NP� Moreover�
according to �CH��
� automaton counter�freedom is even PSPACE�hard� which further
decreases the a�priori likeliness of a polynomial decomposition�

� Translating Automata to Temopral Logic

Logic is an alternative formalism that can be used for de�ning sequences and sets of
sequences� The underlying idea is that a logical formula can stand for the set of all
sequences that satisfy it� Propositional Temporal Logic is a modal logic that is naturally
suitable for this task� It has been introduced to the computer science literature in

�Pn��
� and ever since has played a major role in many speci�cation and veri�cation
systems 
see the best�seller �MP��
 for exciting details��

��



As an application of the algorithm given in section � we show how to translate
a star�free regular set� represented by an accepting non�counting automaton� into a
formula in past temporal logic whose size is at most exponential in the size of the original
automaton� This result is extended naturally for translating an ��regular set� represented
by an accepting non�counting ��automaton� into a formula in future temporal logic� The
syntax and the semantics of the temporal logic used in this section are de�ned below�

��� Past Temporal Logic

We consider past temporal logic as a formalism for specifying properties of �nite se�
quences�

De�nition �
 �Past Temporal Formulae� Let � be an alphabet� A past temporal
formula is de�ned inductively as�

�� � is a past temporal formula for every � � ��


� If $ and % are formulae� so are $
%� �$� �� $ 
previously $� and $S% 
$ since
%��

The rest of the Boolean and temporal operators can be derived from 
� �� �� and S �
The set of all such formulae is denoted TLP 
���

De�nition �� �Models for Past Formulae� A model for a past temporal formula &
is a word

w � s�� � � � � sm

where si � �� for i � �� � � � �m� and m � �� We refer to m as the length of w and write
jwj � m�

Given a word w� we de�ne the notion of a temporal formula holding at position j�
� � j � jwj�

De�nition �� �Satis�ability of Past Formulae� Let $ and % be past formulae� Sat�
is�ability at position j� � � j � jwj� in a word w is de�ned by�


w� j� j� � �� j � � and sj � �


w� j� j� �$ �� 
w� j� �j� $

w� j� j� $ 
 % �� 
w� j� j� $ or


w� j� j� %

w� j� j��� $ �� 
w� j � �� j� $

w� j� j� $S% �� for some k� � � k � j


w� k� j� % and
for every i� k 	 i � j


w� i� j� $

��



Let w be a word of length m and $ a past formula� If 
w�m� j� $� we say that w
end�satis�es $ and write

w � $�

In other words� past formulae are satis�ed �backwards� by �nite words if they hold in
the last position of these words� A formula $ de�nes a set of sequences L� � �� where

L� � fw � �� � w � $g 
�	�

The sets that are of the form L� for some $ � TLP 
�� are exactly the star�free regular
subsets of �� 
see �LPZ�	� Zu��� CPP��
��

Note the interesting similarity and di erence between this formalism and star�free
regular expressions� The membership of w � �� in both L

�S�
and L� �L� is determined

by the existence of a factorization w � uv such that u � L�� but in the former case every
pre�x of v must be in L�� while in the latter it is su�cient that v alone is in L��

��� Future Temporal Logic

Future temporal logic is considered as a formalism for describing in�nite sequences�

De�nition �� �Future Temporal Formulae� A future temporal formula is de�ned
inductively as�

�� For every past temporal formula &� ��& �in�nitely often &	 is a future temporal
formula�


� If $ and % are future formulae� so are $ 
% and �$�

The rest of the Boolean and future temporal operators can be derived from 
� � and
��� The set of all such formulae is denoted by TLF 
���

De�nition 
� �Models for Future Formulae� A model for a future temporal for�
mula $ is an in�nite word

� � s�� s� � � �

Given � � �	� we de�ne the notion of a future temporal formula holding at position j�
where j is �nite� We let ��j��k� denote sj � sj�� � � � sk�

De�nition 
� �Satis�ability of future Formulae� Let & be a past formula and $�
% be future formulae� Satis�ability at position j� � � j 	 �� in � is de�ned by�

��




�� j� j� ��& �� for in�nitely many k� j � k


��j��k�� k� � &

�� j� j� �$ �� 
�� j� �j� $

�� j� j� $ 
% �� 
�� j� j� $ or


�� j� j� %

If 
�� �� j� $ we abbreviate it as � j� $� In other words� future formulae are satis�ed
�forward� by in�nite words if they hold in the �rst position of these words 
which means
that some Boolean combination of past formulae are satis�ed backwards by in�nitely
many �nite pre�xes�� A formula $ de�nes a set of sequences L� � �	 where

L� � f� � �	 � � j� $g 
���

The sets that are of the form L� for some $ � TLF 
�� are exactly the star�free ��regular
subsets of �	� i�e�� �nite unions of sets of the form UV 	 where U and V are star�free
subsets of ��� 
see �LPZ�	� Zu��� CPP��
��

