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Abstract� In this paper we present a method for modeling asynchronous
digital circuits by timed automata� The constructed timed automata
serve as 
mechanical� and veri�able objects for asynchronous sequential
machines in the same sense that untimed� automata do for synchronous
machines� These results� combined with recent results concerning the
analysis and synthesis of timed automata provide for the systematic
treatment of a large class of problems that could be treated by con�
ventional simulation methods only in an ad�hoc fashion� The problems
that can be solved due to the results presented in this paper include� the
reachability analysis of a circuit with uncertainties in gate delays and

input arrival times� inferring the necessary timing constraints on input

signals that guarantee a proper functioning of a circuit and calculating the
delay characteristics of the components required in order to meet some

given behavioral speci�cations�
Notwithstanding the existence of negative theoretical results concerning
the worst�case complexity of timed automata analysis algorithms� initial
experimentation with the Kronos tool for timing analysis suggest that
timed automata derived from circuits might not be so hard to analyze
in practice�

� Introduction

Digital circuits can be viewed at various levels of abstraction� This paper is
concerned with the level situated between the transistor di�erential model and
the purely�discrete model of synchronous sequential machines� At this interme�
diate level� the underlying continuous dynamics of the gates is not completely
ignored� but rather encapsulated into real�time constraints that serve as an ap�
proximation of this dynamics� Unlike the synchronous modeling style where time
is abstracted away into a sequence of points where nothing exists between them�
time is viewed here as a continuous entity whose progress interferes with discrete
state transitions�

� This research was supported in part by the European Community projects BRA�
REACT���	� and HYBRID EC�US����� Verimag is a joint laboratory of cnrs�
inpg� ujf and verilog sa� spectre is a project of inria�



At this intermediate level of timed Boolean functions� the primary objects
are Boolean signals de�ned over the real time axis� unlike Boolean sequences
de�ned over the integers� In this model the output of a gate is a combinatorial
function of the inputs� shifted in time� These delays could have been inferred
from the di�erential dynamics of the components� but we will not be concerned
with these low�level details �unlike �KM	
�� in this paper and consider them as
given�

We will present a fairly general model of asynchronous digital circuits con�
sisting of Boolean gates and delay elements and show how this model translates
naturally into the timed automata formalism of �AD	�� After this translation
timed automata techniques can be applied to the analysis of the circuits �this
was� in fact� the primary motivation for the introduction of timed automata in
�D�	���

The main advantage of this formalism is that it allows automatic analysis
of all the possible behaviors of the circuit�� The novel feature of these analysis
methods compared to more conventional simulation techniques currently em�
ployed in timing analysis� is that it can capture uncertainties in the input arrival
times� in the initial conditions or in the delay parameters of the gates� without
any problem� This is because the �simulation� is global in the sense that instead
of simulating one possible execution of the circuit� we simulate in one �step� an
in�nite �and even uncountable� number of executions �see also �BM���� �L�	��
�D�	�� �BD	
�� �AD	� for the origins of this �geometric� simulation method for
timed systems� and �ACH�	�� �AMP	��a� for the application of this approach
in the more general setting of hybrid systems��

The core of this paper is a careful translation of circuits� de�ned via a sys�
tem of delay equations into a network of interacting timed automata whose
set of possible behaviors is exactly the set of signals satisfying the equations�
The translation is done using two types of basic components and it re�ects the
structural properties of the circuit� including the functional and temporal depen�
dencies between the state�variables� As such it can serve as a basis for further
optimizations and algorithmic �ne�tuning�

The rest of the paper is organized as follows� in section � we present signals�
delay equations and circuits� Section � consists of a presentation of a modi�ed
version of timed automata communicating via shared variables� which we �nd to
be the most suitable for circuit modeling� In section  we show how to translate
between the two models and conclude in section � with the potential applications
of these results�

� Signals and Circuits

Let T denote the set of non�negative reals and let Q be any set�

� We adopt the term� but not the techniques� which are essentially deterministic� from
�LB���� In fact� our formalism could be called timed Boolean relations�

� Some recent simulation�oriented attempts to achieve this goal are reported in �ML����
�LL����



