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Abstract

In this paper we investigate several questions related to syntactic congruences
and to minimal automata associated with ω-languages. In particular we inves-
tigate relationships between the so-called simple (because it is a simple transla-
tion from the usual definition in the case of finitary languages) syntactic congru-
ence and its infinitary refinement (the iteration congruence) investigated by Arnold
[Ar85]. We show that in both cases not every ω-language having a finite syntac-
tic monoid is regular and we give a characterization of those ω-languages having
finite syntactic monoids.

Among the main results we derive a condition which guarantees that the sim-
ple syntactic congruence and Arnold’s iteration congruence coincide and show
that all (including infinite-state) ω-languages in the Borel class Fσ ∩ Gδ satisfy this
condition. We also show that all ω-languages in this class are accepted by their
minimal-state automaton — provided they are accepted by any Muller automaton.

Finally we develop an alternative theory of recognizability of ω-languages by
families of right-congruence relations, and define a canonical object (much smaller
than the iteration monoid) associated with every ω-language. Using this notion of
recognizability we give a necessary and sufficient condition for a regular ω-language
to be accepted by its minimal-state automaton.
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1 Introduction

The well-known Kleene-Myhill-Nerode theorem for languages states that a language
U ⊆ Σ∗ is regular (rational), iff its syntactic right-congruence ∼U defined by

x ∼U y iff ∀v ∈ Σ∗ : xv ∈ U ⇐⇒ yv ∈ U

has a finite index. In that case the right-congruence classes correspond to the states
of the unique minimal automaton that accepts U. An equivalent condition is that the
finer two-sided syntactic congruence 'U defined by

x 'U y iff ∀u ∈ Σ∗ : ux ∼U uy

has a finite index. Here the congruence classes correspond to the elements of the trans-
formation monoid associated with the minimal automaton accepting U.
As already observed by Trakhtenbrot [Tr62] these same observations are no longer
true in the case of ω-languages (cf. also [JT83], [LS77] or [St83]). Here the class of ω-
languages having a finite syntactic monoid (so-called finite-state ω-languages) is much
larger than the class of ω-languages accepted by finite automata (regular or rational ω-
languages) [St83].
Arnold [Ar85] investigated a new concept of syntactic congruence (henceforth called
the iteration congruence) for ω-languages. As his results show, this concept yields a
characterization of regular ω-languages by finite monoids (the iteration monoid), but
not in the same simple way as for finitary languages.
As we shall see below, despite the fact that the iteration monoid is indeed more ac-
curate (it is infinite for some ω-languages which are finite-state but not regular), yet
there are even non-Borel ω-languages for which the iteration monoid is finite. To this
end we shall derive a necessary and sufficient condition for an ω-language for having
a finite iteration monoid.
As one of the main results we give a condition on ω-languages that guarantees that
the iteration syntactic congruence coincides with the simple one. We show that this
condition holds for all (including those which are not finite-state) ω-languages in the
Borel-class Fσ ∩ Gδ. Not only in this sense does the class Fσ ∩ Gδ constitute a “well-
behaving” fragment of the ω-languages: we show also that such ω-languages once
accepted at all by an automaton are accepted by their “minimal-state” automaton, that
is, by the automaton isomorphic to their syntactic right-congruence thus extending the
result in [St83].
Finally, we introduce an alternative notion of recognizability by a family of right-congru-
ence relations, and give a necessary and sufficient condition for a regular ω-language
to be acceptable by its minimal-state automaton. This theory complements the existing
algebraic theory of recognition by monoids (two-sided congruences).
The rest of the paper is organized as follows: In Section 2 we give the necessary defi-
nitions and notations. In Section 3 we investigate the properties of Arnold’s iteration
congruence. Sections 4 and 5 are devoted to the proofs of two important properties
of Fσ ∩ Gδ ω-languages: the coincidence of the iteration congruence and the simple
congruence, and the acceptability by the minimal-state automaton. In Section 6 (which
can be read independently of Sections 3–5) we develop the theory of recognizability
by right-congruences, and apply it to derive a necessary and sufficient condition for
regular ω-languages to be acceptable by their minimal-state automaton.
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2 Preliminaries, Congruences and Automata

By Σ∗ we denote the set (monoid) of finite words on a finite alphabet Σ, including
the empty word e, let Σ+ denote Σ∗ − {e} and Σω the set of infinite words (ω-words).
For an ω-word α = α(1)α(2) · · · , we will use α(i..j) to denote the sub-word α(i)α(i +
1) · · · α(j). As usual we will refer to subsets of Σ∗ as languages and to subsets of Σω as
ω-languages. For u ∈ Σ∗ and β ∈ Σ∗ ∪ Σω let uβ be their concatenation and let uω be
the ω-word formed by concatenating the word u infinitely often (provided u 6= e) . The
concatenation product extends in an obvious way to subsets U ⊆ Σ∗ and B ⊆ Σ∗ ∪Σω.
For a language U ⊆ Σ∗ let U∗ and Uω denote, respectively, the set of finite and infinite
sequences formed by concatenating words in U. By |u|a we denote the number of
occurrences of the letter a ∈ Σ in the word u ∈ Σ∗. Finally u � v and u ≺ v denote the
facts that u is a prefix and a proper prefix of v.
An equivalence relation ' is a congruence on Σ∗ if u ' v implies xuy ' xvy for all
u, v, x, y ∈ Σ∗. We say that ' is a right-congruence if u ' v implies uy ' vy for all
u, v, y ∈ Σ∗. Clearly, every congruence is also a right-congruence. We will denote by
[u] := {v : v ∈ Σ∗ and v ' u} the equivalence class containing the word u, and use 〈v〉
instead of [v] if the corresponding relation is a right-congruence. We will say that ' is
finite when it has a finite index (or alternatively, the factor-monoid Σ∗/' is finite), and
that it is trivial when ' is Σ∗ × Σ∗.
As in [Ar85] we say that a congruence' covers an ω-language E provided E =

⋃{[u][v]ω :
uvω ∈ E} and we say that an ω-language E is regular provided there is a finite congru-
ence'which covers E. This is in fact equivalent to the condition that E =

⋃n
i=1 Wi ·Vω

i
for some n ∈ IN and regular languages Wi, Vi ⊆ X∗.
The natural (Cantor-) topology on the space Σω is defined as follows. A set E ⊆ Σω is
open iff it is of the form UΣω, where U ⊆ Σ∗ (in other words, β ∈ E iff it has a prefix
in U). A set is closed if its complement is open or equivalently if its elements do not
have any prefix in some U′ ⊆ Σ∗. The class Gδ consists of all countable intersections of
open sets. A set is in Fσ if its complement is in Gδ. Thus an Fσ-set can be written as a
countable union of closed sets. The rest of the Borel hierarchy is constructed similarly.
We note here in passing that every regular ω-language is contained in the Boolean
closure of the Borel class Fσ.
Additional material on ω-languages appears in [Ei74, EH93, HR85, LS77, PP93, St87,
Th90, Wa79].