We will also need the in�nitary equivalent of an accepting automaton 
see �Th��
 for a
survey of the topic��

De�nition 
� �Muller �	Automaton� Let a Muller ��automaton is A � 
�� Q� �� q��F�
where F � �Q � �� The set LA � �	 accepted by A is�

LA � f� � �	 � Inf
�� � F for some F � Fg 
���

where
Inf
�� � fq � Q � �
q�� �����k
� � q for in�nitely many kg

��� Translating Automata into Past Temporal Logic

Given a counter�free automaton A � 
�� Q� �� q�� F � accepting some set LA� we construct
a past temporal logic formula $ such that LA � L�� Initially we show how to construct
the appropriate formula for a reset automaton� and then extend it to a cascade�

Let A be a reset automaton and let �� � � be the subset of letters that induce resets
in A� For every state q � Q� we de�ne the following past formulae�

inq �
�

f������ enters qg

� 
���

outq �
�

f������ leaves qg

� 
���

��



Claim �� The set Lq of �nite sequences that lead to q � Q� fq�g is exactly the set of
sequences satisfying the formula $q de�ned as�

$q � 
�outq�S 
inq� 
���

Proof� If w � s�� s�� � � � � sm satis�es $q then for some j � m� sj satis�es inq and for
every j 	 i � m� si satis�es �outq and thus �
q�� w� � q� Conversly� if w does not satisfy
$q then either no pre�x of w enters q or an exit from q occurs after the last entry� For
the initial state q� we have to cover the case where the sequence contains no letter of inq
but also no letter of outq� By de�nition� �� is satis�ed only by the empty word� so the
formula $q� de�ned as�

$q� � 
�outq��S 
inq� 
 ��� 
���

is satis�ed exactly by the set Lq� of 
possibly empty� �nite sequences that lead to q��

Corollary �� Every regular subset of ��� consisting of the sequences leading to some
state in a reset automaton� can be expressed by a TLP 
���formula of size O
j�j��

In order to extend this construction to a cascade we need the following�

Claim �� Let B� � 
�� Q�� ��� be an automaton such that for every q � Q� there exists
a corresponding TLP 
���formula $q� and let B� � 
Q���� Q�� ��� be a reset automaton�
Then for every q� � Q� there exists a corresponding TLP 
���formula $q� satis�ed exactly
by the sequences leading to q� when B� is connected to B� in the cascade product C �
B� 
 B��

Proof� Since B� is a reset automaton� every q� � Q� is reachable exactly by the sequences
satisfying the TLP 
Q� � ���formula

%q� � 
�outq��S 
inq�� 
���

where inq� and outq� are �nite disjunctions of formulae of the form hq� �i� Let � be a
sequence in 
Q����� and let w � �� be its projection� By the de�nition of the cascade
product we have�


�� j� j� hq� �i �� 
w� j� j� � and 
w� j � �� j� $q

�� 
w� j� j� � 	�� $q

Thus we can replace every occurence of hq� �i in %q� by 
� 	 �� $q� and obtain the
TLP 
���formula $q��

�	



By a straightforward induction it can be shown that every state at level i can be
expressed by a formula consisting of an i�nesting of the since�operator and that a con�
�guration p � hq�� � � � � qki can be expressed as a conjunction�

$p � $q� 	 � � � 	 $qk 
���

Finally� any state q of the original automaton can be expressed as a disjunction of the
formulae for its corresponding con�gurations in the cascade�

�$q �
�

p�����q�

$p 
���

The set accepted by the automaton is expressed by the following disjunction�

$A �
�
q�F

�$q 
�	�

From all this it follows that�

Corollary �� Every star�free regular set accepted by an automaton of size O
n� can be
expressed by a past temporal logic formula of size O
�n logn��

A somewhat similar �rst�order characterization appears in �Me��
� Our result improves
upon previously known non�elementary translations 
�Zu��
��

��
 Translating �	Automata into Future Temporal Logic

Given a counter�free automaton A � 
�� Q� �� q��� the set of in�nite sequences that visit
q in�nitely often can be expressed by the future formula 'q � ��$q� where $q is the
past formula corresponding to the �nite sequences reaching q� Let F be a subset of Q�
The formula describing all the in�nite sequences � such that Inf
�� � F is�

'F �
�
q�F

��$q 	
�
q� ��F

���$q� 
���

Finally if A � 
�� Q� �� q��F� is a Muller ��automaton� where F � �Q� then LA � �	

can be expressed by the formula
'A �

�
F�F

'F 
���

Corollary �
 Every star�free ��regular subset of �	 accepted by an ��automaton of size
O
n� can be expressed by a TLF 
�� formula of size O
�n logn��

��
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