De�nition� �Piecewise�continuous Signals�� A Q�valued piecewise contin�
uous signal is a function � � T � Q admitting a �possibly �nite� countable
increasing sequence L��� � t�� t�� � � � such that t� � � and � is continuous at
T �L��� and discontinuous at L����

We use �t to denote ��t� and let I��� � I�� I�� � � � � �t�� t��� �t�� t��� � � � be the
sequence of left�closed right�open intervals induced by the signal� We call L���
the boundary points of �� Continuous signals are obtained as a special case when
L��� � ��� and I��� � ������

Let IB � f�� 
g� A Boolean signal is a IBk�valued signal for some k� In this
case the above properties of signals specialize into�

� t�� t� � Ii � �t� � �t��
� t� � Ii � t� � Ii�� � �t� �� �t�

One can see that the conditions above prevent a non�countable number of dis�
crete variations in the value of the signal as well as the so�called Zeno phe�
nomenon in which in�nitely many discrete transitions happen within a bounded
real�time interval� We denote the set of all such Boolean signals by Sk �

A Boolean function is a function f � IBk � IB for some k 	 �� We will use the
same notation for the temporal extension� f � Sn � S� of f � de�ned as � � f���
i� for every t � T � �t � f��t�� We call this an instantaneous signal function�

De�nition	 �Ideal Deterministic Delay�� Let d be a non�negative number�
The ideal delay associated with d is a function �d � IB 
 S � S such that
� � �d�b� �� i� for every t � T �

�t �

�
b if t � d

�t�d if d � t

The value of � always mirrors the value of � as it was d time units before
and b is a default value of � for the initial interval ��� d� � see signals s� and
s� in �gure 
� Ideal delays are nice mathematically but are not comfortable for
�nite�state modeling �and are not physically realistic�� This is because � has
always to �remember� all the possible variations in the value of � that could
have occurred in the last temporal window of length d� It is common to assume
that every change in � has to persist for a minimal interval of time �latency�� in
order to be �noticed� by the delay element� In order to simplify the presentation
we unify these two constants and assume that the latency associated with �d is
equal to d� More generally it could be any number not greater than d �otherwise
the function becomes non�causal as the value of � at time t might depend on
the value of � at time greater than t��

De�nition
 �Deterministic Latency Delay�� Let d be a non�negative num�
ber� the latency delay associated with d is a function �d � IB 
 S � S such that
� � �d�b� �� i�

� Also called 
inertial delay�� see� for example� the survey �BS�	��



	� �t � b for every t � ��� d� and

� For every t 	 d� t � L��� i� t�d � L���� �t�d� t��L��� �  and �t�d � �t

The condition �t � d� t� � L��� �  ensures that the change that took place at
t � d persisted for d time units� This de�nition does not refer directly to the
values of � at every t� but rather indirectly using L���� From the de�nition it
follows that if some t is not in L��� then the value of � at t is the value of � at
the latest boundary point �which could be as well the point t � � if no change
in � persisted long enough since the beginning�� Every non�ideal delay can be
decomposed into a �d��lter� �an element that ignores variations that persist less
than d�� and an ideal delay � see signals s�� s� and s� in �gure 
�
Remark� In certain physical settings the e�ects on � of high�frequency varia�
tions in � is not predictable� Consequently the value of � in the corresponding
instants can be any value and the delay operator is non�deterministic� We have
chosen a �lazy� version of the latency delay such that no state�transition takes
place unless it must� The suitability of this modeling decision is application�
dependent and our theory could be developed under di�erent assumptions�

Delay characteristics of real components cannot be known precisely� The most
one can expect from a speci�cation of such components is a delay interval �l� u�
expressing lower and upper�bounds on the time it takes for a change in the input
to propagate to the output� This motivates the following de�nition�

De�nition� �Non�Deterministic Delay�� Let l and u be two non�negative
numbers such that l � u� The non�determinisitic delay associated with l� u is a
function ��l�u	 � IB 
 S � �S de�ned as� � � ��l�u	�b� �� i�

	� �t � b for every t � ��� l��

� For every t 	 l� t � L���� �t� � L���� �t� u� t� l� such that �t� � �t and

�t�� t�� l��L��� � � �Every change in � must be preceded by an l�persistent
change in ���

�� For every t�� t� � L��� � �t�� t� u� � L��� �  � �t� � l� t� � u� � L��� �� �
�Every u�persistent change in � must be re�ected in ���

All these notions are depicted in �gure 
� Non�deterministic delays pose prob�
lems to traditional simulationmethods as the next �event� in the simulation can
take place anywhere within an interval�

De�nition� �Circuit�� A k�wire digital circuit is a tuple N � �X�F � D� where
X � fx�� � � � � xkg is a set of wires� F � ff�� � � � � fkg is a set of functions of the
form fi � IBk � IB and D � f�l�� u��� � � � � �lk� uk�g is a set of positive pairs of
integers such that li � ui� A behavior of the circuit starting from an initial state
b � �b�� � � � � bk� is a IBk�valued signal x � hx�� � � � � xki satisfying the system of
simultaneous inclusions�

x� � ��l��u�	�b�� f��x�� x�� � � � � xk��

x� � ��l��u�	�b�� f��x�� x�� � � � � xk��

� � �

xk � ��lk�uk	�bk� fk�x�� x�� � � � � xk��

�
�
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Fig� �� A signal s�� its ���ltered version s�� s� � ��s�� ideal�� s� � ��s�� latency�
and fs�� s�� s�� s�g � �����	s���

A circuit appears in �gure �� Such a decomposition of gates into the combina�
torial and the delay part is common �e�g�� �LB	��� The correspondence between
a circuit and the system of equations �
� is straightforward and we will refer
to �
� as the description of the circuit� In practice gates have a limited fan�in
and each fi refers only to a small subset of the wires� However for proving our
results it is simpler to assume that all functions are k�ary� The syntactic struc�
ture of F re�ects the topology of the circuit and it will certainly play a role in
any e�cient implementation of analysis algorithms� In the sequel� in order not
to drag with us too much notation� we will omit the reference to the initial value
from the delay equations and their corresponding automata� and use equations
of the form

xi � ��li�ui	�fi�x�� x�� � � � � xk���

Needless to say� the system of equations �
� need not have unique solution�
For the readers who wonder where have the input signals disappear in our model�
the answer is that in a non�deterministic framework inputs can be treated as
any other signal� having the property of being independent of other signals� For
example� the assumption that the rising and falling of an input signal xi must
be separated by at least d time units� can be expressed as xi � ��d��	��xi��
Similarly� xi � ��l�u	��xi� speci�es all signals the distance between their two



consecutive alternations is between l and u� An unconstrained input signal does
not appear in the left�hand side of any equation�

f� f� f�

�l�� u�� �l�� u��

x� x� x�

�l�� u��

Fig� �� A ��wire circuit�

Before introducing timed automata let us try to explain intuitively how we
model the functioning of a circuit� We use a variable vi to represent the observ�
able value of xi� that is� the value at the output port of the delay element �see
�gure ��� We associate two additional �ctitious variables vi and Ci that re�ect
what happens between fi and the delay� vi is the current value of the output of
fi while Ci is a clock that measures the time since vi obtained this value� Using
hardware terminology� wire xi is excited when vi �� vi� When the time is ripe�
i�e� Ci 	 li� and vi lags behind vi� vi can catch up and update its value� Since
xi might be connected via a feed�back loop to fi� the change in vi may change
fi and vi and possibly invalidate the condition that enabled this very change in
vi� Hence in order to avoid this instability we
 must break the simultaneity and
assume that every change in a vi precedes �by an �in�nitesimal�� the changes
it triggers in the various vi�s� This will become hopefully clearer in the sequel�

� Timed Automata

Let V � V�V be a set of Boolean variables and let C be a set of clock variables
ranging over T � The variables in V �C are called hidden variables while those in
V are called observable variables�

De�nition �Formulae�� A �V� C��formula is a Boolean combination of con�
ditions of the form v � �� v � 
� C � c� and C � c for v � V� C � C and