Definition 1 (Syntactic Congruences) Let E ⊆ Σω be an ω-language. We associate with
E the following equivalence relations on Σ∗:

• Syntactic right-congruence:

x ∼E y iff ∀β ∈ Σω(xβ ∈ E ⇐⇒ yβ ∈ E) (1)

• Simple syntactic congruence:

x 'E y iff ∀u ∈ Σ∗(ux ∼E uy) (2)

• Infinitary syntactic-congruence:

x ≈E y iff ∀u, v ∈ Σ∗(u(xv)ω ∈ E ⇐⇒ u(yv)ω ∈ E) (3)

(Here we tacitly assume that neither xv nor yv are empty.)
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• Arnold’s iteration syntactic-congruence:

x∼=Ey iff x 'E y ∧ x ≈E y (4)

By definition ' refines ∼ and ∼= refines both ' and ≈. In the general case ' and ≈ are
incomparable, since they refer to two different kinds of interchangeability of x and y.
The following examples give evidence of this fact.

Example 1 Let E1 := {a, bb}∗aω. Then a 'E1 bb but a 6≈E1
bb. Hence the iteration and the

simple syntactic congruence associated with E1 are distinct.

Example 2 For E2 := abcω we have a 6'E2
b but a ≈E2 b. (Nevertheless, since E2 is a

closed ω−language as Theorem 10 below shows, 'E2 and ∼=E2 coincide).

We shall see later that some conditions on E imply that ' refines ≈. An ω-language E
such that 'E (or equivalently, ∼E) is finite is called finite-state.
A deterministic Muller automaton is a quintupleA = (Σ, Q, δ, q0, T ) where Σ is the input
alphabet, Q is the state space, δ : Q× Σ → Q is the transition function, q0 the initial
state and T ⊆ 2Q is a family of accepting subsets (the table). By Inf (A, α) we denote
the subset of Q which is visited infinitely many times while A is reading α ∈ Σω. The
ω-language accepted/recognized by A is {α ∈ Σω : Inf (A, α) ∈ T }. According to
the Büchi-McNaughton theorem an ω-language is regular iff it is recognized by some
deterministic finite-state Muller automaton.
With every right-congruence relation we can associate an automaton, and in particular
with the relation ∼E for a given ω-language E:

Definition 2 (Minimal-state automaton) Let E be an ω-language and let∼E be its syntac-
tic right-congruence (Definition 1). Its minimal-state automaton is

AE := (Σ, Q, δ, q0)

where Q := {〈u〉 : u ∈ Σ∗}, q0 := 〈e〉, and δ(〈u〉, a) := 〈ua〉.

Here, in contrast to the language case, not every (regular) ω-language E can be ac-
cepted by its minimal-state automaton AE. For example, the minimal-state automaton
of {a, b}∗aω has only one state and does not accept {a, b}∗aω, whereas there are sev-
eral non-isomorphic two-state Muller automata accepting {a, b}∗aω (cf. [Mu63], [St83],
[St87]).

3 Some observations on the iteration congruence

In this section we show that despite the fact that ∼=E provides additional information
on E which is missing from 'E, still it fails to characterize the regular ω-languages in
contrast to ' for languages.

Fact 1 There are ω-languages which are finite-state while their iteration monoid is infinite.
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Proof: Let the language V ⊆ {a, b}∗ be defined by the equation

V = a ∪ bV2 .

Alternatively, V may be defined as the language consisting of those words v ∈ Σ∗

satisfying |v|a = |v|b + 1 and |u|a ≤ |u|b for every u ≺ v. Let E := Vω. Then one easily
verifies E = VE = (a ∪ bV2)E = {a, b}E. Thus u 'E v for every u, v ∈ {a, b}∗ and 'E
is trivial.
In order to show that ∼=E is infinite we prove that (biai+1)ω ∈ E and (bjai+1)ω 6∈ E,
that is bi 6 ∼=Ebj for 0 < i < j.
Since biai+1 ∈ V, we have (biai+1)ω ∈ Vω = E. On the other hand every word in V
contains more occurrences of a than of b. Consequently, j > i implies that the ω-word
(bjai+1)ω has no prefix in V, whence (bjai+1)ω 6∈ VΣω ⊇ E. o

The second observation (as already noted in [Ar85]) is that, in general, the finiteness of
∼=E does not guarantee regularity of E:

Fact 2 The ω-language Ult = {uvω : u ∈ Σ∗, v ∈ Σ+} of all ultimately periodic ω-words
has a trivial syntactic monoid, that is x∼=Ulty for every x, y ∈ Σ∗, but is not regular.

Next we investigate the question which ω-languages have a an iteration congruence of
finite index. To this aim we show that with every ω-language E we can associate in a
canonical way an ω-language FE which is covered by ∼=E. Define

FE =
⋃
{[u][v]ω : uvω ∈ E}

where [·] denotes a congruence class of ∼=E. The following statement holds true.

Lemma 3 E ∩Ult = FE ∩Ult.

Proof: By definition E ∩Ult ⊆ FE ∩Ult. Let xyω ∈ FE. Then there are u, v such that
uvω ∈ E and xyω ∈ [u][v]ω. From this we can obtain words y1 and y2 such that
y = y1y2, and natural numbers i, j, m and n such that xyiy1 ∈ [u][v]m and y2yjy1 ∈ [v]n.
Since ∼=E is a congruence, it follows that xyiy1

∼=Euvm and y2yjy1
∼=Evn and, because

uvm(vn)ω = uvω ∈ E by the definition of ∼=E, also xyiy1(y2yjy1)ω = xyω ∈ E. o

Theorem 4 For every E ⊆ Σω, the iteration congruence ∼=E is finite iff E is finite-state and
there is a regular ω-language F such that E ∩Ult = F ∩Ult.

Proof: Let E be finite-state and let the regular ω-language F satisfy E∩Ult = F∩Ult. It
can be easily verified that x 'E y and x∼=F∩Ulty imply x∼=Ey and thus 'E ∩∼=F ⊆ ∼=E.
But the congruences 'E and ∼=F are both finite and so is ∼=E. Conversely, let ∼=E be
finite. Then FE is a regular ω-language satisfying E ∩Ult = FE ∩Ult. o

In [St83] it was shown that the cardinality of the set {E : 'E is finite} is 22ℵ0 , in
particular, there are already as many subsets of Σω whose simple syntactic monoid is
trivial. The following claim shows that the same is true in the case of ∼=E:
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Claim 5 There are 22ℵ0 ω-languages having a trivial iteration congruence.

Proof: Since the set {E : 'E is trivial} is closed under the Boolean operations,
any ω-language F for which 'F is trivial splits in a unique way into a disjoint union
(F ∩Ult) ∪ (F−Ult) where for both parts ' is trivial. As Ult is countable, there are at
most 2ℵ0 distinct parts of the form F ∩Ult. Consequently, there are 22ℵ0 ω-languages
E ⊆ Σω −Ult such that 'E is trivial. But for every such E ≈E is trivial and hence the
iteration congruence of E is trivial; this proves our assertion. o

Given that a Borel class in Σω contains only 2ℵ0 sets and that there are only count-
ably many Borel classes [Ku66], it follows that there are ω-languages E even beyond
the Borel hierarchy for which ∼=E is trivial. This is in sharp contrast with the Myhill-
Nerode theorem where the finiteness of the syntactic monoid implies the regularity of
the language.

4 The case when ' and ∼= coincide

In Theorem 21 of [St83] it was proved that every finite-state ω-language E ⊆ Σω which
is simultaneously in the Borel classes Fσ and Gδ is regular. Our aim is to show that this
very condition also guarantees the iteration congruence of E coincides with the simple
syntactic congruence of E. It is remarkable that this condition holds for all ω-languages
in Fσ ∩ Gδ not only for those which are finite-state.
First let us mention the following simple properties of the congruences 'E and ∼=E:

Fact 6 For every u ∈ Σ∗, x, y ∈ Σ+:

1. If x 'E y then u{x, y}∗xω ∩ E 6= ∅ implies u{x, y}∗xω ⊆ E

2. If x∼=Ey then u{x, y}∗xω ∩ E 6= ∅ implies u{x, y}∗yω ⊆ E.

Now we obtain the following necessary and sufficient condition under which the con-
gruences 'E and ∼=E coincide:

Lemma 7 Let E ⊆ Σω. Then 'E = ∼=E if and only if the following condition holds

∀u ∈ Σ∗ ∀x, y ∈ Σ+(x 'E y→ (u{x, y}∗xω ⊆ E→ u{x, y}∗yω ∩ E 6= ∅)
)

.

Proof: Clearly, the condition is necessary. In order to show its sufficiency we assume
x 'E y, and we show that then

∀u, v ∈ Σ∗(u(xv)ω ∈ E→ u(yv)ω ∈ E)

that is, the additional condition for ∼=E is satisfied.
If x 'E y and u(xv)ω ∈ E then xv 'E yv, and by the above claim we also have
u{xv, yv}∗(xv)ω ⊆ E. Now our condition implies u{xv, yv}∗(yv)ω ∩ E 6= ∅. Again the
above claim shows that u(yv)ω ∈ E. o

As an immediate consequence we obtain the following simple sufficient condition. To
express it we define:
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Definition 3 An ω-language E has the period exchange property (or is period exchanging)
provided for all u ∈ Σ∗, x, y ∈ Σ+ the inclusion u{x, y}∗xω ⊆ E implies that u{x, y}∗yω ∩
E 6= ∅.

Corollary 8 If E has the period exchange property then 'E = ∼=E.

In order to prove the announced statement for ω-languages in the Borel-class Fσ ∩ Gδ

we recall that for every ω-language E ∈ Gδ there exists a language U ∈ Σ∗ such that
for every β ∈ Σω, β ∈ E iff β has infinitely many prefixes in U. Using this we can show
the following.

Lemma 9 Every ω-language E in the Borel-class Fσ ∩Gδ has the period exchanging property.

Proof: Since both E and its complement are in Gδ, there exist two languages U and U′

such that every ω-word in E has infinitely many prefixes in U and every ω-word not in
E has infinitely many prefixes in U′. Suppose that for some u, x, y ∈ Σ∗, u{x, y}∗xω ⊆ E
and u{x, y}∗yω ⊆ Σω − E.
Since uxω ∈ E there is a number k1 such that uxk1 has a prefix in U, and since uxk1yω 6∈
E, the word uxk1yl1 has a prefix in U′ for some l1. Next we consider uxk1yl1 xω ∈ E:
there must be some k2 such that uxk1yl1 xk2 has at least two prefixes in U, etc. Repeating
this alternating argument, we construct an infinite sequence uxk1yl1 . . . xki yli . . . having
infinitely many prefixes in U and infinitely many prefixes in U′ and thus belonging
simultaneously to E and to its complement. o

This implies:

Theorem 10 For every ω-language E ∈ Fσ ∩ Gδ, and every x, y ∈ Σ∗ x 'E y iff x∼=Ey.

Note that the converse of Lemma 9 is not true in general: the ω-language Ult is period
exchanging, but not in Gδ. However, for regular ω-languages the converse is also true,
—a similar observation was made in Theorem 6.2 of [Wi93].

Lemma 11 Every regular period exchanging ω-language E belongs to the Borel-class Fσ ∩ Gδ.

Proof: From [SW74] (cf. also [Wa79]) it is known that a regular ω-language E is in Fσ ∩
Gδ iff it is accepted by a finite-state Muller automaton A using a family of accepting
subsets T having the following property: if T ∈ T , T = Inf (A, ζ) for some ζ ∈ Σω,
T′ = Inf (A, ξ) for some ξ ∈ Σω, and T ∩ T′ 6= ∅ then T′ ∈ T .
Let E be a regular period exchanging ω-language accepted by a finite Muller automa-
ton A = (Σ, Q, δ, q0, T ), and let T = Inf (A, ζ) ∈ T be an accepting subset and let
T′ be another subset such that q ∈ T ∩ T′ for some q ∈ Q and Inf (A, ξ) = T′ for
some ξ ∈ Σω. Among the ω-words whose Inf is T there is a word uxω satisfying
δ(q0, u) = q, δ(q, x) = q and T = {δ(q, x′) : x′ � x}. Similarly there is a word y such
that δ(q, y) = q and T′ = {δ(q, y′) : y′ � y}. One can see that for every α ∈ u{x, y}∗xω,
Inf (A, α) = T and thus u{x, y}∗xω ⊆ E and, since E is period exchanging, we have
some β ∈ u{x, y}∗yω ∩ E. But Inf (A, β) = T′ and, hence, T′ must also be in T . o

Although it follows from Claim 5 that ' and ∼= coincide for some non-Borel sets, in
general even for regular ω-languages in the Borel class Fσ it happens that ' and ∼=
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may not coincide (cf. Example 1). On the other hand the following example shows
a regular ω-language in Fσ where ' and ∼= coincide; yet the language is not period
exchanging:1

Example 3 Let E3 := {a, b}∗aω ∪ caω. Then≈E3 has as congruence classes a∗ and {a, b, c}∗−
a∗, and the inclusion 'E3 ⊆ ≈E3 is easily verified.
On the other hand {a, b}∗aω ⊆ E3 but {a, b}∗bω ∩ E3 = ∅.