� And anyone else attempting to model feed�back loops using sequential mathematics�



c � f�� � � � � hg for some integer h �which we assume to be �xed throughout the
paper��

We denote the set of all such formulae by F �V� C�� Clearly� if V� � V and C� � C
then every �V�� C���formula is also a �V� C��formula�

De�nition� �States and Transitions�� A �V�� C���state for V� � V and C� �
C is a pair s � hq� ri of functions q � V� � IB and r � C� � T � assigning
actual values to every v � V�� C � C�� A �V�� C���transition is a pair �s� s�� of
�V�� C���states�

Let s � hq� ri� and s� � hq�� r�i be two �V�� C���state� For every v � V�� C � C�

we use s�v� � q�v� and s�C� � r�C� to denote the interpretations that s gives to
its variables� For a transition �s� s�� we will use �s� s���v� to denote s��v� if v � V
and s�v� otherwise� As we see the observable variables are interpreted according
to their value after� the transition while the hidden variables are interpreted
before� the transition� This can be viewed as giving a priority to the observed
variables�

We will use S � Q 
H where Q � IBjVj and H � T jCj to denote the set of
all global states� i�e� all �V� C��state� All the signals we will use henceforth are
S�valued� Such a signal x � T � S induces for every v � V �resp� C � C� an
interpreted signal x�v� � T � f�� 
g �resp� x�C� � T � T � which is almost the
projection of x on v� It is de�ned for every t as

x�v�t �

�
xt�v� if v � V
�limt��t�t��t xt���v� otherwise

Note that the above two expressions are equal whenever x is continuous at t�
and the distinction concerns only the points in L�x�� where the hidden variables
are interpreted according to their value �before� the discrete jump�

De�nition� �Interpretation of Formulae�� Let R be a formula� s� s� be two
�V�� C���state and x � T � S be a signal� Then

	� The interpretation of R at s� denoted by s�R�� is the formula obtained by
substituting s�v� in v for every v � V� � C��


� The interpretation of R at �s� s��� denoted by �s� s���R� is the formula ob�
tained by substituting �s� s���v� in v for every v � V� � C��

�� The interpretation of R at x� denoted by x�R�� is a signal x�R� � T �
ftrue� falseg such that for every t� x�R�t is obtained by substituting x�v�t in
R for every v � V � C�

A �V �� C���state s transforms a �V� C��formula R into a �V � V�� C � C���formula
R� � s�R� and if all the variables mentioned in R are included in V� � C�� then
s�R� is either true or false �which is always the case when s is global�� We use
a similar notation for the interpretation at a state s or a signal x of a subset of
variables� e�g� s�V��� x�V��� If V� � V then x�V�� is exactly the projection of x on
V�� For a set L of signals� L�V�� is the set of corresponding projected signals�



Example� Let V � fv�� v�g� C � fCg� and consider the states

s � hv� � �� v� � 
� C � �i s� � hv� � �i

and formulae
R� � v� � 
 �C �  R� � v� � � �C � �

Then s�v�� � �� s�C� � �� s�V� � h�� 
i� s�R�� � false� s�R�� � true� s��R�� �
C �  and s��R�� � C � �

Our model of timed automata� de�ned below� slightly di�ers from the original
model of �AD	� and others in the following features�


� The distinction we make between hidden and observable variables�
�� We allow communication between the automaton and the external world

by means of continuously�present shared variables� instead of by �message�
passing��

�� We employ a �dense� semantics �signals� instead of �sampled� semantics
�steps��

It can be shown that these models are essentially equivalent�

De�nition� �Timed Automaton�� A timed automaton is a tuple
A � �VA� CA�R�O� where�

� VA � V is a set of m Boolean variables� We denote the set IBm of all their
possible valuations by QA and call it the state�space of A�

� CA � C is a set of n clock variables� We denote the set Tn of all their possible
valuations by HA and call it the clock space of A� The con�guration space
of A is QA 
HA�

� R � QA
QA � F �V �VA� C� is a function that assigns a formula �over the
clocks and the variables which are external� to A� to each pair of states�

� O � QA
QA � �CA is a function that assigns to every pair of states a subset
of the clocks of A �we require that O�q� q� � ��

The intuitive meaning of this de�nition is as follows� the con�guration�space
of A consists of all possible valuations to its own variables and clocks � the
rest of the clocks and variables are considered external to the automaton and
thir values can take the form of arbitrary signals�� The internal clocks grow
uniformly with time� The automaton can stay at some state q as long as the
evaluation of R�q� q� on the clocks and the external variables remains true�
Similarly� a transition from q to q� can be taken when R�q� q�� evaluates to true�
In this case� A resets all the internal clocks in O�q� q��� The external clocks and
variables can� thus� in�uence the behavior of A� but only the values of clocks in
CA and the variables in VA can be modi�ed by A�

� The notion of external�internal with respect to an automaton should not be confused
with the notion of observable and hidden variables� An automaton can 
own� both
hidden and observable variables and can employ other� variables of both sorts in
its associated formulae�



De�nition�� �Semantics of Timed Automata�� Let A � �VA� CA�R�O�
be a timed automaton� The semantics of A consists of all signals x � T � S
such that�

	� T is partitioned into a sequence of intervals �t�� t��� �t�� t��� � � � such that
xt�VA� is constant inside every interval�


� For every i 	 ��
�a� x�VA�ti � q and x�VA�ti�� � q� implies

� x�R�q� q���ti�� � true�
� x�C�ti�� � x�C�ti � �ti�� � ti� for every C � CA � O�q� q���
� x�C�ti�� � � for every C � O�q� q���

�b� If x�VA�ti � q then for every t � �ti� ti����
� x�R�q� q��t � true�
� x�C�t � x�C�ti � �t� ti� for every C � CA�

The set of all such signals is denoted by L�A��

Condition ���a� says that A makes a discrete transition from q to q� at time t
only if the transition condition R�q� q�� is true at t � in this case it resets the
corresponding internal clocks� Condition ���b� says that in order to stay at state
q �and let the internal clocks grow� R�q� q� must be satis�ed�
Note that the semantics is de�ned as a set of S�valued signals including di�
mensions that correspond to variables in V � VA� This facilitates the following
de�nition of composition�

De�nition�� �Composition of Timed Automata�� Let
A� � �VA�

� CA�
�R��O�� and A� � �VA�

� CA�
�R��O�� be two timed automata

such that �VA�
� CA�

�� �VA�
�CA�

� � �� Their composition is A� �A� � A �
�VA� CA�R�O� such that�

	� VA � VA�
� VA�

�and the state�space is QA � QA�

 QA�

��

� CA � CA�

� CA�
� �and the clock�space is HA � HA�


HA�
��

�� R � QA 
 QA � F �V � VA� C� is de�ned for every hq�� q�i� hq��� q
�
�i � QA�



QA�

as

R�hq�� q�i� hq
�
�� q

�
�i� � �hq�� q�i� hq

�
�� q

�
�i��R��q�� q

�
�� �R��q�� q

�
����

In other words� we make a conjunction of the two formulae and substitute
the values of the hidden and observable variables induced by the transition
from hq�� q�i to hq��� q

�
�i�

�� O�hq�� q�i� hq��� q
�
�i� � O��q�� q

�
�� �O��q�� q

�
���

Claim� �Compositionality of ��� L�A� �A�� � L�A�� � L�A���

Sketch of Proof� By induction on the number of discontinuities� ut


 This means that each automaton cannot change the values of the clocks and variables
of the other�



� Translating Equations into Automata

For every k�wire circuit described by a system of equations �
� we let V �
fv�� � � � �vkg� V � fv�� � � � � vkg and C � fC�� � � � � Ckg� With every equation
xi � ��li�ui	�fi�x�� � � � � xk�� we associate two timed automata Ai and Ai

Ai � �fvig� fCig� Ri� Oi��

Ai � �fvig� �Ri�Oi��

The intended meaning of these two automata is as follows� Ai represents the
observed value on xi while Ai represents the �hidden� value on xi� namely the
value xi is about to obtain given that its input is stable for a su�ciently long
period� When a change in fi occurs� it is Ai that changes its state and resets the
clock Ci� This way the clock represents the time elapsed since the occurrence of
the change� Changes that last long enough can trigger an observable transition
in Ai �which in turn may change the value of some fj and vj�� More speci�cally�

Ri��� �� � Ri�
� �� � fi�v�� � � � �vk� � �
Ri��� 
� � Ri�
� 
� � fi�v�� � � � �vk� � 

Oi��� 
� � Oi�
� �� � fCig

Ri��� �� � vi � � �Ci � ui
Ri��� 
� � vi � 
 �Ci 	 li
Ri�
� �� � vi � � �Ci 	 li
Ri�
� 
� � vi � 
 �Ci � ui

These two timed automata are depicted in �gure ��

Claim	 �Properties of L�Ai��� For every i� L�Ai� consists of all the signals
x such that for every t

� x�vi�t � fi�x�v��t� � � � � x�vk�t�
� x�Ci�t � maxfd � �t� � �t� d� t��x�vi�t� � x�vi�t�g� namely� the time elapsed
since vi obtained its current value�

Proof� By de�nition� ut

Claim
 �Properties of L�Ai��� For every i� L�Ai� consists of all the signals
x such that for every t�

� x�vi�t �� x�vi�t � x�Ci�t � ui
� t � L�x�vi��� li � x�Ci�t

Proof� By de�nition� ut

Claim� Properties of L�Ai � Ai�� The set L�Ai � Ai��V� is exactly the set
of signals satisfying the delay inclusion xi � ��li�ui	�fi�x�� � � � � xk�� �



fiv�� � � � �vk� � 	�Ci �� �

fiv�� � � � �vk� � ��Ci �� �

vi � 	vi � �

fiv�� � � � �vk� � 	fiv�� � � � �vk� � �

vi � � �Ci � li

vi � �

vi � 	

vi � � �Ci � ui

vi � 	 �Ci � ui

vi � 	 �Ci � li

Fig� �� The two automata Ai and Ai associated with each equation

�

Sketch of Proof� By combining what claim � tells us about Ci and vi� what
claim � tells us about their in�uence on vi� with the compositionality of �
�claim 
� we obtain a characterization equivalent to de�nition � ut

Theorem� �Main Result�� Every k�wire circuit can be transformed into an
equivalent timed automaton with �k variables and k clocks�

Proof� Given a system of delay inclusions� we create the corresponding system
of timed automata and compose them� obtaining

A �
kO

i�

�Ai �Ai� � A � �V �V� C�R�O�

as described above� whose set of observable behaviors L�A��V� is exactly the set
of solutions� ut
Example� Consider the simple circuit in �gure � We model x� as an oscillator
with parameters l� and u�� Initially we obtain the four ��state automataA�� A��
A� and A� whose R and O are written in table 
� After composing A� with A�

and A� with A� �and removing states and transitions whose R is false � these
indicate unstable states in which the automaton cannot stay for a non�zero



duration� we obtain the two automata A� and A� of table �� Composing those
two we end up with the four�state timed automaton of table � which is depicted
�with the hidden variables removed� in �gure �� This automaton generates all
the observable signals of the circuit�

x�

�

x�

Fig� �� A circuit�
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Table �� The four initial automata�

� Applications

Once a circuit has been translated into an automaton� we can reason about its
behavior using �timed� automata�theoretic methods� The main applicable results
are those concerning analysis�model�checking ��AD	�� �ACD	��� �HNSY	�� and
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Table �� A� � A� � A� and A� � A� � A�� An empty entry in the table indicates
false�
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Table �� A � A� �A��

synthesis� ��HWT	��� �MPS	�� �AMP	��b��� We will brie�y present these results
and discuss their usefulness�

��� Analysis

Given a timed automaton A� one can decide whether a state q� is reachable
from a state q� This is done by an algorithm that calculates� using simple linear�
algebra techniques� the set of successors of a given con�guration� More generally�
the satisfaction of properties expressed in various real�time temporal logics can
be veri�ed as well� Such properties go beyond simple reachability and allow one