5 Acceptance by minimal-state automata

In this section we will show that ω-languages in Fσ ∩Gδ have another important prop-
erty, namely they are accepted by their minimal-state automaton. Again, this property
is true for arbitrary ω-languages, not necessarily finite-state, provided that they can be
accepted at all by a Muller automaton. The last reservation is in order because, as we
show below, not every ω-language, even those in Fσ ∩ Gδ, can be accepted by a Muller
automaton.
For a given automatonAwe will denote {β : Inf (A, β) = ∅} byA∅ and {β : Inf (AE, β) =
∅} by E∅, where AE is the minimal-state automaton of E.

Claim 12 An ω-language E can be accepted by the Muller automaton A = (Σ, Q, δ, q0, T )
only if E∅ ⊆ E or E∅ ∩ E = ∅.

Proof: Clearly any Muller automaton can accept E only if A∅ ⊆ E or E ∩ A∅ = ∅.
Since any automaton A accepting E refines AE we have E∅ ⊆ A∅ and the result fol-
lows. o

Claim 12 is irrelevant in the case of a finite-state automaton A, because then E∅ = ∅.
But the following example shows that for an infinite-state automatonA the set E∅ may
indeed be non-empty.

Example 4 Let ξ := aba2b2a3b3 . . . Clearly, E4 = {ξ} is not finite-state, more exactly, we
have u 6∼E4

v whenever u ≺ ξ and u ≺ v, and u ∼E4 v when both u and v are not prefixes of ξ.
Thus E4 = E∅

4 .

We continue with an example of a simple ω-language not accepted by a Muller au-
tomaton.

Example 5 Let ξ := aba2b2a3b3 . . ., let η := bab2a2b3a3 . . . and consider the ω-language
E5 = {ξ} ∪ (bΣω − {η}). In the same way as above one obtains {ξ} ∪ {η} = E∅

5 and
Claim 12 shows that E5 cannot be accepted by any Muller automaton.

Note that, in this case, E5 is the union of the closed set {ξ} and the open set (bΣω −
{η}), hence in Fσ ∩ Gδ. Moreover, since similar to Example 4, the ω-languages (bΣω −
{η}), (Σω − {η}), and {ξ} ∪ bΣω are accepted by their corresponding minimal-state
automata, Example 5 shows that the class of ω-languages accepted by arbitrary Muller

1A first example of this kind was obtained by Th. Wilke (personal communication).
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automata is not closed under union and intersection (though it is obviously closed
under complementation).
Having demonstrated this phenomenon we will show that ω-languages in Fσ ∩ Gδ

which are accepted by Muller automata are already accepted by their minimal-state
automata. First we mention a property of the right congruence ∼E for ω-languages
E ∈ Fσ ∩Gδ which follows from results of [St83]. For the sake of completeness we shall
give the proof in Appendix A.

Lemma 13 If E ⊆ Σω is in Fσ ∩ Gδ then

E = (E ∩ E∅) ∪
⋃

u∈Pref (E)∧ E(u)∩E 6=∅

E(u)

where Pref (E) = {u : E ∩ uΣω 6= ∅} and E(u) = {β : u ≺ β ∧ ∀v(v ≺ β →
∃x(vx ∼E u))}.
Observe that here vx need not be a prefix of β.

This is a stronger property than the one given in [DL95] for saturating right congru-
ences of regular ω-languages E ∈ Fσ ∩ Gδ. Compare also to the Landweber right con-
gruences for regular ω-languages E ∈ Gδ derived in [Le90].
We mention still that, in view of the identity

Σω − E(u) = {u′ : |u′| = |u| ∧ u′ 6= u} · Σω ∪ {v : ∀x(vx 6∼E u)} · Σω

every set E(u) is closed.
In order to achieve our goal we proceed along the lines of [St83] and show that the
connected components of AE accept E ∈ Fσ ∩ Gδ provided E ⊆ E∅ or E ∩ E∅ = ∅.
We set Su := {w : ∃x∃y(wx ∼E u ∧ uy ∼E w)}. Thus Su = Su′ if and only if u′ ∈ Su,
and 〈Su〉 := {〈w〉 : w ∈ Su} is the strongly connected component of AE containing
〈u〉. Moreover, Su is interval closed, that is, w, w′ ∈ Su and w � w′ imply that for all
v, w � v � w′, it holds v ∈ Su.
First we remove the condition u ≺ β from E(u). We define

E′(u) := {β : ∃w(w � β ∧ w ∈ Su) ∧ ∀v(v � β→ ∃x(vx ∼E u))}.
E′(u) has the following properties.

Lemma 14 1. E′(u) = {β : Pref (β)− Su is finite}

2. If u′ ∈ Su then E′(u) = E′(u′).

3. E′(u) =
⋃

u′∈Su E(u′)

4. E′(u) ∩ E 6= ∅ if and only if E(u) ∩ E 6= ∅

Proof: First observe that w ∈ Su, w ≺ v and v /∈ Su imply Su ∩ vΣ∗ = ∅.
1. Consider β ∈ E′(u). Then w ∈ Su for some w ≺ β. Now Pref (β) = Pref (w) ∪ {v :
w � v ≺ β}. It suffices to show {v : w � v ≺ β} ⊆ Su.
Since w ∈ Su, we have uy ∼E w for some y ∈ Σ∗, and, consequently, uyy′ ∼E v when
wy′ = v. Now, ∃x(vx ∼E u)) is immediate from v ≺ β ∈ E′(u).
If β /∈ E′(u) then either Pref (β) ∩ Su = ∅ or w ∈ Su and v /∈ Su for some w ≺ v ≺ β.
Since Su is interval closed, it follows Pref (β) ∩ Su ⊆ Pref (v).
2. follows from 1. and Su = Su′ .



On Syntactic Congruences for ω−languages 11

3. In view of 2. the inclusion ⊇ is obvious. Conversely, if β ∈ E′(u) then u′ ≺ β for
some u′ ∈ Su and, consequently, β ∈ E(u′).
4. Let wα ∈ E′(u) ∩ E where w ∈ Su. Then uy ∼E w for some y ∈ Σ∗. Consequently,
uyα ∈ E.
In order to show uyα ∈ E(u) we consider the prefixes v ≺ α. They satisfy wvxv ∼E u
for suitable xv ∈ Σ∗. From uy ∼E w we obtain uyvxv ∼E u, whence uxα ∈ E(u). o

Now we can prove our result generalising Theorem 24 of [St83].

Theorem 15 Let E ∈ Fσ ∩ Gδ such that either E∅ ⊆ E or E ∩ E∅ = ∅. Then E is accepted
by its minimal-state automaton AE.

Proof: We observe that the class of all subsets of Σω acceptable by Muller automata
as well as the class Fσ ∩ Gδ are closed under complementation. So we may assume
without loss of generality that E∅ ⊆ E.
From Lemmata 13 and 14 it follows that E = E∅ ∪ ⋃u∈Pref (E)∧ E(u)∩E 6=∅ E′(u). So for
every u we let Tu = {〈v〉 : ∃x∃v(vx ∼E u ∧ uy ∼E uv)} be the strongly connected
component of AE which contains 〈u〉 and we let Tu be 2Tu − {∅}.
Then for every α ∈ Σω , α ∈ E′(u) − E∅ iff Inf (AE, α) ∈ Tu, so by letting T =
{∅} ∪⋃u∈Pref (E)∧E′(u)∩E 6=∅ Tu we can make AE accept E. o

Since for a finite-state ω-language E the set E∅ is always empty, our theorem yields as
an immediate consequence the assertion of Theorems 21 and 24 of [St83].

Corollary 16 If E is a finite-state ω-language in Fσ ∩ Gδ then E is regular and is accepted by
its (finite) minimal-state automaton AE.

Note that Example 1 shows that this condition (E being in Fσ ∩ Gδ) is not a necessary
one:

Example 1 (continued) Theorem 10 and Example 1 prove that E1 6∈ Fσ ∩ Gδ (In fact E1 is
in Fσ, since it is a countable set, hence E1 6∈ Gδ.), but it is easily verified that AE1 accepts
E1 (cf. [St83, Example 1]).2

Next we will provide a necessary condition for an ω-language E to be acceptable by
its minimal-state automatonAE. This condition is based on a relation between ≈E and
'E and is valid for arbitrary (not necessarily regular) ω-languages.
Let us define a congruence relation based on ∼E which refines 'E by considering two
words to be equivalent only if they have the same set of right-factors (modulo ∼E).

Definition 4 (Factorized congruence) The factorization of ∼E is a congruence ∼∗E defined
as x ∼∗E y iff ∀u ∈ Σ∗

1. ux ∼E uy and

2. ∀v(v � x → ∃v′(v′ � y ∧ uv ∼E uv′)) and

2N. Gutleben (personal communication) showed that arbitrary high degrees of Wagner’s [Wa79] hi-
erarchy contain regular ω-languages E accepted by AE.
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3. ∀v′(v′ � y→ ∃v(v � x ∧ uv ∼E uv′))

It is more intuitive to see the meaning of this relation in terms of the minimal-state
automaton AE. Here x ∼∗E y iff from every state q both x and y lead to the same
state while visiting the same set of states. (Observe that x 'E y iff from every state
q of AE both x and y lead to the same state without necessarily visiting the same set
of intermediate states). One can see that u ∼E v and x ∼∗E y imply that for every
z, Inf (AE, u(xz)ω) = Inf (AE, v(yz)ω). A similar refinement of the right congruence
related to a deterministic automaton was introduced in [DL95] as the cycle congruence
of an automaton.

Claim 17 An ω-language E can be accepted by its minimal-state automatonAE using Muller
condition only if x ∼∗E y implies x ≈E y for all x, y ∈ Σ∗.

Proof: Suppose that x ∼∗E y and x 6≈Ey, that is, for some x ∼∗E y, there exist u, v such that
u(xv)ω ∈ E and u(yv)ω 6∈ E. But xv ∼∗E yv, hence Inf (AE, u(xv)ω) = Inf (AE, u(yv)ω),
and AE cannot accept E. o

The condition of the previous claim fails to be sufficient. To this end consider again
Example 3.

Example 3 (continued) One verifies that AE3 cannot accept E3 = {a, b}∗aω ∪ caω. But in
virtue of ∼∗E3

⊆ 'E3 and 'E3 ⊆ ≈E3 we have ∼∗E3
⊆ ≈E3 .

Intuitively the reason is that ∼∗E3
is too refined: a 6∼∗E3

b because ca 6∼E3
cb and yet

Inf (AE, aaω) = Inf (AE, abω). In the next section we will introduce more suitable defi-
nitions for that purpose. Recalling that'E3 and∼=E3 coincide, we can conclude that the
questions whether AE accepts E and whether 'E and ∼=E coincide, being both related
to the study of syntactic congruences, are likewise independent (cf. also Appendix B).

6 Recognition by right-congruences

In this section we will develop an alternative theory of recognition of ω-languages
by right-congruence relations, as a complement to the recognition by two-sided con-
gruences (monoids) described in [Ar85, Ei74, PP93, Th90]. Using this theory we give
a necessary and sufficient condition for a regular ω-language to be accepted by its
minimal-state automaton.

Definition 5 (Family of right-congruences) A family of right-congruences (FORC) is a
pairR = (∼, {∼u}〈u〉∈Σ∗/∼) such that:

1. ∼ is a right-congruence relation.

2. ∼u is a right-congruence relation for every 〈u〉 ∈ Σ∗/∼.

3. For all u, x, y ∈ Σ∗, x ∼u y implies ux ∼ uy.
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As we can see, a FORC consists of a “leading” relation ∼ and a relation associated
with each of its classes. We will denote classes of ∼ by 〈u〉 and classes of ∼u by 〈v〉u.
A FORC is finite if all the right-congruences are of finite index. As in the case of finite
congruences, the following factorization property holds:

Lemma 18 Let R be a finite FORC. Then every ω-word α has a factorization α = uv1v2, . . .
such that vi ∼u vi+1 and uvi ∼ u for all i > 0.