� The word 
synthesis� is used in the hardware community for a kind of 
compila�
tion� between an abstract representation into a more concrete one� In the software
veri�cation community the meaning is like in control theory� namely� constructing a
system from its speci�cations� This is the sense in which we use the word�
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Fig� �� The automaton A projected on the observed variables�

to express� for example� a fact like every visit of the system in state q is followed
within d time units by a visit in state q��

All these features are already implemented in the tool Kronos ��HNSY	��
�DOY	�� developed at Verimag� As an initial experiment we have used it to
verify that a MOS circuit with � elements�� and  input signals never reaches
a certain �short�cut� state� This property has been veri�ed against a non�
deterministic speci�cation of the relative rising and falling times of the input
signals�

��	 Synthesis

The synthesis problem for timed automata can be roughly phrased as follows�
Given an automaton A � �VA� CA�R�O�� �nd a systematic way to restrict its
behavior such that some property is satis�ed� By �restricting the behavior� we
mean to modify A into A� � �VA� CA�R��O� such that for every q� q� � QA�
R��q� q���R�q� q��� A typical example of a restriction is to replace an inequality

�� In this paper we have presented the model using Boolean gates� but any other basis
consisting of functions over �nite domains can be treated as well�



of the form l � C � u in R by l� � C � u� such that l � l� � u� � u� Clearly�
by restricting R the set of signals generated by the automaton decreases and
L�A�� � L�A��

The algorithm presented in �MPS	��� �AMP	��b�� which is based on the same
geometric ideas as the analysis algorithms for timed automata� can extract a re�
stricted automaton all of whose behaviors satisfy a given property� If no such
automaton exists� the algorithms can point out a con�guration �state � clocks�
from which the transition to the bad state cannot be avoided� We will demon�
strate how this result can be used for solving two concrete problems in circuit
analysis�

Consider a circuit with given delay characteristics� We want to know what
constraints must be imposed on the input signals in order that some state q

will never be reached� We built the equations for the internal signals and let
the input signals be unconstrained �or speci�ed by xi � ��d��	��xi� for some
minimal propagation constant d�� Then� after translating the system into an
automaton A� our algorithm will search from q backwards� trying to eliminate
bad transitions by putting further restrictions on the formulae� The restrictions
can be made only for those parts of a formula which originate from the equations
that correspond to the input� In the ideal case� we will get as a solution an
automaton A� admitting a reverse translation into a similar system of delay
equations where possibly smaller delay interval are associated with the input
signals� This would mean that it is su�cient to restrict the variability of every
input signal individually� In more complicated cases we will have restrictions that
relate several input signals� For example the condition in A� corresponding to a
transition that changes some value of xi may refer to a clock Cj for some i �� j�
In this case the set of input signals should satisfy more complicated constraints�
such as� input signal xi will never change unless some time has elapsed since the
last change in input xj�

In more complicated cases� a formula that corresponds to an input xi in the
solution A� may refer to clocks of internal signals� This will indicate that the
input cannot be constrained in a feed�forward manner� but that we need a feed�
back from the internal components in order to select admissible inputs� This will
generally indicate bad design� It should be noted� however� that if the gate delays
are deterministic� the problem of calculating the maximal set of input signals
against which the circuits operates properly can be solved without reference to
the clocks associated with the gates� as the values of those can be inferred from
other variables�

In a similar manner we can solve the opposite problem� given a circuit and
a class of input signals� �nd the delay characteristics of the gates that will sat�
isfy some reachability property� Here we will start with the most general delay
parameters of the non�input signals and use our algorithm to restrict them and
obtain a good automaton� As in the previous problem� ideal solutions could be
translated back into delay equations �gate parameters are independent� while
in more complicated cases the relation between gate delays will be of a more
intricate and dynamic nature�



The classi�cation of these problems and solutions as well as the implemen�
tation of e�cient data�structures and algorithms for timed reachability analysis
is subject of an ongoing research� We believe that� as in the case of synchronous
circuits and ordinary untimed automata� the translation into automata clari�
�es the issues� allows a uniform treatment of a class of problems that might
look di�erent at a �rst glance� and helps to focus on practical solutions of the
algorithmic issues�
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