Proof: (Along the same lines of the proof of Lemma 2.2 in [Th90] for congruences,
cf. also Section 2.3 of [PP93]). Let α = uβ such that 〈u〉 is a class of ∼ that appears
infinitely often in α and let J = {j1, j2, . . .} be an increasing sequence of indices such
that uβ(1..ji) ∼ u for every i. Next we define an equivalence relation on IN: n1 ∼β n2 if
for some m > n1, n2 β(n1..m) ∼u β(n2..m) (in other words, positions n1 and n2 “merge”
after m). By the finiteness of∼u,∼β is finite too, so we can take an infinite sub-sequence
of of indices K = {k1, k2, . . .} ⊆ J such that ki < ki+1 and ki + 1 ∼β ki+1 + 1, that is,
for every i there is some mi ≥ ki+1 + 1 such that β(ki + 1..mi) ∼u β(ki+1 + 1..mi).
Finally we take a sub-sequence of indices L = {l1, l2, . . .} ⊆ K such that for some v,
β(l1 + 1..li) ∈ 〈v〉u for every i, and β(li + 1..m) ∼u β(li+1 + 1..m) for some m ≤ li+2.
Let vi := β(li + 1..li+1). Then v1 · · · vi ∼u v.
By definition of ∼β it also implies β(li + 1..li+2) ∼u β(li+1 + 1..li+2),that is vivi + 1 ∼u
vi + 1, so, by induction, for every i ≥ 1, β(li + 1..li+1) = vi ∈ 〈v〉u and together with
uβ(1..l1) ∼ u we have the desired factorization. o

Definition 6 (Recognition by FORCs) An ω-language E is covered by a FORC R = (∼
, {∼u}〈u〉∈Σ∗/∼) if it can be written as a union of sets of the form 〈u〉(〈v〉u)ω such that uv ∼ u.
An ω-language E is saturated by R if for every u, v such that uv ∼ v, 〈u〉(〈v〉u)ω ∩ E 6= ∅
implies 〈u〉(〈v〉u)ω ⊆ E. An ω-language E is recognized by R if it is both covered and
saturated by it.

As for congruences, in the special case of finite FORCs, covering and saturation coin-
cide.

Lemma 19 A finite FORCR covers an ω-language E if and only if it saturates E.

Proof: (See also proof of Lemma 1.1 in [Ar85]). Saturation implies covering by virtue of
the Factorization Lemma 18. Now we show that covering implies saturation: Suppose
〈u〉(〈v〉u)ω ∩ E 6= ∅. Since 〈u〉(〈v〉u)ω ∩ E is regular it contains an ultimately-periodic
word xyω. Since y is finite we have xyω = z1zω

2 , where z1 = xyn1y1, z2 = y2yn2y1,
y = y1y2, z1 ∼ uvm1 ∼ u and z2 ∼u vm2 . Since 〈u〉(〈v〉u)ω ⊆ 〈uvm1〉(〈vm2〉u)ω, by
covering we have 〈u〉(〈v〉u)ω ⊆ E. o

Next we will show how every deterministic automaton A = (Σ, Q, δ, q0) defines an
associated FORC that bears important information about the transition structure of
the automaton. For every q ∈ Q and u ∈ Σ∗ we will denote by Vis(q, u) the set of
states visited by the automaton while reading u starting at q, and let MSCC(q) := {q′ :
∃x(δ(q, x) = q′) ∧ ∃y(δ(q′, y) = q)} be the maximal strongly-connected component in
the transition graph of A which contains q.
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Definition 7 (The FORC of an automaton) Let A = (Σ, Q, δ, q0) be a deterministic au-
tomaton. The FORC associated with A isRA = (∼, {∼u}〈u〉∈Σ∗/∼) defined as:

1. x ∼ y iff δ(q0, x) = δ(q0, y)

2. x ∼u y iff Vis(q, x)∩MSCC(q′) = Vis(q, y)∩MSCC(q′) whenever δ(q0, u) = q and
δ(q, x) = δ(q, y) = q′.

In other words x and y are congruent from q = δ(q0, u) if they lead to the same state,
and if they visit the same set of states which the automaton may still visit in the future.
It is easily verified thatRA is indeed a FORC.

Claim 20 Two ω-words have the same Inf in A if and only if they have equivalent RA-
factorizations into 〈u〉(〈v〉u)ω with uv ∼ u.

Proof: Let α be any ω-word such that Inf (A, α) = T = {q1, . . . , qm} and let i1 be the
first occurrence of q1 in the run of the automaton over α after all the states in Q − T
have disappeared. For every k > 1 let ik be the first occurrence of q1 such that all
the states in T occurred between positions ik−1 and ik. By letting u = α(1..i1) and
vk = α(ik + 1..ik+1) we obtain the desired factorization. Conversely it is immediate to
see that such a factorization determines Inf (A, α). o

Corollary 21 A Muller automaton A can accept E if and only if its FORCRA recognizes E.

Proof: If RA does not recognize E there must be some α ∈ E and β 6∈ E having the
same Inf andA cannot accept E. If RA recognizes E then for every T ∈ 2Q all the words
α ∈ Σω such that Inf (A, α) = T have an identical factorization, and thus the set T of
accepting subsets can be determined consistently. o

Theorem 22 (“Myhill-Nerode” theorem for ω-languages) An ω-language is regular if
and only if it is recognized by a finite FORC.

Proof: The only-if part follows from Corollary 21. Suppose E is recognized by a FORC.
Since every set 〈u〉 and 〈v〉u is regular, every finite union of sets of the form 〈u〉(〈v〉u)ω

is, by definition, ω-regular. o

The next step is to define a partial-order among FORCs.

Definition 8 Let R = (∼, {∼u}〈u〉∈Σ∗/∼) and R′ = (∼′, {∼′u}〈u〉∈Σ∗/∼′) be two FORCs.
We say thatR′ refinesR (R′ ≤ R) if

1. ∀x, y ∈ Σ∗(x ∼′ y→ x ∼ y), and if ∼′=∼ then

2. ∀u, x, y ∈ Σ∗(x ∼′u y→ x ∼u y).

Definition 9 (Syntactic FORC) Let E be a regular ω-language. The syntactic FORC asso-
ciated with E isRE = (∼E, {≈u}〈u〉∈Σ∗/∼E

) where ∼E is the syntactic right-congruence of E
and for every u, x ≈u y iff
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1. ux ∼E uy and

2. ∀v(v ∈ Σ∗ ∧ uxv ∼E u→ (u(xv)ω ∈ E ⇐⇒ u(yv)ω ∈ E))

One can see that ≈u is coarser than the infinitary congruence ≈ in two respects:

1. It does not quantify over all u (just those in 〈u〉), and

2. it does not quantify over all v, only over those for which xv (and hence also yv)
makes a cycle from 〈u〉.

Lemma 23 Any regular ω-language E is recognized by its syntactic FORCRE.

Proof: (We prove it similarly to Lemma 2.2 in [Ar85]). Suppose the contrary, i.e.,
〈u〉(〈v〉u)ω ∩ E 6= ∅ but 〈u〉(〈v〉u)ω 6⊆ E for some u, v satisfying uv ∼E u. Then by reg-
ularity there exist uvω ∈ E and xyω ∈ 〈u〉(〈v〉u)ω − E. Due to the finiteness of y there
exist some m, n such that xyω = zx1 . . . xm(y1 . . . yn)ω with z ∼E u and xi ≈u yj ≈u v
for every i ≤ m, j ≤ n. This implies that zx1 . . . xm ∼E u and y1 . . . yn ≈u vn and thus
by the definition of ≈u, zx1 . . . xm(y1 . . . yn)ω ∈ E if u(vn)ω ∈ E which means xyω ∈ E,
a contradiction. o

Theorem 24 For every regular ω-language E, its syntactic FORC RE is the largest FORC
recognizing it.

Proof: Let R = (∼, {∼u}〈u〉∈Σ∗/∼) be a FORC recognizing E and let R > RE. Then
∼ ⊃ ∼E, or ∼ = ∼E and ∼u ⊃ ≈u for some u ∈ Σ∗.
First, suppose that for some x, y we have x ∼ y but x 6∼Ey, that is, for some α ∈ Σω,
xα ∈ E but yα 6∈ E. But then xα has a factorization xα = uv1v2, . . . where x � u and
vi ∈ 〈v〉u. Since x ∼ y, yα has a similar factorization yα = u′v1v2, . . . with u′ ∼ u and
thus we have shown 〈u〉(〈v〉u)ω contains both xα and yα contrary to the assumption
thatR recognizes E.
Suppose now that ∼=∼E and for some u, x, y we have x ∼u y but x 6≈uy. This means
that there is some z such that uxz ∼ uyz ∼ u and u(xz)ω ∈ E but u(yz)ω 6∈ E. Since
∼u is a right-congruence we also have xz ∼u yz and thus 〈u〉(〈xz〉u)ω contains both
members and non-members of E, again, contrary to the assumption that R recognizes
E. o

Applying this result to the FORC associated with an automaton we get:

Corollary 25 A Muller automaton A can accept a regular ω-language E if and only if its
associated FORCRA refines the syntactic FORCRE.

In particular, considering the minimal-state automaton of E, AE, its corresponding
FORC can be rephrased as follows:

Definition 10 (Automatic-Syntactic FORC) Let E be a regular ω-language. The automatic-
syntactic FORC associated with E isRAE = (∼E, {∼∗u}〈u〉∈Σ∗/∼E

) where ∼E is the syntactic
right-congruence of E and for every u, x ∼∗u y iff
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1. ux ∼E uy and

2. ∀v(v � x ∧ ∃z(uxz ∼E uv)→ ∃v′(v′ � y ∧ uv ∼E uv′)) and

3. ∀v′(v′ � y ∧ ∃z(uyz ∼E uv′)→ (∃v(v � x ∧ uv ∼E uv′)).

This is just a reformulation of Definition 7 but in an automaton-free manner. As a direct
application we can give an exact characterization of those regular ω-languages that can
be accepted by their minimal-state automaton.

Theorem 26 Let E be a regular ω-language LetRE = (∼E, {≈u}〈u〉∈Σ∗/∼E
) be its syntactic

FORC (Definition 9) and letRAE = (∼E, {∼∗u}〈u〉∈Σ∗/∼E
) be its automatic-syntactic FORC

(Definition 10). E can be accepted by the automaton AE if and only if for all u, x, y ∈ Σ∗,
x ∼∗u y implies x ≈u y.

Proof: It follows from Corollary 25 o

As an illustration consider once more E3 = {a, b}∗aω ∪ caω. Now we have a ∼∗a b but
a 6≈ab and for this reason AE3 cannot accept E3.
On the other hand consider E = a∗b{b ∪ aa}∗abω. The methods developed in [Wa79]
prove that E ∈ Fσ − Gδ, hence E 6∈ Fσ ∩ Gδ. Here the classes of ∼E are 〈e〉 = a∗,
〈b〉 = a∗b{b ∪ ab∗a}∗ and 〈ba〉 = a∗b{b ∪ ab∗a}∗ab∗. The following table depicts the
congruence classes of {∼∗u} and {≈u} for 〈u〉 ∈ Σ∗/ ∼E and one can, indeed, see that
the condition of Theorem 26 is satisfied, E = 〈ba〉(〈b〉ba)

ω and AE accepts E.

〈u〉 ≈u ∼∗u
〈e〉 a∗ a∗

a∗b{b ∪ ab∗a}∗ a∗b+, a∗b(b∗ab∗a)+b∗

a∗b{b ∪ ab∗a}∗ab∗ a∗b{b ∪ ab∗a}∗ab∗

〈b〉 {b ∪ ab∗a}∗ b∗, (b∗ab∗a)+

{b ∪ ab∗a}∗ab∗ {b ∪ ab∗a}∗ab∗

〈ba〉 b∗ b∗

(b∗ab∗a)+b∗ (b∗ab∗a)+b∗

(b∗ab∗a)∗b∗a (b∗ab∗a)∗b∗a

It can be easily verified that for ω-languages having the period exchange property the
hypothesis of Theorem 26 is trivially satisfied. Hence in connection with the Lemmas 9
and 11 we obtain an alternative proof of Corollary 16.
Unlike Theorem 10, our Theorem 26 and also Lemma 23 in general do not hold for
arbitrary ω-languages: Consider, e.g., the ω-language Ult defined above. Since ∼Ult is
trivial and Ult contains all ultimately periodic ω-words, also the congruences ∼∗u and
≈u are trivial. Hence, x ∼∗u y implies x ≈u y, but AUlt does not accept Ult.
The introduction of the FORC concept may have significance beyond the proof of the
above theorem. Up to now the only syntactic characterization of ω-languages was
by means of a two-sided congruence and the lack of the other half of a Myhill-Nerode
theorem was believed to be an inherent feature of the theory of ω-languages — we have
shown that this is not the case. From a practical point of view, although the iteration
congruence ∼=E (which is the intersection of ∼E with {≈u}〈u〉∈Σ∗/∼E

) has a simpler
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definition, its size might be exponentially larger, and there are situations3 where the
right-congruences are the right congruences.
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A Proof of Lemma 13

As it was announced in Section 5 we give a proof of Lemma 13:
If E ⊆ Σω is simultaneously an Fσ- and a Gδ-set then

E = (E ∩ E∅) ∪
⋃

w∈Pref (E)∧ E(u)∩E 6=∅

{β : w ≺ β ∧ ∀u(u � β→ ∃v(uv ∼E w))} .

To this end we introduce some notation. We call an ω-language D ⊆ Σω strongly
connected iff

∀u
(
u ∈ Pref (D)→ ∃v(v ∈ Σ∗ ∧ uv ∼D e)

)
,

that is, for every u which is a finite prefix of some ω-word ξ ∈ D there is a v ∈ Σ∗ such
that D ∩ uvΣω = uvD.
This notion corresponds to the strong connectivity of the partial automaton A′D which
is obtained from the minimal-state automaton AD by deleting the state (dead sink)
〈w̃〉 = {w : w 6∈ Pref (D)}.
With an arbitrary ω-language D we associate the following ω-language D̃

D̃ := {ξ : ∀u(u ≺ ξ → ∃v(uv ∼D e))} , (5)

and its connected part cn(D) (cf. also [St83]).

cn(D) := D ∩ D̃ . (6)

Remark: In (5) we can likewise replace the quantifier ∀u by ∃∞u (there are infinitely
many u)
Since D̃ = Σω − {w : ∀v(wv 6∼De)} · Σω, the ω-language D̃ is closed.
Moreover, we have the following.

Fact 27 Let for D ⊆ Σω the ω-language D̃ be defined as above. Then w ∼D w′ implies
w ∼D̃ w′ and w ∼cn(D) w′.

Proof. Let w ∼D w′. In order to show w ∼D̃ w′, by symmetry it suffices to verify that
wβ ∈ D̃ implies w′β ∈ D̃. Now let (ui)i∈IN be an infinite family of finite prefixes of β
such that ∀i∃vi(wuivi ∼D e). Then in view of w ∼D w′ we have also ∀i∃vi(w′uivi ∼D
e). Hence w′β ∈ D̃.
Now w ∼cn(D) w′ follows from (6). o

Furthermore the connected part cn(D) has the following properties (cf. [St83, Lemma 16
and Proposition 17]).

Lemma 28 1. cn(D) is a strongly connected ω-language.

2. If cn(D) is nonempty and closed then cn(D) = D̃

Proof. 1. Let w ∈ Pref (cn(D)) = Pref (D ∩ D̃). Then in view of the definition of D̃ (see
(5) above) wv ∼D e for some v. Now Fact 27 shows wv ∼cn(D) e.
2. Assume ∅ 6= cn(D) ⊂ D̃. Since D̃ itself is closed, there is a w ∈ Σ∗ such that
D̃ ∩ wΣω 6= ∅ and cn(D) ⊆ D̃− wΣω.
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Let β ∈ D̃ such that w ≺ β. Then there is a v satisfying wv ∼D e. According to Fact 27
we have wv ∼cn(D) e. Hence, cn(D) ∩ wvΣω = wv · cn(D), and cn(D) ∩ wΣω = ∅
implies cn(D) = ∅, a contradiction. o

As a next result we need a topological property of strongly connected ω-languages in
Fσ ∩ Gδ (cf. [St83, Lemma 20]).

Lemma 29 Let D be a strongly connected ω-language which is simultaneously in Fσ and in
Gδ. Then D is already closed.

Proof. From [Ku66] it is known that for every nonempty D ∈ Fσ ∩ Gδ there is a w ∈ Σ∗

such that D ∩ wΣω is nonempty and closed. Utilizing the strong connectivity of D we
obtain a v ∈ Σ∗ satisfying D ∩ wvΣω = wvD. The left hand side of this identity equals
(D ∩ wΣω) ∩ wvΣω, thus it is closed. Consequently, wvD and also D are closed. o

The assertion of Lemma 13 can be restated now as follows. Observe that Ẽ/w =
{ξ : ∀u(u ≺ ξ → ∃v(wuv ∼E w))} and E(u) = u · Ẽ/u.
If E ∈ Fσ ∩ Gδ and E ∩ wΣω 6= ∅ then

E ⊇ w · Ẽ/w or E ∩ w · Ẽ/w = ∅ .

Proof. Set E/w := {β : wβ ∈ E}, that is w · E/w = E ∩ wΣω. Hence E/w is also in
Fσ ∩ Gδ. According to Lemma 28.1 and Lemma 29 the set cn(E/w) is closed.
Assume now E ∩ w · Ẽ/w 6= ∅, that is, E/w ∩ Ẽ/w 6= ∅. Then cn(E/w) 6= ∅ and
following Lemma 28.2 we have cn(E/w) = Ẽ/w. Now the assertion follows from
cn(E/w) ⊆ E/w. o
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B Independence examples

Here we show that although the condition of Claim 17 fails to be a sufficient one, it is
neither trivially satisfied nor does it necessarily imply one of the conditions ‘'E = ∼=E’
or ‘AE accepts E’ even in case if E is regular.
First we give an example of an ω-language E6 such that ∼∗E6

⊆ ≈E6 does not hold true.

Example 6 Let Σ := {a, b} and E6 := {a, b}∗aω. Then 'E6 is trivial. Hence ∼∗E6
is also

trivial, but a 6≈E6
b.

Consequently, neither 'E6 and ∼=E6 coincide nor does AE6 accept E6.

In the second example an ω-language E7 is given for which ∼∗E7
⊆ ≈E7 holds, but

neither 'E7 and ∼=E7 coincide nor does AE7 accept E7.

Example 7 Define E7 := (b∗a)ω ∪ (a2)∗caω. The automaton AE7 has five states 〈e〉, 〈a〉,
〈b〉, 〈c〉, and 〈c〉c, and is given by the following equations:

〈a〉a = 〈e〉
〈a〉b = 〈b〉 = 〈b〉a = 〈b〉b
〈a〉c = 〈b〉c = 〈c〉b = 〈c〉c
〈c〉a = 〈c〉

One can see thatAE7 does not accept E7, and that (a2)∗, a(a2)∗, a∗b{a, b}∗, (a2)∗ca∗, a(a2)∗ca∗,
and {a, b}∗c{a, b, c}∗ − a∗ca∗ are the congruence classes of 'E7 .
Now consider the empty word e. Since c(ea)ω = caω ∈ E7 but c(xa)ω 6∈ E7 unless x ∈ a∗,
we have that x ≈E7 e implies x ∈ a∗. On the other hand we have bω ∈ E7 and (ban)ω 6∈
E7 for n > 0. Hence x ≈E7 e implies that x 6∈ a∗ − {e}. Thus aa 'E7 e but aa 6 ∼=E7

e.
Utilizing similar arguments it is easy to verify that ≈E7 has the following congruence classes:
{e}, a+, a∗b{a, b}∗, and {a, b}∗c{a, b, c}∗.
Since ∼∗E7

refines 'E7 , we obtain ∼∗E7
⊆≈E7 from the observation that w ∼∗E7

e implies w = e.
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